Ultra Low Power (ULP) Challenge in System Architecture Level: New architectures for 45-nm, 32-nm era

Sato, Toshinori
System LSI Research Center, Kyushu University

http://hdl.handle.net/2324/9155
Ultra Low Power (ULP) Challenge in System Architecture Level
- New architectures for 45-nm, 32-nm era -

ASP-DAC 2007 Designers' Forum
9D: Panel Discussion: Top 10 Design Issues

Toshinori Sato (Kyushu U)
Global View Helps ULP Design

• Only to reduce power is not enough
 - Variation tolerance,
 - Soft error tolerance, and still
 - High performance

• High-level consideration of power reduction is required
 - Software optimization increases flexibilities of design
 - Speculation can create new frontiers for optimizations
 - Architecture selection can change characteristics of circuits

• Variation-aware (VA) ULP design examples
VA ULP Cache Architecture

- Process variations create ultra leaky transistors
 - Fortunately, leakage current of an SRAM cell depends on the logic value stored

M. Goudarzi: A Software Technique to Improve Yield of Processor Chips in Presence of Ultra-Leaky SRAM Cells Caused by Process Variation, Session 9A @Room 411+412, just NOW.
VA ULP Cache Architecture

- Process variations create ultra leaky transistors
 - Fortunately, leakage current of an SRAM cell depends on the logic value stored
- Store leakage-safe values on entering into standby mode

4-way set-associative cache memory

M. Goudarzi: A Software Technique to Improve Yield of Processor Chips in Presence of Ultra-Leaky SRAM Cells Caused by Process Variation, Session 9A @Room 411+412, just NOW.
VA ULP Cache Architecture

- Process variations create ultra leaky transistors
 - Fortunately, leakage current of an SRAM cell depends on the logic value stored
- Store leakage-safe values on entering into standby mode
- Power saving with negligible performance penalty

M. Goudarzi: A Software Technique to Improve Yield of Processor Chips in Presence of Ultra-Leaky SRAM Cells Caused by Process Variation, Session 9A @Room 411+412, just NOW.
VA ULP Logic Architecture

• Typical-case design
 - Optimizing not for worst cases but for typical cases
 - Combination of two circuits
 • Main for power reduction
 • Checker for correctness

• Examples
 - Razor FF

VA ULP Logic Architecture

- **Typical-case design**
 - Optimizing not for worst cases but for typical cases
 - Combination of two circuits
 - Main for power reduction
 - Checker for correctness
- **Examples**
 - Razor FF
 - Canary FF
- **Potential of over 30% of energy reduction**
- **Ltd. soft error tolerance**

VA ULP CMP Architecture

• Statistical characteristics of circuit delay
 - As the number of critical paths increases, the mean delay increases and the standard deviation decreases

• CMP with simple CPU cores
 - reduces critical path delay, and increases the number of critical paths
 - is more variation-tolerant