
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Dependability, Power, and Performance Trade-off
on a Multicore Processor

Sato, Toshinori
System LSI Research Center, Kyushu University

Funaki, Toshimasa
Department of Artificial Intelligence, Kyushu Institute of Technology

https://hdl.handle.net/2324/8829

出版情報：Asia and South Pacific Design Automation Conference. 13, pp.714-719, 2008-01-24
バージョン：
権利関係：

Dependability, Power, and Performance Trade-off on a Multicore Processor

Toshinori Sato
System LSI Research Center

Kyushu University
toshinori.sato@computer.org

Toshimasa Funaki
Department of Artificial Intelligence

Kyushu Institute of Technology
t-funaki@klab.ai.kyutech.ac.jp

Abstract - As deep submicron technologies are advanced, we
face new challenges, such as power consumption and soft errors.
A naïve technique, which utilizes emerging multicore
processors and relies upon thread-level redundancy to detect
soft errors, is power hungry. It consumes at least two times
larger power than the conventional single-threaded processor
does. This paper investigates a trade-off between dependability
and power on a multicore processor, which is named multiple
clustered core processor (MCCP). It is proposed to adapt
processor resources according to the requested performance. A
new metric to evaluate a trade-off between dependability,
power, and performance is proposed. It is the product of soft
error rate and the popular energy-delay product. We name it
energy, delay, and upset rate product (EDUP). Detailed
simulations show that the MCCP exploiting the adaptable
technique improves the EDUP by up to 21% when it is
compared with the one exploiting the naïve technique.

I Introduction

The current trend of increasing power consumption
prefers multicore processors as a solution to achieve both
high performance and low power, and actually some
commercial multicore processors have been already shipped.
Since processor performance is proportional to the square
root of its area while its power consumption is proportional
to the area, multicore processors are a good solution for
power efficiency.

On the other hand, advanced semiconductor technologies
increase soft error rate (SER) [4, 10]. With the reduction in
transistor size, the area per bit scales down. In order to
prevent breakdown caused by high electric field, the supply
voltage also scales down. Hence, the node charge reduces
and the bit cell is easy to flip by cosmic ray and alpha
particles. Since each bit cell becomes small so that
probability that some particles such as neutrons hit the cell
will also become small, resulting in the net effect of almost
constant SER per bit. Since the number of transistors per
chip has been tremendously increased, SER per chip is also
exponentially increasing.

In order to detect (and if possible to correct) faults due to
single event upsets (SEU), redundant execution of a single
program is proposed [7, 14, 17, 18]. The increase in the
popularity of multicore processors is favorable to the
redundant execution. A single program is duplicated and its
two redundant copies are executed simultaneously in the
different cores on a multicore processor. When two
outcomes for the single program do not match, an SEU is
detected. This redundant threading (RT) technique is a very
simple and effective way to provide dependability. However,
unfortunately, it consumes at least two times larger power
than the conventional single-threaded processor does.

In order to solve the power consumption in the RT, we
propose an adaptable RT technique. We are currently
studying an adaptable multicore processor, which we call
multiple clustered core processor (MCCP) [16]. It is based
on the clustered microarchitecture [11] and makes a good
trade-off between power and performance. We exploit the
characteristic of the MCCP to improve power efficiency of
the RT. In other words, it also makes a trade-off between
dependability and power.

The rest of this paper is organized as follows. Section 2
summarizes related work. Section 3 introduces the MCCP,
and proposes the adaptable RT technique that considers the
trade-off between dependability and power. Section 4
presents evaluation results. And Section 5 provides
conclusions.

II. Related Work

One of the simple implementations for providing

dependability is redundant executions. Time redundancy or
space redundancy can be utilized. The conventional
multicore processors are very suitable for exploiting space
redundancy in thread level [7, 14, 17, 18]. In order to check
errorless, a single program thread is duplicated and the two
redundant copies of the single thread are executed
simultaneously on a multicore processor. When two
outcomes for the single thread do not match, a fault is
detected. Slipstream processor [18] is a multicore processor,
and two redundant threads are executed on separate
processor cores. It can not detect all single transient faults
because it does not duplicate all instructions from a single
thread. On the other hand, CRT [14], realized as a multicore
processor, achieves lockstepping and CRTR [7] enhances
CRT with recovery mechanism. Shimamura et al. [17]
developed a fail-safe multicore processor with memory data
comparison feature.

The clustered microarchitecture is a solution to solve the
wire delay problem [11]. A large processor core is divided
into multiple clusters. Each cluster is small so that it
mitigates wire delay problem. General purpose processors
are designed to achieve the best performance on any kinds of
application programs, and thus there are much more
processor resources than most programs require. Thus, it is
desirable that processor resources are turned on and off on
demands of applications. Pipeline balancing [3] is such a
technique, which reduces issue width when a program phase
does not require the full issue width. This is possible by
turning off some or all pipelines in one cluster. The
reduction in issue width eliminates useless power
consumption.

III. Multiple Clustered Core Processors

MCCP [16] is shown in Fig. 1. It is a homogeneous
multicore processor. The difference from the conventional
homogeneous multicore processors is that it consists of
multiple clustered cores rather than monolithic ones. Each
core is based on the clustered microarchitecture [11]. Figure
1 shows an MCCP with two homogeneous clustered cores,
each of which has two identical clusters. In the figure, each
cluster consists of instruction scheduling queue (IQ), register
files (RF), and functional units (FU). Instruction and data
caches (I$ and D$), branch predictor (BrPred) and decoder
(Decode) are shared by all clusters in a core. We exploit the
clustered microarchitecture combined with multicore
architecture in order to make a trade-off between power and
performance [16].

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

Fig. 1. Multiple Clustered Core Processor

A. Power-Performance Trade-off Issue

Multicore processors are a promising solution that
achieves high performance with low power consumption.
Figure 2 shows different types of multicore processors.
Figure 2a is a uniprocessor. Figures 2b and 2d are
homogeneous multicore processors, while Fig. 2c is a
heterogeneous one. As you can see, the heterogeneous
multicore processor consists of several cores with different
scales in area and in performance. When a thread requires
high performance but it does not have large parallelism in it,
a large core serves. When the other thread also requires high
performance but it has large parallelism in it, it is better in
energy efficiency that multiple small cores serve. When high
performance is not required by another thread, a small core
is utilized. The efficient use of different kinds of cores
satisfies requested performance with low power
consumption. From the view of energy efficiency,
heterogeneous multicore processors consisting of cores with
different scales are a good solution [1, 12].

Unfortunately, heterogeneous multicore processors are
complex to design and are difficult to program. The MCCP
exploits the clustered microarchitecture to realize
heterogeneity on the homogeneous multicore processor [16].

Large core

Medium core

Medium core

Medium core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core Clusterd core

Clusterd core

(a) Single (b) Dual (c) Triple (d) Quad (e) Clusterd

Large core

Medium core

Medium core

Medium core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core Clusterd core

Clusterd core

Large core

Medium core

Medium core

Medium core

Medium core

Medium core

Small
core

Small
core

Medium core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core

Small
core Clusterd core

Clusterd core

Clusterd core

Clusterd core

(a) Single (b) Dual (c) Triple (d) Quad (e) Clusterd

Fig. 2. Different Types of Multicore Processors

In order to attain the goal, we propose cluster gating [16].
Figure 3 explains how it works. This is a dual core MCCP
consisting of two dual cluster cores. Figure 3a shows a
homogeneous dual core processor consisting of large cores.
When high performance is not required, some clusters are
turned off, as shown in Fig. 3b. The black box means that
the cluster is turned off. Using the cluster gating, only a
small number of clusters in the core are active so that
requested performance of the allocated thread is satisfied.
Now, we have a heterogeneous dual core processor. Figure
3c shows a dual core processor consisting of small cores, in
both of which one cluster is turned off.

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

(a) Dual large core (b) Hetero core (c) Dual small core

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

(a) Dual large core (b) Hetero core (c) Dual small core

Fig. 3. Cluster Gating

Considering the requested performance, one of the
clusters becomes inactive. If the cluster gating is efficiently
managed, programs which are implemented considering
homogeneous multicore processors benefit from the virtually
heterogeneous multicore processor. That makes
programming easy, because we do not have to concern what
kind of cores are available when we consider thread
allocation. We can always get a desirable scaled core.
Providing several execution mode enables to consume
power just enough for the required performance. The
concept of the MCCP is extended into multi-performance
processors for low-power embedded applications [15].

There are some options to realize the cluster gating. One
is hardware-based. A dedicated hardware block in a core
observes the characteristics of a thread, which is allocated to
the core, and determines how many clusters are turned on in
order to match performance required by the thread. The
other is software-based. Special instructions that turn on or
off clusters are prepared. Programmers or compilers insert
the instruction in each thread. Practically, it is better that
programmers do not have to determine how many clusters
are allocated to the thread. They only have to declare
performance the thread requires. One method to realize this
is using some kind of annotations or functions like API.
Compilers translate them into the special instructions that

denote the number of active clusters. Compatibility and
transparency between different multicore processors are
provided in source codes. The other is that the special
instructions denote only required performance and hardware
determines the number of active clusters. In this case, the
compatibility and transparency are provided in binaries. This
issue remains for the future study.

B. Dependability-Power Trade-off Issue

The MCCP has a good characteristic in its dependability,
as shown in Fig. 4. It can utilize the RT technique since it is
a multicore processor. A single thread is duplicated and is
redundantly executed across multiple cores. As mentioned
above, the naïve RT technique consumes two times larger
power than the conventional single-threaded processor does.
A simple way to reduce power consumed by the RT
technique is to use a small processor core. However, it is
easily expected that such a technique degrades processor
performance, and hence it might increase energy
consumption due to long execution time.

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

(a) High performance mode (b) Moderate performance mode

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

(a) High performance mode (b) Moderate performance mode

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

Fig. 4. Dependability Modes

In order to achieve both low power consumption and high
performance on a dependable processor, we propose to
utilize the adaptability of the MCCP. We propose to switch
the mode of the MCCP between the dual large core mode
and the dual small core mode according to required
performance. When high performance is required, the dual
large core mode is selected. Here, we call it high
performance mode. Otherwise, we switch into the dual small
core mode, which we call moderate performance mode. The
two modes are depicted in Fig. 4. Since both modes
redundantly execute a single program, they equally provide
dependability. We do not consider the heterogeneous core
mode shown in Fig. 3 (b). This is because the small core
determines the execution time of the program and thus the
large core will waste power consumption. Improving the
small core’s performance by utilizing execution results of
the large core is an interesting research topic and it remains
for the future study.

The main topic of the present paper is how to choose the
dependability mode. One of the strategies relies upon
programmers. A programmer marks how important every
thread is and tells it to hardware (processor) using
annotations. Another strategy is OS-based. OS marks the

importance of every thread using some metric; for example,
deadline time. In this paper, we propose a fully transparent
hardware-based strategy.

The amount of instruction level parallelism (ILP) varies
between application programs. A processor in the high
performance mode wastes power consumption when ILP in
the application program is small. On the contrary, the
processor in the moderate performance mode diminishes its
performance when ILP is large. Furthermore, the amount of
ILP even within a single application program varies by more
than a factor of two [3]. Figure 5 shows an example of the
issue rate for SPEC2000 CINT benchmark gcc running on a
dual-cluster core. The details of the core can be found in
Section IV.A. The horizontal axe indicates the execution
cycles and the vertical one represents the average number of
instructions issued per cycles (issue IPC) over a window of
10,000 execution cycles. The issue IPC varies by more than
a factor of two over a million cycles of execution. If a
processor is in the high performance mode, it wastes power
during low issue IPC. On the contrary, if a processor is in the
moderate performance mode, performance is severely
degraded during high issue IPC. These variations can be
exploited to determine the dependability mode.

0
1
2
3
4

Execution Cycles

IP
C

Fig. 5. Issue IPC Variation for gcc

As explained above, the high performance mode wastes

power consumption during low issue IPC and the moderate
performance mode degrades performance during high issue
IPC. The observations lead us to switch between two modes
according to requested performance. The MCCP utilizes the
high performance mode only when issue IPC is high and
similarly to utilize the moderate performance mode only
when issue IPC is low, as shown in Figure 6. When issue
IPC is low, there are idle execution resources and thus the
moderate mode provides dependability without serious
performance loss. In addition, since some clusters are
occasionally turned off, the wasted power consumption is
eliminated.

We assume that past program behavior indicates future
behavior. Hence, based on past issue IPC, future issue IPC
could be predicted. In order not to use a floating-point
divider, we measure the number of instructions issued over a
fixed sampling window. We predict future issue IPC based
on the past number of issued instructions rather than on past
issue IPC. We use predicted issue IPC for the mode selection.
If it is smaller than a predetermined threshold value (Th2m)
in the high performance mode, the MCCP switches into the
moderate performance mode. Similarly, if predicted issue
IPC is larger than another predefined threshold value
(Tm2h) in the moderate performance mode, the MCCP
switches into the high performance mode.

0
1
2
3
4

Execution Cycles

IP
C

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

0
1
2
3
4

Execution Cycles

IP
C

0
1
2
3
4

Execution Cycles

IP
C

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

FU FU

RF

IQ

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

Cluster
gating

I$

D$

Decode

Br
Pred

FU FU

RF

IQ

FU FU

RF

IQ

Cluster
gating

Fig. 6. IPC-directed Mode Switching

C. Energy, Delay, and Upset rate Product
In order to evaluate the trade-off between dependability,

power, and performance, we need a metric. The
energy-delay product (EDP) [9] is a popular metric for
evaluating the trade-off between power and performance.
We extend it to consider dependability as well as power and
performance. SER or upset rate is a popular metric for
evaluating dependability. Hence, we propose to product the
EDP and the upset rate. We name it energy, delay, and upset
rate product (EDUP).

Another possible metric for evaluating the trade-off
between dependability and performance is MITF (mean
instructions to failure) [19]. We are currently studying to
extend the MITF to evaluate the trade-off on multicore
processor [6]. The EDUP will support the MITF when power
consumption is considered.

IV. Evaluation

A. Methodology

SimpleScalar/PISA tool set [2] is used for architectural-
level simulation. We use the MCCP consisting of two cores,
each of which consists of two clusters. Based on the study in
[5], the configurations of one processor core are determined
as shown in TABLE I. The front-end and L1 caches are
shared by two clusters in a core. L2 cache is shared by two
cores. The difference from [5] is that this study uses smaller
L1 instruction and data caches (16KB each) than [5] does
(64KB each). We use the threshold values of 2.0 and 1.6 for
Th2m and Tm2h, respectively. These values were
determined based on preliminary simulations, where Th2m
was varied between 1.6 and 2.0, Tm2h was varied between
1.0 and 1.8, and all combinations of Th2m and Tm2h were
considered. The overhead of synchronizing two cores to
compare results from them is not included in the evaluations.

We estimate upset rate as the product of area and soft
error rate per bit. Also based on [5], the areas of the core are
estimated as shown in TABLE II [16]. The difference can be
seen in L1 caches. Using the values in TABLE II, we can
estimate the upset rates of the high performance and
moderate performance modes. Since the mode switching

does not affect on the outside of the cores, we ignore the L2
cache, the miscellaneous, the coherence unit, and the I/O
from estimating the upset rate. Based on the considerations,
we can see the upset rate of the moderate performance mode
is 72% of the high performance mode.

TABLE I

Processor Core Configurations
Fetch width 8 instructions

L1 instruction cache 16K, 2 way, 1 cycle
Branch predictor 1K-gshare + 512- BTB

Dispatch width 4 instructions
Instruction window size 16 entries / cluster

Issue width 2 instructions / cluster
Commit width 4 instructions / cluster
Integer ALUs 2 units / cluster

Integer multiplires 2 units / cluster
Floating ALUs 2 unit / cluster

Floating multiplires 2 unit / cluster
L1 data cache ports 1 ports / cluster

L1 data cache 16K, 2 way, 1 cycle
Unified L2 cache 512K, 2 way, 10 cycles

Memory Infinite, 100 cycles

TABLE II
Area Estimation (mm2)
16K L1 data cache 2.6

16K L1 instruction cache 2.6
TLB 4.4

Fetch unit 1.3
Branch predictor 3.2

Decoder 1.7
OOO execution unit 10.1 / cluster

Register files 2.9 / cluster
Functional units 6.5 / cluster

Misc 2.4
Routing 26.4

512 L2 cache 110.0
Misc 6.1

Coherence unit 6.3
I/O 13.7

Based on [8], we estimate power consumed by each

component. We found that power consumed by the moderate
performance mode is 81% of that consumed by the high
performance mode.

Six programs from SPEC2000 CINT and eight programs
from MediaBench [13] are used. For each SPEC program,
1B instructions are skipped before actual simulation begins.
After that each program is executed for 2B instructions. For
MediaBench, each program is executed from beginning to
end. We do not count NOP instructions. We vary the
sampling window among 100, 1,000, and 10,000 cycles.

B. Results

Figure 7 presents how frequently two modes are selected
in SPEC benchmark programs. For each group of three bars,

the left one indicates the breakdown of the execution cycles
for the 100-cycle window, the center one is for the
1,000-cycle window, and the right one is for the
10,000-cycle window. Each bar is divided into two parts.
The bottom one indicates the percentage of cycles where the
high performance mode is selected, and the top one indicates
the percentage of cycles where the moderate performance
mode is selected.

0%

20%

40%

60%

80%

100%

A
D

P1
00

A
D

P1
K

A
D

P1
0K

A
D

P1
00

A
D

P1
K

A
D

P1
0K

A
D

P1
00

A
D

P1
K

A
D

P1
0K

A
D

P1
00

A
D

P1
K

A
D

P1
0K

A
D

P1
00

A
D

P1
K

A
D

P1
0K

A
D

P1
00

A
D

P1
K

A
D

P1
0K

gzip vpr gcc parser vortex bzip2

HIGH MOD

Fig. 7. Breakdown of Dependability Mode (SPEC2000)

As can be easily seen, SPEC benchmark programs

evaluated in this study are classified into two groups. One
consists of gzip and bzip2, and the other consists of vpr, gcc,
parser, and vortex. The first group prefers the high
performance mode. In contrast, the second one prefers the
moderate performance mode. The results explain that the
MCCP efficiently captures the characteristics of each
program and adopt itself. It is also observed that the short
sampling window selects the high performance mode more
frequently than the long sampling window does.

0%

20%

40%

60%

80%

100%

A
D

P1
00

A
D

P1
K

A
D

P1
0K

A
D

P1
00

A
D

P1
K

A
D

P1
0K

A
D

P1
00

A
D

P1
K

A
D

P1
0K

A
D

P1
00

A
D

P1
K

A
D

P1
0K

A
D

P1
00

A
D

P1
K

A
D

P1
0K

A
D

P1
00

A
D

P1
K

A
D

P1
0K

A
D

P1
00

A
D

P1
K

A
D

P1
0K

A
D

P1
00

A
D

P1
K

A
D

P1
0K

epic unepic gsm-de gsm-en jpeg-de jpeg-en mpeg-de mpeg-en

HIGH MOD

Fig. 8. Breakdown of Dependability Mode (MediaBench)

Figure 8 presents how frequently two modes are selected

in MediaBench programs. The layout is the same to that of
Fig. 7. Different from SPEC benchmark programs, almost
all programs in MediaBench prefer the high performance
mode. Only unepic selects both modes equally. It is also
different from SPEC benchmark that the short sampling

window selects the moderate performance mode more
frequently than the long sampling window. From these
observations, we found that SPEC benchmark and
MediaBench has the absolutely different characteristics in
their performance. This observation is obtained since the
mode selection policy is based on the program’s issue IPC in
a fixed sampling window.

0%

20%

40%

60%

80%

100%

120%

gzip vpr gcc parser vortex bzip2 average

ED
U

P

0%

20%

40%

60%

80%

100%

120%

IP
C

MOD ADP100 ADP1K ADP10K
MOD ADP100 ADP1K ADP10K

Fig. 9. Relative IPC and EDUP (SPEC2000)

Figure 9 shows the commit IPC and the EDUP for SPEC

benchmark programs. Line graphs present the commit IPC
and bar graphs present the EDUP. The bottom line graph
indicates the commit IPC of the processor that is always in
the moderate performance mode (hereafter we call the
processor the always moderate-performance). The
remaining line graphs are for the processor that utilizes the
adaptable RT technique with different sampling window size.
For each group of four bars, the first bar (see from left to
right) indicates the EDUP of the always moderate-
performance. The remaining bars are for the processor that
utilizes the adaptable RT technique with different sampling
window sizes. Every value is normalized by the
corresponding value of the processor that is always in the
high performance mode (hereafter we call the processor the
always high-performance).

First, it is observed that processor performance is
significantly degraded if the moderate performance mode is
only utilized. The performance loss is as much as 38% and
an average of 27%. In contrast, the adaptable RT technique
mitigates the performance loss. It is approximately 10% for
all sampling window sizes.

Second, the adaptable RT technique improves the EDUP
as much as 21% and an average of 5%. We can not see
considerable differences between the evaluated sampling
window sizes. In four of six programs, the always
moderate-performance shows better EDUP than the
adaptable RT technique does. However, it should be noted
that it suffers serious EDUP degradation in bzip2. In
contrast, the adaptable RT technique maintains the almost
same EDUP to that of the always high-performance.

Figure 10 shows the commit IPC and the EDUP for
MediaBench. The layout is the same to that of Fig. 9. The
always moderate-performance seriously degrades both

performance and the EDUP. In contrast, the adaptable RT
technique keeps comparable performance and the EDUP to
the always high-performance, while it can not improve the
EDUP in the case of MediaBench.

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%

ep
ic

un
ep

ic

gsm
de

co
de

gsm
en

co
de

jpe
gd

eco
de

jpe
ge

nc
od

e

mpe
g2

de
co

de

mpe
g2

en
co

de

av
era

ge

ED
U

P

0%
20%
40%
60%
80%
100%
120%
140%
160%
180%

IP
C

MOD ADP100 ADP1K ADP10K
MOD ADP100 ADP1K ADP10K

Fig. 10. Relative IPC and EDUP (MediaBench)

VI. Conclusions

The aggressively advanced semiconductor technologies

unveil the problems caused by soft errors. While emerging
multicore processors are suitable for soft error tolerance,
they consume large power when the redundant threading
(RT) technique is utilized. This paper proposed an adaptable
RT technique for making a good trade-off between
dependability and power. It exploits an adaptable
characteristic of the multiple clustered core processor
(MCCP). This paper also proposed a metric for evaluating
the trade-off, energy, delay, and upset rate product (EDUP).
Detailed simulations showed that the MCCP with the
adaptable RT technique improves the EDUP by up to 21%.

Acknowledgement

This work is partially supported by Grant-in-Aid for
Scientific Research (KAKENHI) (A) # 19200004 from
Japan Society for the Promotion of Science, and by the
CREST programs of Japan Science and Technology Agency.

References

[1] M. Annavaram, E. Grochowski, and J. Shen,

“Mitigating Amdahl's Law through EPI Throttling,”
32nd International Symposium on Computer
Architecture (2005)

[2] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: an
Infrastructure for Computer System Modeling,” IEEE
Computer, Vol.35, No.2 (2002)

[3] R. I. Bahar and S. Manne, “Power and Energy
Reduction via Pipeline Balancing,” 28th International
Symposium on Computer Architecture (2001)

[4] S. Borker, “Designing Reliable Systems from
Unreliable Components: The Challenges of Transistor
Variability and Degradation,” IEEE Micro, Vol. 25, No.

6 (2005)
[5] J. Burns and J.- L. Gaudiot, “Area and System Clock

Effects on SMT/CMP Throughput,” IEEE Transactions
on Computers, Vol. 54, No. 2 (2005)

[6] T. Funaki and T. Sato, “Dependability-Performance
Trade-off on Multiple Clustered Core Processors,” 4th
International Workshop on Dependable Embedded
Systems (2007)

[7] M Gomaa, C. Scarbrough, T. N. Vijaykumar, and I.
Pomeranz, “Transient-Fault Recovery for Chip
Multiprocessors,” 30th International Symposium on
Computer Architecture (2003)

[8] M. K. Gowan et al., “Power Considerations in the
Design of the Alpha 21264 Microprocessor,” 35th
Design Automation Conference (1998)

[9] M. Horowitz, T. Indermaur, and R. Gonzalez,
“Low-Power Digital Design,” Symposium on Low
Power Electronics (1994)

[10] T. Karnik, P. Hazucha, and J. Patel, “Characterization
of Soft Errors Caused by Single Event Upsets in
CMOS Processes,” IEEE Transactions on Dependable
and Secure Computing, Vol. 1, No. 2 (2004)

[11] R. E. Kessler, “The Alpha 21264 Microprocessor,”
IEEE Micro, Vol. 19, No. 2 (1999)

[12] R. Kumar, K. Farkas, N. P. Jouppi, P. Ranganathan,
and D. M. Tullsen, “Single-ISA Heterogeneous
Multi-core Architectures: the Potential for Processor
Power Reduction,” 36th International Symposium on
Microarchitecture (2003)

[13] C. Lee, M. Potkonjak, and W. H. Mangione-Smith,
“MediaBench: a Tool for Evaluating and Synthesizing
Multimedia and Communications Systems,” 30th
International Symposium on Microarchitecture (1997)

[14] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt,
“Detailed Design and Evaluation of Redundant
Multithreading Alternatives,” 29th International
Symposium on Computer Architecture (2002)

[15] Y. Oyama, T. Ishihara, T. Sato, and H. Yasuura, “A
Multi-Performance Processor for Low Power
Embedded Applications,” 10th Symposium on Low-
Power and High-Speed Chips (2007)

[16] T. Sato and A. Chiyonobu, “Multiple Clustered Core
Processors,” 13th Workshop on Synthesis and System
Integration of Mixed Information Technologies (2006)

[17] K. Shimamura, T. Takehara, Y. Shima, and K.
Tsunedomi, “A Single-Chip Fail-Safe Microprocessor
with Memory Data Comparison Feature,” 12th Pacific
Rim International Symposium on Dependable
Computing (2006)

[18] K. Sundaramoorthy, Z. Purser, and E. Rotenberg,
“Slipstream Processors: Improving Both Performance
and Fault Tolerance,” 9th International Conference on
Architectural Support for Programming Languages and
Operating Systems (2000)

[19] C. T. Weaver, J. Emer, S. S. Mukherjee, and S. K.
Reinhardt, “Reducing the Soft-Error Rate of a
High-Performance Microprocessor,” IEEE Micro, Vol.
24, No. 6 (2004)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

