九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Wetting and drying scheme を導入した3次元 σ座標系モデルによる諫早湾の流動解析

紙屋, 雅雄
九州大学大学院生物資源環境科学府

平松, 和昭
九州大学大学院農学研究院

原田, 昌佳
九州大学大学院農学研究院

森, 牧人
九州大学大学院農学研究院

https://doi.org/10.15017/8860

出版情報: 九州大学大学院農学研究院学芸雑誌．61 (2)，pp.289–296，2006-10-27．九州大学大学院農学研究院
バージョン:
権利関係:
Wetting and drying scheme を導入した
3 次元 σ 座標系モデルによる諫早湾の流動解析

紙 屋 雅 雄1・平 松 和 昭*
原 田 昌 佳・森 牧 人
九州大学大学院農学研究院生産環境科学部門地域環境科学講座水環境学研究室
(2006年 6月30日受付，2006年 7月24日受理)

A Three-Dimensional Sigma-coordinate Ocean Model with a Wetting and Drying Scheme and its Application to Isahaya Bay

Masao KAMIYA, Kazuaki HIRAMATSU, Masayoshi HARADA and Makito MORI
Laboratory of Drainage and Water Environment, Division of Regional Environment Science, Department of Bioproduction Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan

緒 言
有明海は九州西岸に位置し、福岡、佐賀、長崎、熊本の 4県にまたがる日本の代表的な沿岸閉鎖性海域のひとつで、約1,700km²の海域面積を有し、その容積は約340億 m³、平均水深は約20mである。また、日本で最も高差の大きな海域であり、海岸には広大な干潟が発達している。
こうした特徴を持つ有明海では、年にわたる諸要因によりそれを取り巻く環境が大きく変化してきたおり、その再生に向けた取り組みが急務となっている。とくに近年夏季に発生する底層水の酸素化現象や発発する赤潮は海域の生産性や生態系に悪影響をおよぼしている。有明海は潮汐による水位の変動が大きく、最大で約6mにも達することがあり、この潮汐によって起こる潮流が速いことから海水交換率が高い海域と考えられていたが、近年の酸素湧水体の発生や赤潮の発生はこのような理解からは予測できない事態である（堤ら、2003）。

データと方法
1. 解析対象海域
本研究では諫早湾干拓事業の潮受け堤防締め切り前の諫早湾を対象とした解析を行った（Fig. 1）。諫早湾は有明海の湾奥の西側にある支湾である。

1九州大学大学院生物資源環境科学府生産環境科学専攻地域環境科学講座水環境学研究室
2Laboratory of Drainage and Water Environment, Division of Regional Environment Science, Department of Bioproduction Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University
*Corresponding author (E-mail: masao-k@bpes.kyushu-u.ac.jp)
2. 解析対象データ
3次元σ座標系モデルによって計算された流動と比較を行うための観測データには、平成元年1月13日から同年2月4日まで行われた昭和63年度津早干拓事業潮流調査業務（九州農政局津早干拓事務所，1989）の結果を用いた。観測地点と計算領域の水深分布をFig.2に示す。

3. 流動モデル
（1）3次元σ座標系モデル
明海のような潮満の大きい海域を対象とする場合、デカルト座標系でレベルモデルを用いると海表面を含む層の厚さを潮汐の振幅よりも大きく捉える必要があるため、その下の鉛直構造を失われてしまう。しかし、σ座標系では各グリッドで鉛直方向における層の数は変わるず、水深に応じて層の厚さを変化させることができるので、水深が極めて浅くなるような沿岸域においても鉛直構造を失わずに計算を進めていくことができる。そこで本研究では代表的な3次元σ座標系海洋モデルであるPrinceton Ocean Model（以下POM, Blumberg and Mellor, 1987; Kantha and Clayson, 2000; Mellor, 2004）を用いた。以下にPOMの概要を示す。

1. 基礎方程式
平均海面上の一点を原点とし、水平方向にx, y軸をとり、鉛直方向をz軸とするデカルト座標系を考え、ηを平均海面からの水位変動量、Hを平均海面から海底までの距離とする。連続の式ならびに静水圧近似・ブシネスク近似を仮定したレイノルズ方程式は、海表面を$z = \eta(x, y, t)$、海底面を$z = -H(x, y)$として次式で表される。

\[
\begin{align*}
\frac{\partial U}{\partial t} + U\frac{\partial U}{\partial x} + V\frac{\partial U}{\partial y} + W\frac{\partial U}{\partial z} &= 0 \\
\frac{\partial V}{\partial t} + U\frac{\partial V}{\partial x} + V\frac{\partial V}{\partial y} + W\frac{\partial V}{\partial z} &= 0 \\
\frac{\partial W}{\partial t} + U\frac{\partial W}{\partial x} + V\frac{\partial W}{\partial y} + W\frac{\partial W}{\partial z} &= 0 \\
\end{align*}
\]
ここで，K_m は鉛直拡散係数，F_r，F_s は水平拡散項である。本研究では後述のように T と S 一定，すなわち密度一定の条件で計算を行うため式(5)と(6)は実際には解いていない。

2. 乱流クローチャー

式(2)，(3)，(5)，(6)中の鉛直拡散粘性係数 K_m と鉛直拡散係数 K_H は Meller-Yamada レベル2.5モデル (Mellor and Yamada, 1982) を用いて求められる。同モデルでは，乱流エネルギー q^2 と乱れの長さスケールを用いて K_m と K_H を次式で定義する。

$$K_m = l q S_m \quad (7)$$
$$K_H = l q S_H \quad (8)$$

$$S_m \{1 - (3A_1 B_s + 18A_1 A_2) G_m \} = A_1 \{1 - 6 A_1 / B_s \} \quad (9)$$
$$S_H \{1 - 9 A_1 A_2 G_H \} - S_H \{18 A_2^2 + 9 A_1 A_2 \} G_H = A_1 \{1 - 3 C_1 - 6 A_1 / B_s \} \quad (10)$$

$$G_m = l^2 \frac{q}{\rho_v} \frac{\partial \rho}{\partial z} \frac{1}{C^2_1} \frac{\partial P}{\partial z} \quad (11)$$

ここで，S_m，S_H は安定度関数，G_m はリチャードソン数，c_1 は音速である。式(9)，(10)中の定数については，経験的に以下のよう決定されている (Mellor and Yamada, 1982).

$$(A_1, A_2, B_s, C_1) = (0.92, 0.74, 16.6, 10.1, 0.08) \quad (12)$$

q^2 と l については以下のような輸送方程式を解いて求める。

$$\frac{\partial q^2}{\partial t} + U \frac{\partial q^2}{\partial x} + V \frac{\partial q^2}{\partial y} + W \frac{\partial q^2}{\partial z} = \frac{\partial}{\partial z} \left(K_m \frac{\partial q^2}{\partial z} \right)$$

$$+ 2 K_m \left[\left(\frac{\partial U}{\partial z} \right)^2 + \left(\frac{\partial V}{\partial z} \right)^2 \right] + \frac{2 \rho_v}{\rho_v} K_m \frac{\partial q}{\partial z} - \frac{2 q^3}{B_s} + F_{q^3} \quad (13)$$

$$\frac{\partial q^2}{\partial t} + U \frac{\partial q^2}{\partial x} + V \frac{\partial q^2}{\partial y} + W \frac{\partial q^2}{\partial z} = \frac{\partial}{\partial z} \left(K_m \frac{\partial q^2}{\partial z} + E_{q^2} \right)$$

$$\left[K_m \left(\frac{\partial U}{\partial z} \right)^2 + \left(\frac{\partial V}{\partial z} \right)^2 \right] + \frac{q^3}{B_s} K_m = E_{q^2}$$

$$\tilde{W} = 1 + E_z \left(\frac{1}{k_L} \right)^2 \quad (14)$$

$$L^{-1} = (\eta - z)^{-1} + (H - z)^{-1} \quad (15)$$

$$\frac{\partial U}{\partial z} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial t} = 0 \quad (16)$$

ここで，$k = 0.4$ はカルマン定数である。式(14)，(15)中の定数は式(12)と同様に経験的に以下のよう決定されている。

$$(E_z, E_{q^2}) = (1.8, 1.33) \quad (17)$$

3. 座標変換

デカルト座標系の支配方程式(1)～(6)，(13)，(14)を x', y', z' 座標から以下のように定義される x', y', σ 座標系 (Fig.3) に変換する。

$$x' = x, y' = y, \sigma = \frac{z - \eta}{H + \eta} = \frac{z - \eta}{D}, t' = t \quad (19)$$

ここで，$D = H + \eta$ は水深である。本モデルの σ 座標系では海表面で $\sigma = 0$，海底面で $\sigma = -1$ となる。また，空間と時間に関する微分は次のように変換される。

$$\frac{\partial}{\partial x'} = \frac{\partial}{\partial x} - \frac{1}{D} \left(\frac{\partial D}{\partial x} + \frac{\partial \eta}{\partial x} \right) \frac{\partial}{\partial \sigma} \quad (20)$$

$$\frac{\partial}{\partial y'} = \frac{\partial}{\partial y} - \frac{1}{D} \left(\frac{\partial D}{\partial y} + \frac{\partial \eta}{\partial y} \right) \frac{\partial}{\partial \sigma} \quad (21)$$

$$\frac{\partial}{\partial \sigma} = \frac{1}{D} \frac{\partial}{\partial \sigma} \quad (22)$$

さらに，変換された鉛直方向の流速 ω は次の通りである。

$$\omega = W - U \left(\frac{\partial D}{\partial x} + \frac{\partial \eta}{\partial \sigma} \right) \quad (23)$$

$$\tilde{V} = V - \frac{\partial D}{\partial y} - \frac{\partial \eta}{\partial \sigma} \quad (24)$$

式(20)～(24)を用いて式(1)～(6)，(13)，(14)を変換し，アスタリスクを省略すると以下のよう表される。

$$\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial t} = 0 \quad (25)$$

$$\frac{\partial D}{\partial t} + \frac{\partial U^2}{\partial x} + \frac{\partial UD}{\partial y} + \frac{\partial U}{\partial t} = 0 \quad (26)$$

$$\frac{\partial D}{\partial t} + \frac{\partial U D}{\partial x} + \frac{\partial \eta}{\partial \sigma} + \frac{\partial \eta}{\partial \sigma}$$
292

紙屋雅雄

\[
\begin{align*}
\frac{\partial}{\partial t}\left(\frac{\partial}{\partial x} D \frac{\partial}{\partial y} - \frac{\partial}{\partial y} \frac{\partial}{\partial x} D\right) d\sigma + \text{DF}_x = 0 \\
\frac{\partial}{\partial t}\left(\frac{\partial}{\partial x} V D \frac{\partial}{\partial y} + \frac{\partial}{\partial y} \frac{\partial}{\partial x} V D\right) d\sigma + \text{DF}_y = 0
\end{align*}
\]

(26)

\[
\begin{align*}
\frac{\partial V D}{\partial t} + \frac{\partial}{\partial x} (D \frac{\partial}{\partial y} \frac{\partial}{\partial y} V) + \frac{\partial}{\partial y} (D \frac{\partial}{\partial x} \frac{\partial}{\partial y} V) + \frac{\partial}{\partial x} \frac{\partial}{\partial y} (D \frac{\partial}{\partial y} V) + \frac{\partial}{\partial y} \frac{\partial}{\partial x} (D \frac{\partial}{\partial x} V) + fUD
\end{align*}
\]

(27)

\[
\begin{align*}
\frac{\partial S}{\partial t} + \frac{\partial}{\partial x} (S \frac{\partial}{\partial x} V) + \frac{\partial}{\partial y} (S \frac{\partial}{\partial y} V) + \frac{\partial}{\partial x} \frac{\partial}{\partial y} (S \frac{\partial}{\partial y} V) + \frac{\partial}{\partial y} \frac{\partial}{\partial x} (S \frac{\partial}{\partial x} V) + gD^2 \frac{\partial}{\partial \sigma} \frac{g}{\rho_0}
\end{align*}
\]

(28)

\[
\begin{align*}
\frac{\partial}{\partial t} \left(\frac{K_{H}}{D} \frac{\partial}{\partial \sigma} \frac{\partial}{\partial \sigma} V\right) + \text{DF}_T + \text{DF}_F
\end{align*}
\]

(29)

\[
\begin{align*}
\frac{\partial q^2}{\partial t} + \frac{\partial}{\partial x} \left(\frac{K_{H}}{D} \frac{\partial q}{\partial x}\right) + \frac{2K_{H}}{D} \left(\frac{\partial U}{\partial x}\right)^2 + \left(\frac{\partial V}{\partial x}\right)^2 + 2 \frac{q_0}{\rho_0} \frac{K_{H}}{B_i} \frac{\partial q}{\partial y} + \text{DF}_x
\end{align*}
\]

(30)

\[
\begin{align*}
\frac{\partial q^3}{\partial t} + \frac{\partial}{\partial x} \left(\frac{K_{H}}{D} \frac{\partial q^3}{\partial x}\right) + \frac{2K_{H}}{D} \left(\frac{\partial U}{\partial x}\right)^2 + \left(\frac{\partial V}{\partial x}\right)^2 + 2 \frac{q_0}{\rho_0} \frac{K_{H}}{B_i} \frac{\partial q^3}{\partial y} + \text{DF}_x
\end{align*}
\]

(31)

水平粘性項と水平拡散項については以下のように定義する (Mellor and Blumberg, 1985).

\[
\begin{align*}
\text{DF}_x = \frac{\partial}{\partial t} \left[2A_{\mu} D \frac{\partial U}{\partial x}\right] + \frac{\partial}{\partial y} \left[A_{\mu} D \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x}\right)\right]
\end{align*}
\]

(32)

\[
\begin{align*}
\text{DF}_y = \frac{\partial}{\partial t} \left[A_{\mu} D \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x}\right)\right] + \frac{\partial}{\partial y} \left[2A_{\mu} D \frac{\partial V}{\partial y}\right]
\end{align*}
\]

(33)

\[
\begin{align*}
\text{DF}_z = \frac{\partial}{\partial t} \left[A_{\mu} D \frac{\partial}{\partial x}\right] + \frac{\partial}{\partial y} \left[A_{\mu} D \frac{\partial}{\partial y}\right]
\end{align*}
\]

(34)

ここで、ϕ は変量 T, S, q^2, q^3 を表し、A_{μ} は水平動粘性係数、A_{μ} は水平拡散係数である。A_{μ} は以下の Smagorinsky 型モデルによって評価する。

\[
A_{\mu} = C \Delta \lambda T \left[\frac{\partial U}{\partial x} \right]^2 + \frac{1}{2} \left(\frac{\partial V}{\partial x} \right)^2 + \left(\frac{\partial V}{\partial y}\right)^2 + \frac{\partial}{\partial x} \frac{\partial}{\partial y} \left(\frac{\partial V}{\partial y}\right)^2
\]

(35)

ここで、C は Smagorinsky 係数 (0.1〜0.2), Δx, Δy,

はグリッドサイズで、A_{μ} は式 (35) と乱流プラントル数から求められる。

4. 境界条件

海表面 ($\sigma = 0$) における境界条件は以下のよう与えられる。

\[
\omega = 0
\]

(36)

\[
\frac{K_{H}}{D} \left(\frac{\partial U}{\partial \sigma} \frac{\partial V}{\partial \sigma}\right) = \frac{1}{\rho_0} (\omega_{(x)} \omega_{(y)})
\]

(37)

\[
\frac{K_{H}}{D} \left(\frac{\partial T}{\partial \sigma} \frac{\partial S}{\partial \sigma}\right) = \frac{1}{\rho_0} (q_{(x)} q_{(y)})
\]

(38)

\[
(q^2, q^3 T) = (B_i^{(3, 3)} u_{(y)} 0)^T
\]

(39)

ここで、$\omega_{(x)}$, $\omega_{(y)}$ は海表面における摩擦応力、$q_{(x)}$, $q_{(y)}$ はそれぞれ熱フラックス、塩分フラックス、$u_{(y)}$ は海面での摩擦速度で次式によって与えられる。

\[
u_{(y)} = \left(\frac{\sigma_{(x)}^2 + \sigma_{(y)}^2}{\sigma_{(y)}}\right)^{1/4}
\]

(40)

海底面 ($\sigma = -1$) における境界条件は次のよう与えられる。

\[
\omega = 0
\]

(41)

\[
\frac{K_{H}}{D} \left(\frac{\partial U}{\partial \sigma} \frac{\partial V}{\partial \sigma}\right) = \frac{1}{\rho_0} (\omega_{(x)} \omega_{(y)})
\]

(42)

\[
\frac{K_{H}}{D} \left(\frac{\partial T}{\partial \sigma} \frac{\partial S}{\partial \sigma}\right) = (0, 0)^T
\]

(43)

\[
(q^2, q^3 T) = (B_i^{(3, 3)} u_{(y)} 0)^T
\]

(44)

ここで C_{D} は抵抗係数であり、次式で表される。

\[
C_{D} = \text{MAX} \left[\frac{2}{\log (1 + a_{(k-1)} H_{(z_0)})}, 0.025\right]
\]

(45)

$a_{(k-1)}$ は水平方向の流速成分の最大 $a = 0$ から水表面 ($\sigma = 0$) まで積分した EM の方程式は、鉱直積分された方程式をオーバーパーで示すと以下の通りになる。

\[
\frac{\partial}{\partial t} \frac{\partial}{\partial x} + \frac{\partial U D}{\partial x} + \frac{\partial V D}{\partial y} = 0
\]

(47)

(2) Mode Splitting Technique

POM では外部重力波と内部重力波の伝播を分離して解くために、鉱直方向に積分した方程式と、鉱直方向の構造を保持した方程式を別々に解く (Mode Splitting Technique). 前者を External Mode (以下 EM), 後者を Internal Mode (以下 IM) と呼ぶ。σ 座標系に変換された方程式 (25)〜(27) を海底面 ($\sigma = -1$) から水表面 ($\sigma = 0$) まで積分した EM の方程式は、鉱直積分された方程式をオーバーパーで示すと以下の通りになる。

\[
\frac{\partial}{\partial t} \frac{\partial}{\partial x} + \frac{\partial U D}{\partial x} + \frac{\partial V D}{\partial y} = 0
\]

(47)
\[
\frac{\partial \bar{UD}}{\partial t} + \frac{\partial \bar{UD}}{\partial x} + \frac{\partial \bar{UD}}{\partial y} + \frac{\partial \bar{U} \omega_D}{\partial \sigma} - D \bar{F}_i - j \bar{V} D
\]
\[
= \frac{1}{\rho_0} (\tau_{xx} - \tau_{yy}) - gD \frac{\partial n_D}{\partial y} - \frac{gD}{\rho_0}
\]
\[
\int_{-h}^{h} \int \left(\frac{D \partial \eta}{\partial x} - \frac{D \partial \eta}{\partial y} - \frac{D \partial \eta}{\partial \sigma} \right) d\sigma d\eta + G_i
\]
(48)

\[
\frac{\partial \bar{V} D}{\partial t} + \frac{\partial \bar{V} D}{\partial x} + \frac{\partial \bar{V} D}{\partial y} + \frac{\partial \bar{V} \omega_D}{\partial \sigma} - D \bar{F}_y + j \bar{U} D
\]
\[
= \frac{1}{\rho_0} (\tau_{xy} - \tau_{yx}) - gD \frac{\partial n_D}{\partial y} - \frac{gD}{\rho_0}
\]
\[
\int_{-h}^{h} \int \left(\frac{D \partial \eta}{\partial x} - \frac{D \partial \eta}{\partial y} - \frac{D \partial \eta}{\partial \sigma} \right) d\sigma d\eta + G_i
\]
(49)

ここで \(\bar{D} \bar{F}_i, \bar{D} \bar{F}_y, G_i, G_y \) を以下のように定義する。

\[
\bar{D} \bar{F}_x = \frac{\partial}{\partial x} \left(2\kappa_{yy} D \frac{\bar{U}}{\bar{y}} \right) + \frac{\partial}{\partial y} \left(\frac{1}{\kappa_{yy}} D \frac{\bar{U} \bar{y}}{\partial \bar{y}} \right)
\]
(50)

\[
\bar{D} \bar{F}_y = \frac{\partial}{\partial y} \left(2\kappa_{yy} D \frac{\bar{V}}{\bar{y}} \right) + \frac{\partial}{\partial x} \left(\frac{1}{\kappa_{yy}} D \frac{\bar{V} \bar{y}}{\partial \bar{y}} \right)
\]
(51)

\[
G_i = \frac{\partial \bar{U} D}{\partial x} + \frac{\partial \bar{U} \bar{V} D}{\partial y} - \frac{\partial \bar{V} D}{\partial x} - \frac{\partial \bar{U} \bar{V} D}{\partial y} + D \bar{F}_i
\]
(52)

\[
G_y = \frac{\partial \bar{U} \bar{V} D}{\partial x} + \frac{\partial \bar{V} \bar{V} D}{\partial y} - \frac{\partial \bar{V} \bar{V} D}{\partial x} - \frac{\partial \bar{U} \bar{V} D}{\partial y} + D \bar{F}_y
\]
(53)

以上のように EM と IM に分離された方程式を用いてスタッグード格子上に配置された各変数を Fig. 4 に示す。ここで同図中の添え字 \(k \) は離散化された空間における鉛直方向の格子番号であり、海表面を \(k = 1 \)
海底面を \(k = k_b \) で表す。時間項と空間項について中心差分で離散化し、それぞれの重力の波速から決まる CFL 条件を満たすタイムステップで計算を進める。外
部重力波は内部重力波に比べて波速が大きいため、EM のタイムステップの条件は厳しくなる。そこで、短いタイムステップで EM を数ステップ解いた後に IM を計算する。また、鉛直方向の粘性項ならびに拡散項は除表示、それ以外は除表示で離散化する。

（3）Wetting and drying scheme

オリジナルの POM では計算開始前に設定された陸と海の境界の時間的変化は考慮されない、水域の干出・冠水をモデリングするために、(1)、(2) 節で説明した POM に Wetting and Drying Scheme（以下 WDS、Uchiyama, 2004）を導入した。WDS では、まず各セルに Land Mask Function (LMF) を定義する。こ
ここで、セルとは Fig. 5 で示すように、\(\eta \) の定義点を中心とする \(\Delta x \times \Delta y \) の矩形領域のことである。LMF は

Fig. 4. スタッグード格子と変数の定義位置

Fig. 5. 隣接するセルの位置関係
陸域で0，海域で1の値をとる。各EMステップでLMFを評価することにより陸と海の境界の時間変化を追跡することができる。次に以下のoureな3つのsub-depth scaleを定義する。

\[d_{\alpha} > d_{\min} \geq \delta \geq 0 \] (54)

ここで \(d_{\alpha} \) は陸域、海域かを判定するために設定される水深、 \(d_{\min} \) は最低水深、 \(\delta \) は粗度長スケールである。これらの準備の上でWDSにおいて以下のような処理を各EMステップで適用する。

i) \(\eta_i \) を中心とするセルで \(D_{li} \) を \(d_{\alpha} \) と比較する。

\[D_{li} \leq d_{\alpha} \] (55)

ii) \(\eta_i \) を中心とするセルのうち海域であるセルとの比較を行い、1つでも条件を満たしたセルは干出しているとみなされ、\(LMF_{li} = 0 \) とする。

\[\min_i (\eta_{i-1}, \eta_{i+1}, \eta_{i-1}, \eta_{i+1}) \leq \eta_i \]

\[\min_i (D_{li-1}, D_{li+1}, D_{li-1}, D_{li+1}) \leq d_{\alpha} \]

\[\max_i (LMF_{li-1}, LMF_{li+1}, LMF_{li-1}, LMF_{li+1}) = 0 \]

iii) \(LMF_{li} = 0 \) のとき、陸と海の境界の流速を0とす.

\(LMF_{li} = 0 \) となったセルの水位変動量は干出したとみなされたときの値を保持したまま次の冠水が起こるまで計算が進んでいく。ここで、 \(d_{\min} \) は \(D \leq 0 \) になるのを避けるために用いられる。すなわち \(D_{li} < d_{\min} \) となったセルを強制的に干出しているとみなして \(LMF_{li} = 0 \) とし、そのセルの水深を \(d_{\min} \) とする。

(5) 計算条件

諫早湾の湾口から湾奥までを計算領域とした。水平方向に \(\Delta x = \Delta y = 200 \) mの正方形メッシュで分割し、鉛直方向には \(\sigma \) レイヤーを10層設定した。EMとIMのタイムステップはそれぞれ5s、50sとした。本研究ではWDSの導入を優先するため、計算過程を簡略化した。すなわち、密度一定のもとで流動の計算を行った。密度は水温と塩分をそれぞれ10℃、30psuとしたときの値を用いている。海表面における風の影響、河川からの流入等は考慮していない。WDSで用いる3つのsub-depth scaleはUchiyama (2004)のサンフランシスコ湾に対する適用例を参考に、それぞれ \(d_{\alpha} = 0.2 \) m、 \(d_{\min} = 0.05 \) m、 \(\delta = 0.01 \) mとした。また、諫早湾口で島原の調和定数より計算した潮位を境界条件として与えた。

結果と考察

WDSを導入した干出・冠水現象を考慮した計算結果（以下Case 1）と干出が起こらないように水深が3.5m未満のグリッドは水深を3.5mとした計算結果（以下Case 2）について比較を行った。後者のは計算開始時に設定された陆と海の境界は時間的に変化しない。Fig.2に計算領域の水深分布と観測地点を示す。Fig.2の観測地点St.1〜St.7におけるCase 1とCase 2の鉛直平均流速ベクトルと観測値との比較をFigs.6, 7に示す。本計算では、湾外の流れの影響が反映されていないが、概ね流速ベクトルの再現性は良いと考えられる。とくにCase 1のSt.1, St.2, St.6, St.7については計算値と観測値は良好な一致を示す。Case 2については下げ潮時は概ね良いが、低低潮から高潮への上げ潮時（Fig.6の4:00から8:00頃）に流速を過大に評価している。Case 1においてはそのような傾向は見られず、WDSによって流れの再現性は向上したといえる。しかし、St.4においてはCase 1, Case 2ともに再現性が悪い。とくに流向のずれが大きく、また転流も十分に再現されていない。原因として、上記のように、本計算では湾口に境界を設定しているので、湾外海域での上げ潮時に、いずれも卓越する北西流、南東流（九州農政局諫早湾干拓事務所、1989）の影響が計算に反映されていないことが挙げられる。この点については、計算をより広くとった計算を行い、その結果について今後検討する必要がある。

\[K_{\eta} = S_m q (l + \kappa \delta) = S_m q (l + \kappa \delta) \] (59)
Fig. 6. 鉛直平均流速の計算値と観測値の比較（Case 1）

Fig. 7. 鉛直平均流速の計算値と観測値の比較（Case 2）

Figs. 8, 9 に計算領域全体の流速ベクトルを示す。潮位と水深から予想される千出・冠水の再現性は良好と考えられる。Fig. 8 において湾奥部にブール状に残った水深セルが存在する。これらのセルは陸接するセルよりも水深が若干深くなっており、WDS の処理 ii) を満たさないのことで計算上干潮中にブール状に残ってしまう。しかし、それらのセルにおいては、水面勾配もしく、流速も 0 となっており、物理的に不自然な挙動は示していないので、問題はないと考えられる。

要 約

近年有明海では環境の悪化が注目を集めている。その基本原因を明らかにし、有効な改善策を見出すためには物質循環モデルを構築することが必要である。本研究ではその第一段階として、3 次元 σ 座標系海洋モデルである POM に対して、当該海域で類似な千出・冠水現象を再現できるように WDS を導入したモデルを構築した。3 次元 σ 座標系海洋モデルは海底地形を忠実に再現でき、潮差が大きく水深が極めて浅くなるような海域における鉛直方向の空間離散化に長所を持っている。構築したモデルを有明海に適用し、観測値との比較を行ってモデルの検証を行った。また、WDS を導入したモデルと比較・検討するために、千出・冠水が起こらないような水深を与えた海底地形についての計算も行った。比較・検討の結果、WDS の導入により流動の再現性の向上が確認された。
本計算は流動だけを考慮したものであるが、観測値との比較から、流況の再現性は概ね良いことが分かった。次の段階として、温度、塩分、風、淡水フラックスを考慮した計算を行い、結果の検討をしたい。

文献
九洲農政局漁業課 1989 昭和63年度漁業調査報告書
Mellor, G. L. 2004 USERS GUIDE for A THREE-DIMENSIONAL, PRIMITIVE EQUATION, NUMERICAL OCEAN MODEL. Princeton University, Princeton, NJ., pp56
堤裕昭・岡村 絵美子・小川 講代・高橋 徹・山口 一岩・門谷 茂・小橋 及子・安達 貴浩・小松 利光 2003 有明海西部海域における近年の貧酸素水塊および赤潮発生と海洋構造の関係. 海の研究, 12(3): 291-305

Summary

The Ariake Sea, a typical semi-closed bay located in Kyushu Island, western Japan, has a maximum tidal range of 6m in spring tide and vast tidal flat. Recently, the Ariake Sea attracts considerable public attention, because its fishery environment is becoming worse. Especially, oxygen-deficient water mass and red tides often emerge in summer season and result in severe bioenvironmental deterioration. To simulate and understand these phenomena, a three-dimensional analysis is strictly needed because the vertical mixing process of water mass is one of the fundamental factors for these phenomena. In modeling the vertical mixing process in coastal waters, the Princeton Ocean Model (POM), which is a widely used three-dimensional ocean model with a terrain-following sigma-coordinate system, is suited to the shallow coastal oceans. This coordinate system has the same number of levels everywhere in the ocean, irrespective of the depth of water column.

In this study, the POM was applied to the numerical simulations of tidal current in Isahaya Bay located in the western part of the Ariake Sea. A wetting and drying scheme was incorporated into the POM to reproduce submergence at high water and emergence at low water of tidal flat. The results indicated that the POM was able to approximately predict the observations of tidal current in Isahaya Bay. It was concluded that the POM could be used in the numerical simulations considering the effects of temperature, salinity, wind forcing and freshwater fluxes in the next step of this study.