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SUMMARY

We propose functional cluster analysis (FCA) for multidimensional functional data sets,

utilizing orthonormalized Gaussian basis functions. An essential point in FCA is the

use of orthonormal bases that yield the identity matrix for the integral of the product

of any two bases (identity cross product matrix). We construct orthonormalized Gaus-

sian basis functions using Cholesky decomposition and derive the property of Cholesky

decomposition with respect to the Gram-Schmidt orthonormalization. The advantages

of the functional clustering approach are that it can be applied to the data observed at

different time points for each subject, and the functional structure behind the data can

be captured by removing the measurement errors. The proposed method is applied to

three-dimensional (3D) protein structural data that determine the 3D arrangement of

amino acids in individual protein. In addition, numerical experiments are conducted to

investigate the effectiveness of the proposed method with the orthonormalized Gaussian

bases, as compared to conventional cluster analysis. The numerical results show that the

proposed methodology is superior to the conventional method for noisy data sets with

outliers.

KEY WORDS: Cholesky decomposition, clustering, functional data, Gram-Schmidt

orthonormalization, protein structure, radial basis functions.

1. Introduction

Cluster analysis is a technique for identifying groups in data, which are often sampled as

high-dimensional vectors. It can be thought of as the dual of discriminant analysis, the

key distinction being that, in cluster analysis, the group labels are not known a priori.

There are several clustering methods, for example, model-based and hierarchical methods
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Japan.
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and nonhierarchical methods, such as the k-means method (Hartigan and Wong (1978))

and the Self-Organizing Map (SOM, Kohonen (1997)).

A general clustering method assumes that an observational vector can be interpreted

as a discretized realization of a function evaluated at possibly different time points for

each subject. However, if the number of time points is not exactly the same for each

subject, conventional cluster analysis cannot be directly applied to the data. Moreover,

in the presence of measurement errors, direct cluster analysis does not take advantage of

the functional structure. For these reasons, the present paper considers functional cluster

analysis (FCA) that converts each observational vector to a function by a smoothing

method and then extracts information from the obtained functional data set by applying

concepts from conventional cluster analysis. Functional cluster analysis can also use

information for the derivatives of the functional data.

In modeling with functional approaches such as FCA, many studies employ basis ex-

pansions that assume that functional data may be expressed as linear combinations of

known basis functions. Simple functional clustering methods are given by applying con-

ventional cluster analysis to the coefficient vectors in the basis expansions (Abraham et al.

(2003)). However, the distances among the coefficient vectors in non-orthonormal basis

expansions differ from the distances among the functional data. Rossi et al. (2004) have

reported a functional clustering method that reserves the distances among the functional

data. First, the observations are expressed in the basis expansions, and the matrix for

the integrals of the products of any two bases (cross product matrix) is evaluated. Con-

ventional cluster analysis is then applied to the transformed coefficient vectors given by

the original coefficient vectors and upper-triangular matrix (Cholesky factor). However,

their study did not provide any additional mathematical motivation for the use of the

transformed coefficient vectors.

Cholesky decomposition is one of the most widely used techniques of matrix decompo-

sition. Other decompositions include LU decomposition and QR decomposition. Ciarlet

(1989, §4.5) described the relationship between the QR decomposition and Gram-Schmidt

orthonormalization, and Strang and Borre (1997, §11.1) showed that a Gram-Schmidt or-

thonormalization procedure is equivalent to the Cholesky decomposition on the special

type of matrix. In the present paper, we provide the relationship between the orthonormal

basis expansions and transformed coefficient vectors and derive its property concerning

the Gram-Schmidt orthonormalization.

An important point in functional approaches based on the basis expansions is the

evaluation of the cross product matrix. Since the orthonormal property of the Fourier

series yields the identity cross product matrix, we need not evaluate the cross product

matrix for Fourier series. However, it is known that Fourier series are not appropriate

for non-periodic data. In contrast, spline types of bases (see, e.g., Green and Silverman

(1994), de Boor (2001)) do not have the orthonormal property, and consequently the cross

product matrix must be calculated. The evaluation of the cross product matrix for the
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splines, however, is complicated, because they are given by piecewise polynomials.

The main aim of the present paper is to introduce FCA for multidimensional func-

tional data sets, utilizing orthonormalized Gaussian basis functions. The advantages of

the use of the Gaussian type of basis functions in the functional approaches are that the

cross product matrix can be easily calculated by its exponential form and that a much

more flexible instrument is created for transforming each individual’s observation into a

function. The proposed method is applied to the three-dimensional (3D) protein struc-

tural data that determine the 3D arrangement of amino acids in individual protein. An

objective of the analysis of the protein data is to characterize the features of proteins.

The present paper is organized as follows. Section 2 describes a method of multidimen-

sional functionalization based on the basis expansions. Section 3 introduces functional

clustering techniques and shows the details of the relationship between the transformed

coefficient vectors and the orthonormal basis expansions, where we employ the SOM as

a conventional clustering method to the transformed coefficient vectors. In Section 4,

Monte Carlo simulations are conducted to investigate the effectiveness of FCA with the

orthonormalized Gaussian bases, as compared to conventional cluster analysis. Section

5 describes the application of the proposed method to the 3D protein structural data.

Finally, concluding remarks are presented in Section 6.

2. Discrete and functional data

Suppose we have N independent discrete observations {tij, (xi1j, · · · , xipj) ; j = 1, · · · , ni}
(i = 1, · · · , N), where each tij (∈ T ⊂ R) is the j-th observational point of the i-th indi-

vidual and (xi1j, · · · , xipj) is the discrete data observed at tij for p variables X1, · · · , Xp:

for example, {tij, (xi1j, xi2j, xi3j) ; j = 1, · · · , ni} (i = 1, · · · , 19) are the discretized 3D

protein structural data, where tij are the positions in the i-th amino-acid sequence and

(xi1j, xi2j, xi3j) are the XY Z coordinates values of amino acids that compose the i-th 3D

protein structure. The upper graphs in Figure 1 show an example of the discretized 3D

protein structural data with p = 3 and ni = 149. We convert each discrete data set

{(tij, xilj) ; j = 1, · · · , ni} to a functional data element x∗il(t) by a smoothing method, as

follows.

We assume that each discrete data set {(tij, xilj) ; j = 1, · · · , ni} is generated from the

nonlinear regression model:

xilj = uil(tij) + εilj (j = 1, · · · , ni) ,

where uil(t) are nonlinear regression functions and the errors εilj are independently nor-

mally distributed with mean 0 and variance σ2
il. The nonlinear functions uil(t) are assumed

to be given by linear combinations of Gaussian basis functions φm(t):

uil(t) =
M∑

m=1

cilmφm(t) .
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Figure 1: An example of discrete data (upper) and corresponding three-dimensional func-
tional data (lower) for a 3D protein structure (p = 3, ni = 149).

The m-th Gaussian basis function φm(t) = φm(t; km+2, τ
2) has the form

φm(t) = φm(t; km+2, τ
2) = exp

{
−(t− km+2)

2

2τ 2

}
(m = 1, · · · ,M) ,

where k1 < · · · < kM+4 are the equispaced knots that satisfy k4 = min{tij} and kM+1 =

max{tij}, and τ = (km+2 − km)/3 (Kawano and Konishi (2007)). We note that these

basis functions φm(t) = φm(t; km+2, τ
2) have quite similar shapes, such as cubic B-splines

(Eilers and Marx (1996), Imoto and Konishi (2003)), and also have exponential forms,

such as Gaussian radial basis functions (Moody and Darken (1989), Bishop (1995), Ando

et al. (2005)).

For each i and l, the coefficient parameter vector cil = (cil1, · · · , cilM)′ and variance

parameter σ2
il are estimated by maximizing the penalized log-likelihood function with a

smoothing parameter λil > 0 that controls the smoothness of the nonlinear function uil(t).

The estimators ĉil = (ĉil1, · · · , ĉilM)′ and σ̂2
il depend on the number of basis functions M

and the smoothing parameter λil. These parameters are optimally selected by minimizing

the generalized information criterion (GIC) proposed by Konishi and Kitagawa (1996)

(see also, Konishi and Kitagawa (2008)).

Thus, we have the estimated nonlinear functions ûil(t) =
∑M

m=1 ĉilmφm(t). The p-

dimensional functional data sets {(xi1(t), · · · , xip(t)) ; t ∈ T} (i = 1, · · · , N) are then
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given by xil(t) = ûil(t) for each i and l. An example of the p-dimensional functional data

is shown in Figure 1 (lower, p = 3), corresponding to the discretized 3D protein struc-

tural data in Figure 1 (upper). In the next section, we introduce a functional clustering

method for the p-dimensional functional data sets, using orthonormalized Gaussian basis

functions.

3. Functional Cluster Analysis

3.1 Functional clustering and orthonormal bases

Let {(xi1(t), · · · , xip(t)) ; t ∈ T} (i = 1, · · · , N) be the p-dimensional functional data

sets obtained by smoothing the observational discrete data sets {tij, (xi1j, · · · , xipj) ; j =

1, · · · , ni} (i = 1, · · · , N). It is assumed that each functional data element xil(t) can be ex-

pressed as a linear combination of the Gaussian basis functions {φm(t) = φm(t; km+2, τ)};

xil(t) = ûil(t) =
M∑

m=1

ĉilmφm(t) = ĉ′ilφ(t) (l = 1, · · · , p, i = 1, · · · , N) ,

where φ(t) = (φ1(t), · · · , φM(t))′. Simple functional clustering methods are given by

applying conventional cluster analysis to the estimated coefficient vectors ĉil. However, the

distances among ĉil in non-orthonormal basis expansions differ from the original distances

among the functional data {(xi1(t), · · · , xip(t))}.
Let xi(t) = (xi1(t), · · · , xip(t))

′ be p-dimensional functional data and let ĉi = (ĉ′i1, · · · ,

ĉ′ip)
′ be the corresponding pM -dimensional coefficient vectors. The squared norms of xi(t)

are given by

‖xi‖2
p =

p∑

l=1

‖xil‖2 =

p∑

l=1

ĉ′ilW
∗ĉil = ĉ′iW ĉi (i = 1, · · · , N) , (1)

where W ∗ =
∫

φ(t)φ(t)′dt = (W ∗
m,n)M

m,n=1 is the M ×M cross product matrix that has

the (m,n)-th component W ∗
mn =

∫
T
φm(t)φn(t) dt, and W = diag(W ∗, · · · , W ∗) is the

pM × pM block diagonal matrix formed from W ∗. We adopt a straightforward definition

of the norm of a p-dimensional function in (1). The (m,n)-th components of the cross

product matrix W ∗ for the Gaussian basis functions {φm(t) = φm(t; km+2, τ
2)} are given

by

W ∗
mn =

√
πτ 2 exp

{
−(km+2 − kn+2)

2

4τ 2

}
(m,n = 1, · · · , M).

The squared distances between the p-dimensional functional data xi and xj are also

given by the corresponding coefficient vectors ĉi and ĉj:

‖xi − xj‖2
p = (ĉi − ĉj)

′W (ĉi − ĉj) (i, j = 1, · · · , N) . (2)

5



If the matrix W is not the identity matrix, then the clustering methods for the coeffi-

cient vectors ĉi do not preserve the distances among the p-dimensional functional data:

‖xi−xj‖2 6= ‖ĉi− ĉj‖2. Note that orthonormal bases yield the identity cross product ma-

trix, and the clustering methods based on orthonormal bases preserve the distance among

the functional data. Rossi et al. (2004) have then introduced the functional clustering

method that implements the Self-Organizing Map (SOM) on transformed coefficient vec-

tors defined later, although, in a previous study, the k-means method is applied to the

estimated coefficient vectors (Abraham et al. (2003)). The clustering methods for the

transformed coefficient vectors preserve the distances among the functional data. We in-

troduce the following transformed coefficient vectors c̃i for the p-dimensional functional

data xi, while the previous study by Abraham et al. (2003) treated the one-dimensional

case.

Let U∗ be the M ×M upper triangular matrix given by the Cholesky decomposition

of the cross product matrix W ∗: W ∗ = (U∗)′U∗, and let U = diag(U∗, · · · , U∗) be the

pM × pM block diagonal upper triangular matrix formed from U∗. We then have W =

U ′U . The squared distances (2) can be written as

‖xi − xj‖2
p = (c̃i − c̃j)

′(c̃i − c̃j) = ‖c̃i − c̃j‖2 , (3)

where c̃i = (c̃′i1, · · · , c̃′ip)
′ = U ĉi are the pM -dimensional transformed coefficient vectors

and each element c̃il of c̃i is also given by c̃il = U∗ĉil. Thus, the functional clustering

methods based on the transformed coefficient vectors c̃i preserve the distances among the

p-dimensional functional data xi.

The use of the transformed coefficient vectors c̃i corresponds to orthonormal basis

expansions of functional data. Let ψ1(t), · · · , ψM(t) be the basis functions defined by

ψ(t) = (ψ1(t), · · · , ψM(t))′ = U−1
∗ φ(t), where U∗ = (U∗)′ is the M ×M lower triangular

matrix. The basis functions ψm(t) are the orthonormal bases formed by the original bases

φm(t): the cross product matrix of ψ(t) is given by
∫

ψ(t)ψ(t)′dt = U−1
∗ W ∗(U∗)−1 = IM ,

with the identity matrix IM of size M . We also have

c̃ilψ(t) = ĉ′ilφ(t) = xil(t) (l = 1, · · · , p, i = 1, · · · , N) .

Thus, each element c̃il of c̃i is the coefficient vector in the orthonormal basis expansion

of the functional data element xil(t). Note that the use of the transformed coefficient

vectors c̃i yields the identity cross product matrix in (3) (see also, (2)). Furthermore, we

derive the remarkable property of the transformed coefficient vectors c̃i: these coefficient

vectors are equivalent to those of the orthonormal bases given by the Gram-Schmidt

orthonormalization of φ1(t), · · · , φM(t). The derivation is shown in the Appendix.

3.2 Self-Organizing Map

The multidimensional functional clustering method applies conventional cluster analysis

to the transformed coefficient vectors c̃i in (3). As for a clustering method, we employ the
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Self-Organizing Map (SOM), which is an unsupervised neural network, and a method of

visualizing complex high-dimensional data by drawing a low-dimensional map (see, e.g.,

Kohonen (1997)).

Let us consider the clustering based on the transformed coefficient vectors {c̃i ∈
RpM ; i = 1, · · · , N} into K clusters. The SOM here defines a mapping from the in-

put data space RpM onto a regular two-dimensional array of nodes. With every node

k ∈ {1, · · · , K}, a reference vector pk ∈ RpM is prepared. A coefficient vector c is

compared with pk, and the best-matching node k0 is defined by

k0 = argmin
k

{‖c− pk‖} .

The SOM employs useful vectors of pk as the reference vectors that can be found as

convergence limits of the following learning process.

If we have the t-th updated values of pk, the (t + 1)-th updated values p
(t+1)
k are

obtained by

p
(t+1)
k = p

(t)
k + hk0,k(t) {c(t) − p

(t)
k } (k = 1, · · · , K) , (4)

where hk0,k(t) = h(‖rk0 − rk‖, t) is the neighborhood kernel with the two-dimensional

radius vectors rk0 and rk of nodes k0 and k in the array. Each radius vector rk represents

the position of the node k in the two-dimensional plane. The Gaussian type neighborhood

kernel is defined by

hk0,k(t) = α(t) · exp

{
−‖rk0 − rk‖2

2σ2(t)

}
,

where α(t) is a scalar-valued learning rate and σ2(t) determines the width of the kernel.

Both α(t) and σ2(t) are some monotonically decreasing functions of iteration, and their

exact forms are not critical. They could thus be selected to be linear. An algorithm of

the SOM is detailed in the following procedure.

1) Set the initial values of reference vectors {pk ∈ RpM ; k = 1, · · · , K}.
2) Find the best-matching node k0 for the fixed transformed coefficient vector c̃i.

3) Update the reference vectors pk by (4).

4) Repeat 2) and 3) for i = 1, · · · , N .

5) Repeat 2) to 4) until convergence.

Resulting clusters Ck (k = 1, · · · , K) are given by Ck = {ci ∈ RpM ; argmink′‖ci−pk′‖ =

k}, where pk are the convergence limits of the above procedure.

4. Numerical Experiments

Monte Carlo simulations were conducted to investigate the effectiveness of FCA with

the orthonormalized Gaussian bases, as compared to conventional cluster analysis. In the

simulation study, we generated a true functional data set {x∗i (t); t ∈ [0, 1], i = 1, · · · , 50},
and a new functional data set {xi(t) ; t ∈ [0, 1], i = 1, · · · , 50} was constructed by

7



0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

0.
5

0.
5

1.
5

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

0.
5

0.
5

1.
5

Figure 2: Examples of the generated functional data set (left) and discrete and functional
data (right) from 2 clusters. The black (solid) and red (dashed) lines correspond to
clusters 1 and 2, respectively.

smoothing the discrete data set {xij ; i = 1, · · · , 50, j = 1, · · · , 100} that was generated

from x∗i (t). We then performed conventional and functional clustering methods to the

discrete data set {xij} and functional data set {xi(t)}, respectively, and compared the

clustering results. More precisely, we performed clustering methods on the simulated

data using the following procedure.

Step 1. Generate a true functional data set {x∗i (t) ; t ∈ [0, 1], i = 1, · · · , 50} from the

mixed effects models

x∗i (t) =





µ1(t) +
6∑

m=1

γ1imφm(t) (i = 1, · · · , 25, if x∗i (t) ∈ Cluster 1)

µ2(t) +
6∑

m=1

γ2imφm(t) (i = 26, · · · , 50, if x∗i (t) ∈ Cluster 2)

,

where

µ1(t) = 0.8 sin(20t/3) , µ2(t) = 0.8 sin{20(t− 0.1)/3} ,

and φ1(t), · · · , φ6(t) indicate the Gaussian basis functions. The random components γ1im

and γ2im are assumed to be independently and normally distributed with γ1im, γ2im
iid∼

N(0, σ2
γ), where σγ is set to 0.02 or 0.05.

Step 2. Generate the discrete data set {xij ; i = 1, · · · , 50, j = 1, · · · , 100} from the

nonlinear regression model with the true functions x∗i (t):

xij(t) = x∗i (tij) + εij (i = 1, · · · , 50, j = 1, · · · , 100) ,

8



where tij are the equispaced observational points or points generated from the uniform

distribution on [0, 1], and the errors εij are assumed to be independently distributed

according to a mixture of two normal distributions

εij
iid∼ 0.9 N(0, (σε1Rx)

2) + 0.1 N(0, (σε2Rx)
2)

with Rx being the range of {x∗i (t)} over t ∈ [0, 1], σε1 = 0.05, 0.1 and σε2 = 0.2, 0.3

Step 3. Estimate a functional data set {xi(t) ; t ∈ [0, 1], i = 1, · · · , 50} by smoothing the

generated discrete data set {xij ; i = 1, · · · , 50, j = 1, · · · , 100}, and a model selection

is performed by minimizing GIC. It is assumed that each functional data xi(t) can be

expressed as a linear combination of the Gaussian basis functions.

Step 4. Perform conventional and functional clustering methods on the generated discrete

data set {xij ; i = 1, · · · , 50, j = 1, · · · , 100} and estimated functional data set {xi(t) ; t ∈
[0, 1], i = 1, · · · , 50}, respectively. As for a clustering method, we employed the one-

dimensional SOM with the number of clusters being K = 2.

Step 5. Compare the clustering results given by Step 4, and calculate the misclustering

rates for the b-th trial: rc
b, rf

b = (number of misclusterings)/50.

Step 6. Repeat Steps 2 through 5 for each trial. The means of the misclustering rates

are then given by r̄ c = 100−1
∑100

b=1 rc
b and r̄ f =

∑100
b=1 rf

b, respectively. The means that r̄ c

and r̄ f are the average misclustering rates.

Table 1: Clustering results (average misclustering rates r̄ c and r̄ f).

σγ = 0.05 σε1 = 0.05
σε2 = 0.2 σε2 = 0.3

Conventional Functional Conventional Functional

tij:equispaced
Misclustering rates (%) 44.8 9.2 25.6 16.6

0.0 9.2 1.0 7.1
0.7 6.1 44.2 17.2

Mean (%) 15.1 8.2 23.9 13.6

tij:uniform
Misclustering rates (%) 21.8 10.6 18.7 18.4

13.2 14.6 11.3 16.8
9.2 9.2 36.7 24.2

Mean (%) 14.8 11.4 22.2 19.8

The ”Mean”s are the mean values of the average misclustering rates.

Figure 2 shows examples of generated discrete and functional data. Steps 1 through 6

were repeated three times for each setting, and we then had the clustering results shown in

9



Table 2: Clustering results (average misclustering rates r̄ c and r̄ f).

σγ = 0.05 σε1 = 0.1
σε2 = 0.2 σε2 = 0.3

Conventional Functional Conventional Functional

tij:equispaced
Misclustering rates (%) 0.6 12.6 0.8 16.0

0.3 19.8 15.2 19.3
45.8 13.8 16.6 29.0

Mean (%) 15.6 15.4 10.9 21.4

tij:uniform
Misclustering rates (%) 11.8 19.0 38.2 30.4

4.8 20.2 15.1 27.7
29.8 20.7 12.9 28.8

Mean (%) 15.5 20.0 22.1 29.0

The ”Mean”s are the mean values of the average misclustering rates.

Tables 1 and 2, which represent the average misclustering rates r̄ c, r̄ f and its mean value

for each setting with σγ = 0.05. The conventional clustering method performed well for

the ”little individual variation data” (σγ = 0.02), while this method was not appropriate

for the ”large individual variation data” (σγ = 0.05, Tables 1 and 2).

In contrast, the functional clustering method performed well for data with a large

amount of individual variation data, although this method yielded poor results to the little

individual variation data. In particular, if the standard deviations of the error distribution

was set to σε1 = 0.05 and σε2 = 0.2, 0.3 (Table 1), the average misclustering rates of the

functional method were smaller than the corresponding values of the conventional method.

The settings σε1 = 0.05 and σε2 = 0.2, 0.3 mean that most errors were generated with a

small variance. However, a few errors were not. In other words, these settings produce

outliers. Therefore, the functional clustering approach is better than the conventional

method for data with large individual variation with outliers, through these numerical

comparisons. Note that the conventional method cannot be directly applied to data with

different ni for each individual.

5. Real data example

The multidimensional FCA with the orthonormalized Gaussian basis functions is applied

to the 3D protein structural data such as that shown in Figure 3. A number of studies

have analyzed proteins using statistical methods (Wu et al. (1998), Ding and Dubchak

(2001), Nguyen and Rajapakse (2003), Green and Mardia (2006), among others).The

one-dimensional SOM with the number of clusters being K = 2 is applied here to three-

10



Figure 3: Examples of 3D protein structures. Surface (left) and internal structures (right)
of a protein.

Table 3: The 19 proteins from the two classes.

Class Fold Protein code (length of the amino-acid sequence)
All-α Globin-like 2lhb(149), 3sdh-a(145), 1flp(142), 2hbg(147), 2mge(154)

1eca(136), 2gdm(153), 1bab-b(146), 1ith-a(141), 1ash(147)
1hlb(157), 1cpc-a(162) [1cpc-a1(127)]

α/β Flavodoxin-like 3chy(128), 1ntr(124), 1scu-a2(166), 2fcr(173), 2fx2(147)
1bmt-a2(154), 1gdh-a1(130)

dimensional functional data sets representing 3D protein structures, in order to identify

features of the protein structures.

A protein is a class of biomolecules composed of amino-acid sequences and has been

hierarchically classified from a biological viewpoint. A set of classified proteins is referred

to as a ”class” determined by their secondary structures. The present paper treats 19

proteins from the two classes given in Table 3. We selected a protein fold for each class.

A protein fold is a lower-level classified protein set than the protein class. The proteins

listed in this table were selected from the protein set of Ding and Dubchak (2001). This

data set was obtained from the National Center of Biotechnology Information (NCBI,

http://www.ncbi.nlm.nih.gov/). Note that because the length of amino-acid sequence

differs for each protein, conventional cluster analysis cannot be directly applied to the

data set. In what follows, it is assumed that we have the XYZ-coordinates of all atoms

for each protein in various coordinate systems.

First, the 3D structural data set was converted into discrete data sets using the XYZ-

coordinates of the α-carbon atoms, which were typical atoms of amino acids. Each α-

carbon atom corresponds to an amino acid. We then have a discrete data set for each
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coordinate. The smoothing method via the Gaussian basis functions was performed for

each discrete data set. We considered values for the number of basis functions M of

25, 26, · · · , 35, values for the smoothing parameter λil of 10−10, 10−9, · · · , 10−1, and found

optimal values of M = 35 and λil = 10−5, 10−4. The selected values of M were the modes

for all individuals (proteins) and coordinates, although we firstly obtained optimal values

of M and λil for the i-th individual and the l-th (l = 1:X, l = 2:Y, l = 3:Z) coordinate,

respectively. To unify the coordinates, we rotated the three-dimensional functional data

sets obtained by smoothing, because the coordinate systems differ for each protein. Op-

timization was performed in rotating each protein to another base protein. Details of

the rotation are described by Kayano and Konishi (2007, §5). We then applied the one-

dimensional SOM with the number of clusters K = 2 to the rotated three-dimensional

functional data sets.

Figure 4 shows the classified functional data sets colored by the results of the clus-

tering. In the upper graphs in this figure, the black and green lines represent correctly

classified functional data sets for All-α and α/β, respectively. The red line represents the

misclassification functional data for the protein 1cpc-a, which is the chain A of the protein

1cpc. The chain A of the protein 1cpc is divided by chain A-1 and other chains. We then

applied the SOM to the data set replaced 1cpc-a by 1cpc-a1. The clustered functional

data sets is shown in the lower graphs in Figure 4. The protein 1cpc is correctly classified

in All-α. Thus, the 3D protein structures could be effectively classified by the proposed

functional clustering method.

6. Summary and concluding remarks

We introduced functional cluster analysis (FCA) for multidimensional functional data sets,

using orthonormalized Gaussian basis functions. We proved the remarkable property of

the transformed coefficient vectors c̃i determined by Cholesky decomposition. These coef-

ficient vectors were equivalent to those of orthonormal bases given by the Gram-Schmidt

orthonormalization. Numerical experiments were conducted to investigate the effective-

ness of FCA with the orthonormalized Gaussian bases, as compared to conventional clus-

ter analysis. The numerical results showed that the proposed method is superior to the

conventional method for large individual variation data with outliers.

The proposed method was applied to the 3D protein structural data. We here applied

the one-dimensional SOM with the fixed number of clusters K = 2 to three-dimensional

functional data sets representing 3D protein structures. This paper treated 19 proteins

from the two classes, namely, All-α and α/β, and we could effectively classify the 3D

protein structures using the proposed functional clustering method. Future research will

include 1) the proposal of a model-based FCA and 2) the derivation of model selection

criteria from an information-theoretic perspective and also the application of Bayesian

approaches.
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Figure 4: Classified functional data sets. The lines are colored by the results of the
clustering. Upper: original data with 1cpc-a, Lower: replaced 1cpc-a by 1cpc-a1.

Appendix. Property of orthonormal bases

This section shows the remarkable property of the transformed coefficient vectors c̃i in

Section 3.1. These coefficient vectors are equivalent to those of orthonormal bases given by

the Gram-Schmidt orthonormalization. Let x(t) (t ∈ T) be a one-dimensional functional

data that may be expressed as a linear combination of any basis functions {φm(t)}:

x(t) =
M∑

m=1

cmφm(t) = c′φ(t) ,

with c = (c1, · · · , cM)′ and φ(t) = (φ1(t), · · · , φM(t))′.
Let us consider the construction of orthonormal bases ψ1(t), · · · , ψM(t) using the

Gram-Schmidt orthonormalization of {φm(t)}:

ψ1(t) =
φ1(t)

‖φ1‖ , ψm(t) =
ψ∗m(t)

‖ψ∗m‖
(m = 2, · · · ,M) , (5)

where ψ∗m(t) = φm(t) −∑m−1
n=1 〈ψn, φm〉ψn(t) and ‖ψ∗m‖2 = ‖φm‖2 −∑m−1

n=1 〈ψn, φm〉2. The

functional data x(t) can also be expressed as a linear combination of the orthonormal

13



bases ψm(t):

x(t) =
M∑

m=1

c̃mψm(t) = c̃′ψ(t) , (6)

with c̃ = (c̃1, · · · , c̃M)′ and ψ(t) = (ψ1(t), · · · , ψM(t))′, since each basis function φm(t) is

obtained by the linear combination of the orthonormal bases ψm(t). The coefficient vector

c̃ = (c̃1, · · · , c̃M)′ in the orthonormal basis expansion (6) can be written as

c̃ = (〈ψ1, c̃
′ψ〉, · · · , 〈ψM , c̃′ψ〉)′

= (〈ψ1, c
′φ〉, · · · , 〈ψM , c′φ〉)′

=




〈ψ1, φ1〉 〈ψ1, φ2〉 · · · 〈ψ1, φM〉
0 〈ψ2, φ2〉 · · · 〈ψ2, φM〉
...

...
. . .

...
0 0 · · · 〈ψM , φM〉







c1

c2
...

cM




= U∗c

with U∗ = (U∗
mn = 〈ψm, φn〉)m,n, using x(t) = c′φ(t) = c̃′ψ(t), 〈ψm, φn〉 = 0 (m > n)

and the orthonormalities of ψm(t). The upper-triangular matrix U∗ is equal to the matrix

given by Cholesky decomposition of the cross product matrix W ∗ =
∫

T
φ(t)φ(t)′dt, as

follows.

Let V = (v1, · · · , vM)′ = (vmn)m,n be the M × M upper-triangular matrix given

by Cholesky decomposition of W ∗. It follows that V ′V = W ∗. From an algorithm of

Cholesky decomposition, the (m,n)-th components of V are obtained by

v1n =
〈φ1, φn〉√
〈φ1, φ1〉

(n = 1, · · · ,M) ,

vmn =
〈φm, φn〉 −

∑m−1
l=1 vlmvln√

〈φm, φm〉 −
∑m−1

l=1 v2
lm

(m,n = 2, · · · ,M, m ≤ n) ,

where 〈φm, φm〉 = ‖φm‖2 are the (m,m)-th components of the cross product matrix W ∗.
Using these equations, the (1, n)-th components of V can be written as v1n = 〈φ1/‖φ1‖, φn〉
= 〈ψ1, φn〉. If we know that the first m− 1 row vectors v′l (l = 1, · · · ,m− 1) are given by

v′l =
( 1 l − 1 l M

0 · · · 0 〈ψl, φl〉 · · · 〈ψl, φM〉
)

(7)

or vln = 〈ψl, φn〉 (l ≤ n), then the m-th row components of V are given by the following

equations (m ≤ n), using ψ∗m(t) = φm(t)−∑m−1
n=1 〈ψn, φm〉ψn(t) in (5) and their norms;

vmn =
〈φn, φm〉 −

∑m−1
l=1 〈ψl, φm〉〈ψl, φn〉√

〈φm, φm〉 −
∑m−1

l=1 〈ψl, φm〉2
=

〈
φm −

∑m−1
l=1 〈ψl, φm〉ψl

‖ψ∗m‖
, φn

〉
= 〈ψm, φn〉 .

We then have (7) for l = m, that is, for all l = 1, · · · ,M . Thus, we have V = U∗.
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Quadratic transformations of the sixth Painlevé equation
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