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Abstract
This paper presents a computer-assisted proof of solutions of the Orr-Sommerfeld

equation describing hydrodynamic stability of Poiseuille flow. A numerical verifica-
tion method for computing eigenpair enclosures for this non-selfadjoint eigenvalue
problem is described. Some verification results confirm the effectiveness of the
method.

1 The Orr-Sommerfeld model

Consider a two-dimensional flow of an incompressible viscous fluid between two infinite
parallel plates at y = y1 and y = y2 (See Figure 1). The flow between the parallel plates

x

y

d fluid layer

Figure 1: infinite parallel plates; d := y2 − y1

is described by the unsteady nonlinear incompressible non-dimensionalized Navier-Stokes
equations: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

R
Δu,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

R
Δv,

∂u

∂x
+

∂v

∂y
= 0,

(1)
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where, u, v and p are the velocity in the horizontal direction, the velocity in the vertical
direction and the pressure field respectively, and R is the Reynolds number.

Let the basic (primary) flow be represented by

(u, v) = (U(y), 0), p = p0 +
1

R

d2U(y)

dy2
x, 0 ≤ x < ∞, y1 ≤ y ≤ y2. (2)

Here, p0 is a constant and U is a quadratic polynomial in y.
In order to study the linear stability of the system (1), we consider a small perturba-

tion (û, v̂, p̂) from the basic flow (2) such that

u = U + û, v = v̂, p = P + p̂,

where U = U(y) and P = p0 +
1

R

d2U(y)

dy2
x. Substituting for the equation (1) and dis-

regarding the second-order terms involving products of the perturbations, the linearized
equations: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂û

∂t
+ U

∂û

∂x
+ v̂

dU

dy
= −∂p̂

∂x
+

1

R
Δû,

∂v̂

∂t
+ U

∂v̂

∂x
= −∂p̂

∂y
+

1

R
Δv̂,

∂û

∂x
+

∂v̂

∂y
= 0

(3)

are obtained.
Next, in order to satisfy the divergence free condition, the stream function ψ(t, x, y)

which satisfies

û =
∂ψ

∂y
, v̂ = −∂ψ

∂x
(4)

is introduced; note that the domain (0,∞) × (y1, y2) is simply connected.
Cross-differentiating the equation (3) in order to eliminate the pressure term implies

∂

∂t

∂2ψ

∂x2
+

∂

∂t

∂2ψ

∂y2
+ U

∂3ψ

∂x∂y2
+ U

∂3ψ

∂x3
=

d2U

dy2

∂ψ

∂x
+

1

R
Δ2ψ. (5)

Here, when we impose a no-slip boundary condition at y = y1 and y = y2, the stream
function ψ satisfies

∂ψ

∂x
=

∂ψ

∂y
= 0, y = y1, y2. (6)

In view of the independence of the basic flow (U(y), 0) on x, t, it makes sense to look
for the following travelling wave form of the disturbance stream function ψ(t, x, y):

ψ = ψ(t, x, y) = φ(y)eia(x−ct). (7)

Here, φ(y) and a > 0 mean the amplitude and wavenumber, respectively, and c = cr+ici is
the complex wave speed; cr represents the speed at which a wave propagates downstream,
and aci characterizes the rate at which the disturbance grows or decays in time. If ci < 0,
then ψ decays (i.e. the flow is stable), and if ci > 0, then ψ grows (the flow is unstable).
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Substituting eq.(7) into eq.(5), and using D := d/dy, the equation

1

R
(D2 − a2)2φ(y) = ia

[
(U − c)(D2 − a2)φ(y) − d2U

dy2
φ(y)

]
(8)

is obtained. From the no-slip boundary condition (6), φ(y) must satisfy

φ = Dφ = 0, y = y1, y2.

This equation (8) is the well-known Orr-Sommerfeld problem derived by Orr [6] and
Sommerfeld [9] for the disturbance eigenfunction φ(y), which in turn depends on the
prescribed values of the wave number a and of the Reynolds number R.

Rewriting y → x and u := φ, λ := iaRc we have⎧⎨
⎩

(−D2 + a2)2u + iaR[U(−D2 + a2) + U ′′]u = λ(−D2 + a2)u on Ω = [x1, x2]

u(x1) = u(x2) = u′(x1) = u′(x2) = 0.
(9)

In this paper, we focus on the case of plane Poiseuille flow [4]

U = V := 1 − x2, x1 = −1, x2 = 1. (10)

The Orr-Sommerfeld equation (9) is a non-selfadjoint eigenvalue problem for the
eigenpair (λ, u), and within the frame of linearized stability theory, the flow is stable if
the spectrum is located in the right complex half-plane, otherwise unstable.

There are many numerical results for the Orr-Sommerfeld equation with Poiseuille
flow. For example, Orszag [7] solved it numerically using expansions in Chebyshev poly-
nomials and the QR matrix eigenvalue algorithm. He computed that the smallest value
of R for which an unstable eigenmode exists (critical Reynolds number), according to
“numerical evidence”, is 5772.22 with a ∈ [1.0255, 1.0257]. Klein [1] proposed a method
for eigenvalue inclusion using a generalization of Gerschgorin’s theorem, however, he
imposed some additional assumptions, and numerical results did not take into account
effects of rounding error in floating point computation. Lahmann and Plum [2] gave a
computer-assisted method for computing rigorous eigenvalue enclosures and applied it to
the Orr-Sommerfeld problem with Blasius profile. However, concerning plane Poiseuille
flow, a rigorous instability proof has never been given from the mathematical point of
view.

In this paper, we propose a numerical verification procedure which encloses an eigen-
pair of the Orr-Sommerfeld equation with plane Poiseuille flow. The method uses numer-
ical means, but all numerical errors are take into account, and hence the method implies
a rigorous proof of all statements made. The method is based on a fixed-point theorem
with some Newton-like operator. Especially, we are interested in whether the real part of
the enclosed eigenvalue λ is negative or not, from the point of view in linearized stability
theory.

The paper is organized as follows. In Section 2 we formulate a fixed-point equation in
an infinite dimensional function space. Section 3 contains a study of a finite dimensional
subspace and some constructive a priori error estimates for a projection onto it. Section
4 is concerned with a practical verification algorithm. In Section 5 we report on some
verification results which prove the existence of eigenpairs in the computed regions, and
in particular give rigorous instability proofs.
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2 Fixed-point formulation

Setting
Δ̃ := −D2 + a2

and using real valued functions v, w and real values σ, μ such that{
u = v + iw,
λ = σ + iμ,

(11)

equation (9) becomes⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δ̃
2
v − aR(V Δ̃ + V ′′)w = σΔ̃v − μΔ̃w on Ω,

Δ̃
2
w + aR(V Δ̃ + V ′′)v = σΔ̃w + μΔ̃v on Ω,

v(−1) = v(1) = v′(−1) = v′(1) = 0,

w(−1) = w(1) = w′(−1) = w′(1) = 0.

(12)

Let L2(Ω) be the real L2 space on Ω = (−1, 1) with the inner product ( ·, · )L2 and
the norm ‖v‖ :=

√
( v, v )L2, ‖v‖∞ := ess sup

x∈Ω
|v(x)| the L∞-norm on Ω, and for integers

k, let Hk(Ω) denote the L2-Sobolev space of order k on Ω with the norm ‖v‖Hk :=√∑k
j=0 ‖djv/dxj‖2. Denoting

H2
0 (Ω) :=

{
v ∈ H2(Ω) | v(−1) = v′(−1) = v(1) = v′(1) = 0

}
,

‖v‖Δ̃ := ‖Δ̃v‖ is an equivalent norm for ‖v‖H2 and ( Δ̃v, Δ̃w )L2 can be chosen as the
inner-product of H2

0 (Ω). We define a Banach space X := H2
0 (Ω) × H2

0 (Ω) × R × R with
the norm

‖[v, w, σ, μ]T‖X :=
√
‖v‖2

Δ̃
+ ‖w‖2

Δ̃
+ σ2 + μ2.

Since Δ̃ has the properties

( Δ̃v, w )L2 = ( v, Δ̃w )L2, ∀v ∈ H2
0 (Ω), ∀w ∈ H2(Ω),

( Δ̃v, Δ̃w )L2 = ( Δ̃
2
v, w )L2 , ∀v ∈ C∞

0 (Ω), ∀w ∈ H2
0 (Ω),

we can look for solutions for eq.(12), submitted to additional normalizing conditions for
the eigenfunction, in the following weak formulation for [v, w, σ, μ]T ∈ X:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

( Δ̃v, Δ̃ξ )L2 = ( aR(V Δ̃ + V ′′)w + σΔ̃v − μΔ̃w, ξ )L2, ∀ξ ∈ H2
0 (Ω),

( Δ̃w, Δ̃η )L2 = (−aR(V Δ̃ + V ′′)v + σΔ̃w + μΔ̃v, η )L2 , ∀η ∈ H2
0 (Ω),

( v, v0 )L2 = ξR,

( w, w0 )L2 = ξI ,

(13)

where a, R, ξR, ξI ∈ R and v0, w0 ∈ H2
0 (Ω) are given.
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Let bounded continuous maps f1, f2 from X to L2(Ω) be denoted by

f1[v, w, σ, μ]T :=aR(V Δ̃ + V ′′)w + σΔ̃v − μΔ̃w, (14)

f2[v, w, σ, μ]T := − aR(V Δ̃ + V ′′)v + σΔ̃w + μΔ̃v. (15)

Also by the Lax & Milgram Lemma, for any g ∈ L2(Ω) there exists a unique solution
ω ∈ H4(Ω) ∩ H2

0 (Ω) satisfying

Δ̃
2
ω = g. (16)

For g ∈ L2(Ω) let (Δ̃
2
)−1g be the solution of eq.(16), then the operator (Δ̃

2
)−1 :

L2(Ω) −→ H2
0 (Ω) is compact due to the compactness of the imbedding H4(Ω) ↪→ H2

0 (Ω).

Using f1, f2 and (Δ̃
2
)−1, the operator F : X −→ X defined by

F [v, w, σ, μ]T :=

⎡
⎢⎢⎢⎣

(Δ̃
2
)−1f1[v, w, σ, μ]T

(Δ̃
2
)−1f2[v, w, σ, μ]T

σ − ( v, v0 )L2 + ξR

μ − ( w, w0 )L2 + ξI

⎤
⎥⎥⎥⎦ . (17)

is also compact, and the weak problem (13) can be rewritten equivalently in the fixed-
point form

F [v, w, σ, μ]T = [v, w, σ, μ]T .

In the following, for a general map A and a general set U , AU means

AU := {Au | u ∈ U}.
Then Schauder’s fixed-point theorem asserts that if a nonempty, bounded, convex and
closed set U ⊂ X satisfies

FU ⊂ U

then there exists a fixed-point of F in U .

3 Finite dimensional subspace and projection error

In this section, we introduce a finite dimensional approximation subspace Sh ⊂ H2
0 (Ω),

using basis functions constructed from piecewise cubic Hermite interpolating polynomi-
als, and show a priori error estimates for a projection from H2

0 (Ω) onto Sh.
The interval Ω is divided into K equal parts:

−1 = x0 < x1 < · · · < xK−1 < xK = 1

with nodes xn = −1 + hn (n = 0, . . . , K), where h := 2/K. From standard functions
Φ(x) and Ψ(x) defined by

Φ(x) =

⎧⎨
⎩

(x + 1)2(1 − 2x) −1 ≤ x ≤ 0
(x − 1)2(1 + 2x) 0 ≤ x ≤ 1

0 otherwise,
Ψ(x) =

⎧⎨
⎩

x(x + 1)2 −1 ≤ x ≤ 0
x(1 − x)2 0 ≤ x ≤ 1

0 otherwise,
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take

φn(x) := Φ
(
h−1(x + 1) − n

)
, ψn(x) := hΨ

(
h−1(x + 1) − n

)
n = 1, . . . , K − 1.

Then these functions satisfy

φn(xm) = δnm, φ′
n(xm) = 0, ψn(xm) = 0, ψ′

n(xm) = δnm, 1 ≤ n ≤ K−1, 0 ≤ m ≤ K.

We define an approximation subspace Sh ⊂ H2
0 (Ω) as

Sh := span {φn, ψn | n = 1, . . . , K − 1} .

By the well-definedness of the piecewise cubic Hermite interpolation, an interpolation
operator

IH : H2
0(Ω) −→ Sh

can be defined by

IHf(xj) = f(xj), (IHf)′(xj) = f ′(xj), 1 ≤ j ≤ K − 1,

and the following error estimates of interpolation:

‖(f − IHf)′′‖ ≤ π−2h2‖f (iv)‖, (18)

‖(f − IHf)′‖ ≤ π−3h3‖f (iv)‖, (19)

‖f − IHf‖ ≤ π−4h4‖f (iv)‖ (20)

hold for all f ∈ H4(Ω) ∩ H2
0 (Ω) [8].

Next, let Ph : H2
0 (Ω) −→ Sh be the orthogonal projection defined by

( Δ̃(v − Phv), Δ̃vh )L2 = 0, ∀vh ∈ Sh, (21)

then Ph has the following property.

Lemma 1 For all g ∈ L2(Ω), the difference between the solution ω of eq.(16) and its
projection Phω satisfies constructive a priori estimates

‖ω − Phω‖Δ̃ ≤ C‖g‖, (22)

‖ω − Phω‖ ≤ C2‖g‖, (23)

where

C :=

√
3

π2
h2

(
1 +

a2

π2
h2

)
. (24)

Proof. From estimates (18)–(20), we have

‖ω − Phω‖Δ̃ ≤ ‖ω − IHω‖Δ̃

= (‖ω′′ − IHω′′‖2 + 2a2‖ω′ − IHω′‖2 + a4‖ω − IHω‖2)
1
2

≤ h2π−2(1 + a2h2π−2)‖ω(iv)‖,
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then (22) follows from ‖ω(iv)‖ ≤ √
3 ‖Δ̃2

ω‖. This inequality can be obtained by partial
integration for f ∈ H4(Ω) ∩ H2

0 (Ω),

‖Δ̃2
f‖2 = ( f (iv), f (iv) )L2 − 4a2( f (iv), f ′′ )L2 + 2a4( f (iv), f )L2 + 4a4( f ′′, f ′′ )L2

−4a6( f ′′, f )L2 + a8( f, f )L2

= ( f (iv), f (iv) )L2 − 4a2( f (iv), f ′′ )L2 + 6a4( f ′′, f ′′ )L2 + 4a6( f ′, f ′ )L2

+a8( f, f )L2

≥ ( f (iv), f (iv) )L2 − 4a2( f (iv), f ′′ )L2 + 6a4( f ′′, f ′′ )L2 ,

and the inequality

( f (iv), f ′′ )L2 ≤ ‖f (iv)‖ ‖f ′′‖
≤ 1

2

(
1

3a2
‖f (iv)‖2 + 3a2‖f ′′‖2

)
.

The L2-estimate (23) is derived by the usual Aubin-Nitsche technique. �

4 Verification condition

4.1 Computable algorithm

In this section, we propose a computable algorithm constructing a candidate set which
is expected to satisfy a sufficient condition for Schauder’s fixed-point theorem. Basically,
this verification method is an extension of the one for solutions of second-order elliptic
boundary value problems introduced by a part of the authors [5].

From now on, the identity maps on X, Sh and H2
0 (Ω) are denoted by the same symbol

I. Define the finite dimensional subspace Xh of X by

Xh = Sh × Sh × R × R,

and the projection P̂h from X to Xh by

P̂h[v, w, σ, μ]T = [Phv, Phw, σ, μ]T

using Ph from (21). Then any element u = [v, w, μ, σ]T ∈ X can be uniquely decomposed
into

[v, w, μ, σ]T = [v̂, ŵ, μ, σ]T + [v∗, w∗, 0, 0]T , [v̂, ŵ, μ, σ]T ∈ Xh, [v∗, w∗, 0, 0]T ∈ X∗,

where

X∗ := {[v∗, w∗, 0, 0] ∈ X | v∗ = (I − Ph)v, w∗ = (I − Ph)w, v ∈ H2
0 (Ω), w ∈ H2

0 (Ω)} ⊂ X.

Therefore, the fixed-point equation u = Fu on X is equivalently rewritten as{
P̂hu = P̂hFu,

(I − P̂h)u = (I − P̂h)Fu.
(25)
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Now, we take an approximate solution uh = [vh, wh, σh, μh]
T ∈ Xh obtained by some

appropriate numerical method and, in order to accelerate contraction, apply a Newton-
like method to the finite dimensional part in eq.(25). Let us define the Newton-like
operator Nh : X −→ Xh by

Nhu := P̂hu − [I − P̂hF
′(uh)]

−1
h P̂h(I − F )u.

Here [I − P̂hF
′(uh)]

−1
h : Xh −→ Xh means the inverse of the restriction of the operator

P̂h(I − F ′(uh)) : X −→ Xh to Xh, where F ′ denotes the Fréchet derivative of F . Note
that the existence of [I − P̂hF

′(uh)]
−1
h is equivalent to the invertibility of a matrix, which

is numerically checked in the actual verified computations. Since P̂hu = P̂hNhu ⇔ P̂hu =
P̂hFu, using a compact map T on X defined by

Tu = Nhu + (I − P̂h)Fu,

we find that the two fixed-point problems: u = Fu and u = Tu are equivalent.
Next, for positive constants γ, δ, c1, c2, α and β, set

Uh :=
{
[v̂h, ŵh, σ̂, μ̂]T ∈ Xh | ‖v̂h‖Δ̃ ≤ γ, ‖ŵh‖Δ̃ ≤ δ, |σ̂| ≤ c1, |μ̂| ≤ c2

} ⊂ Xh,

U∗ :=
{
[v∗, w∗, 0, 0]T ∈ X∗ | ‖v∗‖Δ̃ ≤ α, ‖w∗‖Δ̃ ≤ β,

} ⊂ X∗,

and define a candidate set U ⊂ X by

U := uh + Uh + U∗.

Then a sufficient condition for the fixed-point theorem is as follows.

Theorem 1 When the two inclusions:{ NhU − uh ⊂ Uh

(I − P̂h)FU ⊂ U∗
(26)

hold, there exists a fixed-point of T in U .

Proof. By definition, U is a non-empty, closed, convex and bounded set in X. For
any u ∈ U , Nhu ∈ Xh, (I − P̂h)Fu ∈ X∗, and the decomposition Tu = Nhu+(I − P̂h)Fu
is unique. Hence by (26), we get NhU + (I − P̂h)FU ⊂ uh + Uh + U∗ in X, namely,
TU ⊂ U . Therefore, by the compactness of the operator T and Schauder’s fixed-point
theorem, the desired result is obtained.

We now desribe a procedure to construct the candidate set U of X which is expected
to satisfy the inclusion (26). Setting

NhU − uh =: [Vh, Wh, Σ, M ]T ⊂ Xh,

the finite dimensional part of the inclusion, NhU − uh ⊂ Uh, can be written as

sup
v̄h∈Vh

‖v̄h‖Δ̃ ≤ γ, sup
w̄h∈Wh

‖w̄h‖Δ̃ ≤ δ, sup
σ̄∈Σ

|σ̄| ≤ c1, sup
μ̄∈M

|μ̄| ≤ c2.

8



Details of the underlying computations will be explained in Subsection 4.1.
On the other hand, the infinite dimensional part of the inclusion, (I − P̂h)FU ⊂ U∗,

means ⎡
⎢⎢⎢⎣

(I − Ph)(Δ̃
2
)−1f1[v, w, σ, μ]T

(I − Ph)(Δ̃
2
)−1f2[v, w, σ, μ]T

0
0

⎤
⎥⎥⎥⎦ ⊂ U∗

for any u ∈ U such that u = [v, w, σ, μ]T . Setting

v̂∗ := (I − Ph)(Δ̃
2
)−1f1[v, w, σ, μ]T , ŵ∗ := (I − Ph)(Δ̃

2
)−1f2[v, w, σ, μ]T ,

Lemma 1 assures

‖v̂∗‖Δ̃ ≤ C‖f1(u)‖, ‖ŵ∗‖Δ̃ ≤ C‖f2(u)‖, ‖v̂∗‖ ≤ C2‖f1(u)‖, ‖ŵ∗‖ ≤ C2‖f2(u)‖.

Therefore, in order to satisfy (I − P̂h)FU ⊂ U∗, the conditions

C sup
ū∈U

‖f1(ū)‖ ≤ α, C sup
ū∈U

‖f2(ū)‖ ≤ β

are sufficient. Note that C defined in (24) is small when h is chosen small.
From this we can derive the following theorem.

Theorem 2 With the notations defined before, if one can check the conditions:

sup
v̄h∈Vh

‖v̄h‖Δ̃ ≤ γ,

sup
w̄h∈Wh

‖w̄h‖Δ̃ ≤ δ,

sup
σ̄∈Σ

|σ̄| ≤ c1,

sup
μ̄∈M

|μ̄| ≤ c2,

C sup
ū∈U

‖f1(ū)‖ ≤ α,

C sup
ū∈U

‖f2(ū)‖ ≤ β,

then there exists fixed-point of T in U .

Based on Theorem 2, we propose a verification algorithm in Figure 2.
The extension procedure involving ε occurring in this algorithm is called “ε-inflation”

which is a kind of acceleration technique. The concrete value of ε > 0 should be adapted
to the actual problem. Experimentally, the initial values of γ(0), δ(0), c

(0)
1 , c

(0)
2 , α(0) and

β(0) are taken as machine epsilon.
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Verification algorithm

• k = 0
Set initial values γ(0), δ(0), c

(0)
1 , c

(0)
2 , α(0), β(0) > 0.

• k ≥ 1

1. For a fixed small constant ε > 0 set

γ̂(k) := (1 + ε)γ(k−1), δ̂(k) := (1 + ε)δ(k−1), ĉ1
(k) := (1 + ε)c(k−1)

1 ,

ĉ2
(k) := (1 + ε)c(k−1)

2 , α̂(k) := (1 + ε)α(k−1), β̂(k) := (1 + ε)β(k−1).

2. The k-th candidate set U (k) is defined by

U
(k)
h := {[v̂h, ŵh, σ̂, μ̂]T ∈ Xh | ‖v̂h‖Δ̃ ≤ γ̂(k), ‖ŵh‖Δ̃ ≤ δ̂(k), |σ̂| ≤ ĉ1

(k), |μ̂| ≤ ĉ2
(k)},

U
(k)
∗ := {[v∗, w∗, 0, 0]T ∈ X∗ | ‖v∗‖Δ̃ ≤ α̂(k), ‖w∗‖Δ̃ ≤ β̂(k), },

U (k) := uh + U
(k)
h + U

(k)
∗ .

3. Evaluate NhU (k) − uh ⊂ Xh as

[V (k)
h , W

(k)
h , Σ(k), M (k)]T := NhU (k) − uh.

4. Compute values of the k-th iteration by

γ(k) := sup
v̄h∈V

(k)
h

‖v̄h‖Δ̃,

δ(k) := sup
w̄h∈W

(k)
h

‖w̄h‖Δ̃,

c
(k)
1 := sup

σ̄∈Σ(k)
|σ̄|,

c
(k)
2 := sup

μ̄∈M(k)
|μ̄|,

α(k) := C sup
ū∈U(k)

‖f1(ū)‖,

β(k) := C sup
ū∈U(k)

‖f2(ū)‖.

5. If γ(k) ≤ γ̂(k), δ(k) ≤ δ̂(k), c
(k)
1 ≤ ĉ1

(k), c
(k)
2 ≤ ĉ2

(k), α(k) ≤ α̂(k), β(k) ≤ β̂(k) hold then stop,
and there exists a desired solution in U (k) ⊂ X .

6. Set k := k + 1 and return to the step 1. If k reaches a maximum iteration number or some
values exceed a criterion then stop, and the verification fails.

Figure 2:
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4.2 Detailed computation

Omitting iteration numbers’ notation, in the verification step, given 6 parameters α, β, γ, δ, c1

and c2 > 0, we have to compute

γ̂ = sup
v̄h∈Vh

‖v̄h‖Δ̃, δ̂ = sup
w̄h∈Wh

‖w̄h‖Δ̃,

ĉ1 = sup
σ̄∈Σ

|σ̄|, ĉ2 = sup
μ̄∈M

|μ̄|,
α̂ = C sup

ū∈U
‖f1(ū)‖, β̂ = C sup

ū∈U
‖f2(ū)‖,

and confirm
α̂ ≤ α, β̂ ≤ β, γ̂ ≤ γ, δ̂ ≤ δ, ĉ1 ≤ c1, ĉ2 ≤ c2.

In the actual computation, the candidate set U contains the infinite dimensional term
U∗. Moreover, it is impossible to avoid the effect of rounding error of floating point
arithmetic. However, by norm estimates, and interval arithmetic software taking into
account effects of rounding error, we can obtain mathematically rigorous upper bounds
for γ̂, δ̂, ĉ1, ĉ2, α̂ and β̂ with possible over-estimates. Let us describe these computations
in more detail.

For any u ∈ U such that

u = uh + ûh + u∗, ûh ∈ Uh, u∗ ∈ U∗

=

⎡
⎢⎢⎣

vh

wh

σh

μh

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

v̂h

ŵh

σ̂
μ̂

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

v∗
w∗
0
0

⎤
⎥⎥⎦ ,

after some calculations we obtain

Nhu − uh = [I − P̂hF
′(uh)]

−1
h

⎡
⎢⎢⎢⎣
−vh + Ph(Δ̃

2
)−1f1(uh)

−wh + Ph(Δ̃
2
)−1f2(uh)

ξR − ( vh, v0 )L2

ξI − ( wh, w0 )L2

⎤
⎥⎥⎥⎦

+ [I − P̂hF
′(uh)]

−1
h

⎡
⎢⎢⎢⎣
Ph(Δ̃

2
)−1{σ̂Δ̃v̂h − μ̂Δ̃ŵh + f1[v∗, w∗, σh + σ̂, μh + μ̂]T}

Ph(Δ̃
2
)−1{σ̂Δ̃ŵh + μ̂Δ̃v̂h + f2[v∗, w∗, σh + σ̂, μh + μ̂]T}

−( v∗, v0 )L2

−( w∗, w0 )L2

⎤
⎥⎥⎥⎦ .

(27)
The first term ⎡

⎢⎢⎣
r1

r2

r3

r4

⎤
⎥⎥⎦ := [I − P̂hF

′(uh)]
−1
h

⎡
⎢⎢⎢⎣
−vh + Ph(Δ̃

2
)−1f1(uh)

−wh + Ph(Δ̃
2
)−1f2(uh)

ξR − ( vh, v0 )L2

ξI − ( wh, w0 )L2

⎤
⎥⎥⎥⎦ ∈ Xh
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on the right-hand side of eq.(27) is only constructed by the approximate solution and

known functions; note that Ph(Δ̃
2
)−1fi(uh) is the solution of a finite dimensional linear

problem. Therefore, each norm

‖r1‖Δ̃, ‖r2‖Δ̃, |r3|, and |r4|

can be bounded by solving some linear algebraic systems with interval arithmetic.
On the other hand, when we set

[t1, t2, t3, t4]
T = [I − P̂hF

′(uh)]
−1
h [s1, s2, s3, s4]

T ∈ Xh,

for [s1, s2, s3, s4]
T ∈ Xh, it can be shown that⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

‖t1‖Δ̃ ≤ ρ1‖s1‖Δ̃ + ρ2‖s2‖Δ̃ + ‖LT (G−1
13 s3 + G−1

14 s4)‖E,

‖t2‖Δ̃ ≤ ρ3‖s1‖Δ̃ + ρ4‖s2‖Δ̃ + ‖LT (G−1
23 s3 + G−1

24 s4)‖E,

|t3| ≤ ρ5‖s1‖Δ̃ + ρ6‖s2‖Δ̃ + |G−1
33 s3 + G−1

34 s4|,

|t4| ≤ ρ7‖s1‖Δ̃ + ρ8‖s2‖Δ̃ + |G−1
43 s3 + G−1

44 s4|,
where

G :=

⎡
⎢⎢⎣

A1 − σhA3 −A2 + μhA3 −A3vh A3wh

A2 − μhA3 A1 − σhA3 −A3wh −A3vh

vT
0 A4 0 0 0
0 wT

0 A4 0 0

⎤
⎥⎥⎦ ∈ R

2K×2K ,

[A1]nm :=( Δ̃φ̂m, Δ̃φ̂n )L2,

[A2]nm :=aR( (V Δ̃ + V ′′)φ̂m, φ̂n )L2 ,

[A3]nm :=( Δ̃φ̂m, φ̂n )L2

[A4]nm :=( φ̂m, φ̂n )L2 ,

L is the Cholesky factor of A1: A1 = LLT ,

C1 :=

√
λmax(A4)

λmin(A1)
, G−1 =:

⎡
⎢⎢⎣

G−1
11 G−1

12 G−1
13 G−1

14

G−1
21 G−1

22 G−1
23 G−1

24

G−1
31 G−1

32 G−1
33 G−1

34

G−1
41 G−1

42 G−1
43 G−1

44

⎤
⎥⎥⎦ ,

ρ1 := ‖LT G−1
11 L‖M , ρ2 := ‖LT G−1

12 L‖M , ρ3 := ‖LT G−1
21 L‖M , ρ4 := ‖LT G−1

22 L‖M ,

ρ5 := ‖(G−1
31 L)T‖E , ρ6 := ‖(G−1

32 L)T‖E , ρ7 := ‖(G−1
41 L)T‖E, ρ8 := ‖(G−1

42 L)T‖E,

and ‖ · ‖M and ‖ · ‖E mean the usual matrix and vector 2-norms. Evaluations of ρ1, ρ2, ρ3

and ρ4 can be reduced to the computation of the maximum singular value of a matrix.
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Therefore, norm bounds for the second term on the right-hand side of eq.(27) are
obtained from norm bounds for⎡

⎢⎢⎣
s1

s2

s3

s4

⎤
⎥⎥⎦ :=

⎡
⎢⎢⎢⎣
Ph(Δ̃

2
)−1{σΔ̃v̂h − μΔ̃ŵh + f1[v∗, w∗, σh + σ̂, μh + μ̂]T}

Ph(Δ̃
2
)−1{σΔ̃ŵh + μΔ̃v̂h + f2[v∗, w∗, σh + σ̂, μh + μ̂]T}

−( v∗, v0 )L2

−( w∗, w0 )L2

⎤
⎥⎥⎥⎦ ,

which in turn can be computed as

‖s1‖Δ̃ ≤ C1(ĉ1 γ̂ + ĉ2 δ̂) + C((ρ9 + τ2)β̂ + τ1 α̂),

‖s2‖Δ̃ ≤ C1(ĉ1 δ̂ + ĉ2 γ̂) + C((ρ9 + τ2)α̂ + τ1 β̂),

|s3| ≤ Cα̂ρ10,

|s4| ≤ Cβ̂ρ11,

where
τ1 := sup

|σ̂|≤ĉ1

|σh + σ̂|, τ2 := sup
|μ̂|≤ĉ2

|μh + μ̂|,

ρ9 := aR‖V ‖∞ +
√

2R‖V ′‖∞ +
2R

a
‖V ′′‖∞, ρ10 := ‖v0‖, ρ11 := ‖w0‖.

Moreover, estimates for ‖f1(u)‖ and ‖f2(u)‖ are obtained by

‖f1(u)‖ ≤ ρ12 + τ3δ̂ + ρ13C1δ̂ + τ1γ̂ + τ4 + τ3β̂ + ρ13Cβ̂ + τ1α̂,

‖f2(u)‖ ≤ ρ14 + τ3γ̂ + ρ13C1γ̂ + τ1δ̂ + τ5 + τ3α̂ + ρ13Cα̂ + τ1β̂,

where

τ3 := sup
|μ̂|≤ĉ2

‖aRV − μ̂h − μ̂‖∞
τ4 := sup

|σ̂|≤ĉ1,|μ̂|≤ĉ2

‖σ̂vh − μ̂wh‖Δ̃,

τ5 := sup
|σ̂|≤ĉ1,|μ̂|≤ĉ2

‖σ̂wh + μ̂vh‖Δ̃

ρ12 := ‖f1(uh)‖, ρ13 := ‖aRV ′′‖∞, ρ14 := ‖f2(uh)‖.

5 Verification results

We now show some verification results. It is well known that the discretization of the
Orr-Sommerfeld equation yields a stiff system. The quadruple precision interval arith-
metic in each verification step was implemented using Sun ONE Studio 7, Compiler
Collection Fortran 95 on FUJITSU PRIMEPOWER850 (CPU: SPARC64-GP 1.3GHz,
OS: Solaris8). The approximate solutions were obtained by a Newton-Raphson method
using usual floating point arithmetic with quadruple precision.
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5.1 Result 1

For R = 5774 and a = 1.02, the verification algorithm executed successfully with K =
1000 in the following candidate set:

U = uh + Uh + U∗, Uh = [Vh, Wh, Σ, M ]T , U∗ = [V∗, W∗, 0, 0]T ,

where
‖Vh‖Δ̃ ≤ 5.518 × 10−4, ‖Wh‖Δ̃ ≤ 5.383 × 10−4,
‖V∗‖Δ̃ ≤ 3.868 × 10−3, ‖W∗‖Δ̃ ≤ 6.578 × 10−3.

Especially, an eigenvalue can be enclosed within the complex interval

λ ∈ [−0.03745, 0.00347] + i[1554.34370, 1554.38555].

5.2 Result 2

For R = 5775 and a = 1.02, the verification algorithm also executed successfully with
K = 1000 in the following candidate set:

U = uh + Uh + U∗, Uh = [Vh, Wh, Σ, M ]T , U∗ = [V∗, W∗, 0, 0]T ,

where
‖Vh‖Δ̃ ≤ 5.388 × 10−4, ‖Wh‖Δ̃ ≤ 5.523 × 10−4,
‖V∗‖Δ̃ ≤ 6.587 × 10−3, ‖W∗‖Δ̃ ≤ 3.867 × 10−3.

Especially, an eigenvalue can be enclosed within the complex interval

λ ∈ [−0.04719,−0.00625] + i[1554.56608, 1554.60797].

As mentioned in Section 1, within the frame of linearized stability theory, we can
therefore conclude that the flow is unstable because at least one spectral point is located
in the left complex half-plane.

Figure 3 shows the minimum Reynolds number R for which the verification algorithm
assures that the real part of an eigenvalue is strictly negative for the corresponding wave
number a. Therefore, it is expected that the critical curve Re(λ) = 0 should be located
below these dots.

6 Conclusion

For some fixed Reynolds number and wave number [a, R] we can enclose an eigenpair
for the Orr-Sommerfeld equation with Poiseuille flow from hydrodynamic stability. We
cannot say for certain whether the enclosed eigenvalue has the smallest real part or not,
and we also cannot enclose the critical curve. These questions must be solved in our
future work. We wish to remark that in principle, a computer-assisted stability proof
could be given with the aid of [3], where a box has been computed which contains all
eigenvalues of the Orr-Sommerfeld problem, and which has a compact intersection with
the left complex half-plane.

This work was supported by a Grant-in-Aid from the Ministry of Education, Culture,
Sports, Science and Technology of Japan (No.18540127, No.15204007, No.16104001).
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Figure 3: [a, R] with Re(λ) < 0
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Brownian rough paths

MHF2006-22 Yoshiyuki KAGEI
Resolvent estimates for the linearized compressible Navier-Stokes equation in
an infinite layer



MHF2006-23 Yoshiyuki KAGEI
Asymptotic behavior of the semigroup associated with the linearized
compressible Navier-Stokes equation in an infinite layer

MHF2006-24 Akihiro MIKODA, Shuichi INOKUCHI, Yoshihiro MIZOGUCHI & Mitsuhiko
FUJIO
The number of orbits of box-ball systems

MHF2006-25 Toru FUJII & Sadanori KONISHI
Multi-class logistic discrimination via wavelet-based functionalization and model
selection criteria

MHF2006-26 Taro HAMAMOTO, Kenji KAJIWARA & Nicholas S. WITTE
Hypergeometric solutions to the q-Painlevé equation of type (A1 + A′
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