#### 九州大学学術情報リポジトリ Kyushu University Institutional Repository

# Dependability of MPSoC for Applications in Social Information Infrastructure

Yasuura, Hiroto Faculty of Information Science and Electrical Engineering, Kyushu University | System LSI Research Center

https://hdl.handle.net/2324/9162

出版情報:SLRC プレゼンテーション, 2007-06-26. 九州大学システムLSI研究センター

バージョン: 権利関係:



# Dependability of MPSoC for Applications in Social Information Infrastructure

Hiroto Yasuura
System LSI Research Center
Kyushu University





# Values and Credit on a Chip

Our daily lives are heavily depends on SoCs.

Hiroto Yasuura
Department of Computer Science and
Communication EngineeringGraduate School of
Information Science and Electrical
EngineeringKyushu University6-1 Kasuga Koen,
Kasuga, 816-8580, Fukuoka, Japan
Tel. +81-92-583-7620,

FAX +81-92-5831338

yasuura@c.csce.kyushu-u.ac.jp, yasuura@slrc.kyushu-u.ac.jp

http://www.c.csce.kyushu-u.ac.jp/SOC/index.html,

http://www.slrc.kyushu-u.ac.jp





Personal Information





\$30/Chip



Signature



**Credit Cards** 

\$200

2007.6.25

MOPASS





# Requirements for SoC in SII

- SII: Social Information Infrastructure
  - Life: Intelligent Transportation System, Health Care System, Life-line Systems
  - Property: e-Commerce, e-Banking, e-Money
  - Privacy: Authentication System, Communication System
- SII should be dependable for users
  - Secure and reliable operation
  - Stable operation in many years
  - Failure free operation with allowance of some performance degradation
  - Easy to maintenance
  - Gradual and sustainable improvements

## **Causal Chain of Dependability**

Cause of failure or error (Physical Faults, Human Errors and Attacks)





# **A Mathematical Model of Money System**

(Inenaga, Oyama and Yasuura 2007)





An accumulation type system is more difficult to detect counterfeits than a bill type system.



A set of Values

Amount of Value (1\$, ..., 1000\$,..., **n**\$)





#### A set of Media



# Ownership Function K A mapping from M to H. Show an owner holder of

each medium at time *t*.



#### **Value Function /**

A Mapping from M to V. Show value which each medium carries at time



### Threats in SoC for e-Money System

|              | Natural Threats                                                                             | Human Errors                                                                           | Attack                                                              |
|--------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Plan         |                                                                                             | •Bug in Specification                                                                  | •Theft of Plan                                                      |
| Design       |                                                                                             | •Design Bugs •Errors in Assumptions                                                    | •Theft of Design, •Insertion of Illegal Circuit (IPs)               |
| Fabrication  | •Process Variation                                                                          | •Errors in Fabrication                                                                 | •Illegal Sale of Extra<br>Products                                  |
| Test         | •Intermittent Faults                                                                        | •Errors in Test                                                                        | •Illegal Sale of Good Products                                      |
| Distribution | Variation in Packaging                                                                      | <ul><li>Mixture of Defectives</li><li>Installation of Buggy</li><li>Software</li></ul> | •Theft •Insertion of Illegal Software                               |
| Operation    | <ul><li>Ageing and Particles</li><li>Temperature and Supply<br/>Voltage Variation</li></ul> | •Errors and Misunderstanding in Usage                                                  | <ul><li>Phishing、Virus</li><li>Tampering,</li><li>Tapping</li></ul> |
| Abandonment  |                                                                                             | •Mis-Arrangement in Replacement                                                        | •Theft of Logged Information                                        |





# Solutions on MPSoC

- Self-Checking and Self-Detection of Malfunctions
- Fault/Error Masking
- Self-Reconfiguration and Self-Repair
- Autonomic Computing: Monitoring, Analysis, Planning, and Execution
- Adaptation to Change of Specification and Environment







# **Checking Malfunctions**







# **Concluding Remarks**

- MPSoC is a key component of the social information infrastructure.
- Dependable MPSoC Technology
  - Automatic insertion of mechanisms mutual monitoring of processor cores and self-checking like DFT
  - General mechanism of Design for Dependability (DFD)
  - Application specific techniques
    - ID and Right/Authority management
    - e-money
- Technical Challenges
  - Specification Model Generation using Data Mining
  - Reduction of time and space complexity
  - Coverage of monitoring and masking tech.
  - Measure of Dependability
  - Total solution for various threats in all life cycles of chips