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Energy of hydrodynamic and magnetohydrodynamic waves with
point and continuous spectra

M. Hirota and Y. Fukumoto

Faculty of Mathematics, Kyushu University, Fukuoka, 812-8581, Japan

Energy of waves (or eigenmodes) in ideal fluid and plasma is formulated in the
noncanonical Hamiltonian context. By imposing the kinematical constraint on per-
turbations, the linearized Hamiltonian equation provides a formal definition of wave
energy not only for eigenmodes corresponding to point spectra but also for singular
ones corresponding to continuous spectrum. The latter becomes dominant when
mean fields have inhomogeneity originating from shear or gradient of the fields. The
energy of each wave is represented by the eigenfrequency multiplied by the wave
action which is nothing but the action variable and, moreover, is associated with
a derivative of suitably defined dispersion relation. The sign of the action variable
is crucial to the occurrence of Hopf bifurcation in Hamiltonian systems of a finite
degrees of freedom (Krein 1950). Krein’s idea is extended to the case of coalescence
between point and continuous spectra.

I. INTRODUCTION

Evaluating the energy contained in the hydrodynamic (HD) and magnetohydrodynamic
(MHD) waves is important especially in the context of stability analysis and bifurcation
theory. If the energy of any perturbation away from an equilibrium state is positive (or neg-
ative) definite, such a state turns out to be nonlinearly stable [1–3], although it gives rather
strong sufficient condition for stability. More detailed stability condition is investigated by
solving the linearized dynamical system. The linear waves and their frequencies correspond
respectively to the eigenmodes and the eigenvalues of the linear system, some of which may
have negative energy if the corresponding perturbation extracts energy from the equilibrium
state (i.e., the mean fields). The negative energy mode is in itself neutrally stable (unless
the system undergoes any dissipation effect).

According to the general theory for Hamiltonian systems of finite dimension, it was shown
by Krein [4] and Moser [5] that linear instability is only possible when a pair of eigenvalues
of positive and negative energy modes or of zero energy modes collide. A deeper insight into
this process, so-called Krein collision or (Hamiltonian) Hopf bifurcation, can be obtained by
carrying out some canonical transformation to the action-angle variables [5, 6], where the
energy of a single harmonic oscillator will be represented by

(energy) = (frequency) × (action). (1)

The action variable is known to be an adiabatic invariant [1], which is robust even when the
equilibrium state experiences a sufficiently slow variation. Consequently, the signature of
the action variable is more closely related to the bifurcation process than that of the energy.

Is is well-known that ideal fluids and plasmas are (noncanonical) Hamiltonian systems.
Hence the expression of energy for HD and MHD waves is expected to have similarity
with (1). Historically, the expression for wave energy was first gained in early works on
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electromagnetic waves in homogeneous plasmas [7, 8]; the energy of a plane wave with a
frequency ω and a wave number k, satisfying the dispersion relation D(ω, k) = 0, is given
by

(wave energy) = ω
∂D

∂ω
(ω, k)|E(ω, k)|2, (2)

where E(ω, k) is the amplitude of the perturbed electric field. Since the Hamiltonian struc-
ture was not recognized at that time, the above expression was derived from estimation
of the amount of work done by the source current which slowly excites this wave. The
wave action is obviously ∂D/∂ω|E|2, whose sign is determined by the ω-derivative of the
dispersion relation. This expression carries over to inhomogeneous plasmas in the short-
wavelength limit [9, 10], which has been widely used in the wave theory and nowadays
called the Wentzel-Kramers-Brillouin (WKB) approximation.

The same argument is immediately applied to the energy of electrostatic waves in hot
plasmas. More recently, Morrison and Pfirsch [11] compared this expression (2) with the
exact plasma free energy by invoking the Hamiltonian structure of the Vlasov-Poisson equa-
tion. It is remarkable that they also derived an expression for wave energy associated with
the continuous spectrum. Their result indicates that the formula (2) is true for point spec-
tra (eigenvalues), but not for continuous spectrum. The continuous spectrum is yet to be
explored in the Hamiltonian mechanics because it never occurs in finite degree-of-freedom
systems. Since the corresponding waves are represented by singular eigenfunctions so-called
the Van Kampen modes [12], the extensive use of the singular integral transformation (like
the Hilbert transform) is required to attain the action-angle representation.

Although the electric field never intervenes in fluid mechanics, Cairns [13] pointed out the
existence of a similar expression to (2) for waves in parallel flows with piecewise-constant
velocity and density profiles. The wave energy was estimated from the amount of work
required to displace the vortex sheet at the discontinuity so that the wave would be excited,
which indeed results in (2) with E being replaced by the amplitude of the displacement.
Thus, the Kelvin-Helmholtz instability was understood as a Hopf bifurcation. MacKay and
Saffman [14] have considered the energy of water waves in the same manner. Application of
the above energy criterion remains valid for arbitrary piecewise-constant mean fields.

However, there have not been so many pieces of works that discuss the HD and MHD
wave energy for more general mean fields (without relying on the WKB approximation),
which is the central motivation of this work. We remark that this problem is complicated
by the following three points. First, if the mean fields have smooth inhomogeneity (shear
or gradient), the continuous spectrum occurs in ideal HD and MHD waves, which occupies
a certain region on the real axis of the complex frequency (ω) plane. The treatment of
singular eigenfunctions is then nontrivial as is the case for the Van Kampen modes. A
paper written by Balmforth and Morrison [15] seems to be the only work that discusses
the wave energy for continuous spectrum in smooth shear flow, although their analysis
was focused on incompressible and purely two-dimensional motions. Second, the dispersion
relation for point spectra must be no longer an algebraic relation between ω and k but a
differential equation since the inhomogeneity of the mean fields does not allow the use of
wavenumber k. Third, as was noted in Ref. 11 and 15, a kinematical constraint (so-called
dynamical accessibility) must be imposed on perturbations because the Hamiltonian system
is noncanonical. This constraint is already prescribed in the noncanonical Poisson bracket
and is, in physical terms, characterized by the kinematical conservation laws.
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In this paper, we will formulate wave energy (as well as wave action) in a general manner
based on the noncanonical Hamiltonian context. The governing equations for ideal fluid and
plasma in the Eulerian description are known to have a common Hamiltonian structure so-
called the Lie-Poisson bracket [1, 16–18]. In Sec. II, we will review the general Lie-Poisson
system and discuss its linearized structure about arbitrary steady state. In general, any
Hamiltonian flow in the phase space must be restricted to the symplectic leaves for the
Lie-Poisson bracket, which corresponds to the kinematical constraint [3]. The kinematically
accessible perturbations are then identified as the tangent space to the symplectic leaves. It is
reviewed by Arnold and Khesin [2] that a steady state is characterized as an extremum point
of the Hamiltonian within a symplectic leaf, and the second variation of the Hamiltonian
along the same symplectic leaf is the first integral of the linearized equation, by which we
can define the energy of perturbation. All perturbations in this work are assumed to be
kinematically accessible from the initial state. While this assumption does not perfectly
cover all perturbations, it has been invoked in many physical applications, and most HD
and MHD waves of interest are kinematically accessible.

In Sec. III, we will decompose the linear perturbation into waves (= eigenmodes) by
means of the spectral analysis, and formulate the wave energy for both point and continuous
spectra. In this work, we employ the Laplace transform approach to deal with the spectral
problem. We establish a generalized dispersion relation for inhomogeneous mean fields in
such a way as to be associated with the wave action.

In Sec. IV, the MHD case will be discussed. The linearized MHD equation together with
the kinematically accessible initial data will be reduced to the well-known equation derived
by Frieman and Rotenberg [19]. It is an evolution equation for the Lagrangian displacement
field that has been widely used for the MHD stability analysis. The energy of perturbation
given in Ref. 19 agrees with the second variation of the Hamiltonian [20]. New generalized
dispersion relation can be defined for this Frieman and Rotenberg equation. In terms of
it, we will show that a formula similar to (2) holds for any (semi-simple) point spectrum,
whereas this formula does not seem to be valid for a continuous spectrum. The elimination
of the variables is fundamental not only for simplifying the equation but also for obtaining
simpler dispersion relation. If the mean fields were homogeneous, our generalized dispersion
relation would be ultimately reduced to the conventional algebraic relation between ω and
k with the use of the Fourier transform in space. On the other hand, for mean fields with
one-dimensional inhomogeneity, the equation is reduced to the eigenvalue problem of the
Sturm-Liouville type [21, 22]. It will be shown that the corresponding dispersion relation is
again related to the wave action.

In Sec. V, we will study more about the wave energy for a continuous spectrum and
its role in the bifurcation theory. By neglecting the magnetic field for simplicity, we will
concentrate on the continuous spectrum in parallel shear flows. An expression for the wave
energy, which includes the result of Balmforth and Morrison [15], will be derived by exploiting
some techniques, where a suitable change of variable is required to treat the singularity of
the eigenfunction. This result can explain, by using the signs of wave actions, the mechanism
for both destabilization [23, 24] and the Landau damping [25] of neutral waves in shear flow,
which is generally understood as a Hopf bifurcation caused by collision between point and
continuous spectra.
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II. LINEARIZED LIE-POISSON SYSTEMS

Theories for dynamical systems have been developed in mathematics so that fluids and
plasmas can be dealt within the both Hamiltonian and Lagrangian formalisms. The no-
tions of the conservation law and the topological invariant become more sophisticated with
the help of the differential geometry and the Lie group theory. The noncanonical Hamilto-
nian structure of the MHD equation was uncovered by Morrison and Greene [26]. It was
also derived by the Lie-Poisson reduction from a canonical system for the Lagrangian vari-
ables [16, 17]. The MHD equation is, thus, regarded as a Lie-Poisson system on the dual g∗

of the Lie algebra, g = Xs(Λ1 ⊕Λ0 ⊕Λ3), where X and Λn denote, respectively, the spaces
of vector fields and n-forms on the domain D ⊂ R3, and s denotes the semidirect product.
Denote an element of the dual space by u = (M , B, ρ, s)T ∈ g∗, where u is composed of
fluid momentum density M , magnetic field B, mass density ρ and specific entropy s. The
velocity field v is given by M = ρv. For any functionals F,G : g∗ → R, the Lie-Poisson
bracket is generically written in the form of

{F,G} =

〈
u,

[
δF

δu
,
δG

δu

]〉
, (3)

using the standard pairing 〈, 〉 : g∗ × g → R and the Lie bracket [, ] : g × g → g. The
Hamiltonian equation ∂tF = {F,H} is posed for a prescribed Hamiltonian function H :
g∗ → R. In the MHD case, it represents the total energy as usual;

H(u) =

∫ [
1

2ρ
|M |2 +

1

2
|B|2 + ρe(ρ, s)

]
d3x, (4)

where e(ρ, s) is a given function of ρ and s representing the internal energy per unit mass.
The Lie-Poisson bracket for the MHD equation is explicitly shown in several works [3, 17,
20, 26].

Let us introduce a notation in accordance with the adjoint representation of the Lie group
theory [1]. A linear operator ad(ζ) : g → g for any ζ ∈ g is defined by

[ζ1, ζ2] = −[ζ2, ζ1] = ad(ζ1)ζ2 = −ad(ζ2)ζ1 for ∀ζ1, ζ2 ∈ g. (5)

The dual operator of ad(ζ) with respect to the inner bracket 〈, 〉 is denoted by ad∗(ζ) : g∗ →
g∗. Using this notation, the Hamiltonian equation allows another expression;

∂tu = −ad∗
(

δH

δu

)
u. (6)

Any Lie-Poisson system is commonly written in this form of nonlinear evolution equation.
Actually, one can reproduce the ideal MHD equation by substituting the corresponding
Lie-Poisson bracket and the Hamiltonian (4).

In this section, we shall prepare some general properties of the Lie-Poisson system (6)
linearized about an equilibrium state. While we will be mainly concerned with the MHD
case (or the HD case by dropping the magnetic field B) later, the theories presented here
are pertinent to any Lie-Poisson system.

First of all, it is important to notice that the operator ad∗(◦) determines, to some extent,
how u(t) evolves infinitesimally at each time. Suppose that the Hamiltonian in (6) is replaced
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by arbitrary linear functional, i.e., H = 〈u, ζ〉 for some ζ ∈ g. The corresponding virtual
variation δu = −ad∗(ζ)u is said to be kinematically accessible (or dynamically accessible,
according to Morrison [27]). Such variations δu generated by every ζ ∈ g do not span the
whole space g∗, which implies that there is some constraint on the dynamics. The existence
of such kinematical constraints is peculiar to the noncanonical systems and, physically, it is
related to the conservation laws.

Let us refer to the MHD case as an example. By denoting the components of ζ by
ζ = (ξ, η, α, β)T ∈ g, the kinematically accessible variation, δu = −ad∗(ζ)u, is explicitly
written as

δv = ξ × (∇× v) − 1

ρ
B × (∇× η) −∇(ξ · v + α) +

β

ρ
∇s, (7)

δB = ∇× (ξ × B) , (8)

δρ = −∇ · (ρξ), (9)

δs = −ξ · ∇s. (10)

One can confirm that these restricted variations automatically satisfy all kinematical con-
servation laws of MHD, namely, do not perturb all Casimir invariants [20]. This idea first
appeared in fluid mechanics as the so-called isovortical variation [1] since the above δv pre-
serves the vorticity conservation (or the Kelvin’s circulation theorem) in the isentropic and
hydrodynamic limit; ∇s = 0 and B = 0. The variation (7)-(10) is also called the generalized
isovortical variation in this context [28, 29].

A state ue ∈ g∗ is an equilibrium (or steady) state

ad∗
(

δH

δu

∣∣∣
e

)
ue = 0 (11)

if and only if 〈
ad∗(ζ)ue,

δH

δu

∣∣∣
e

〉
= 0 for all ζ ∈ g, (12)

where δH/δu|e denotes the value of the functional derivative δH/δu ∈ g at u = ue. Therefore,
any equilibrium state is characterized by an extremum point (δH = 0) of H with respect to
the kinematically accessible variations.

The linearization of (6) about this ue leads to a linear evolution equation for perturbation
ũ(t) ∈ g∗ (see App. A of Ref. 3);

∂tũ = (AH + B)ũ, ũ(0) = ũ0, (E)

where we defined some linear operators, A : g → g∗, H : g∗ → g and B : g∗ → g∗ by

A := −ad∗(◦)ue, H :=
δ2H

δu2

∣∣∣
e

and B := −ad∗
(

δH

δu

∣∣∣
e

)
. (13)

Note that A is an anti-symmetric operator, A∗ = −A (due to the anti-symmetry of the Lie
bracket), and H is a symmetric operator, H∗ = H, with respect to the pairing 〈, 〉. Since
this paper will focus on the linear theory, we will omit the subscript e in what follows and u
will always refer to the equilibrium state satisfying (11). One can check that the linearized
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MHD equation is written in this form, where the operators A, H and B are explicitly listed
in Appendix A.

We consider the kinematically accessible perturbations ũ ∈ {Aζ; ζ ∈ g} to the equilibrium
state, which corresponds to the range of A. It is of interest to note that these perturbations
constitute an invariant subspace for the evolution of ũ(t). The following assumption and
the subsequent theorem are fundamental to the later sections.

Assumption 1. The initial data ũ0 ∈ g∗ of the linearized equation (E) is kinematically
accessible from the equilibrium state u ∈ g∗, i.e.,

∃ζ0 ∈ g such that ũ0 = Aζ0. (A)

Theorem 2. Under the assumption (A), the solution ũ(t) of (E) remains kinematically
accessible to u ∈ g∗; ũ(t) = Aζ(t) for all t > 0 where ζ(t) is a solution of the adjoint
problem

∂tζ = (HA− B∗)ζ, ζ(0) = ζ0. (E∗)

In addition, a symmetric quadratic form δ2H : g × g → R defined by

δ2H := −〈(AH + B)Aζ, ζ〉 = 〈ũ, ∂tζ〉 (14)

is a constant of motion.

Proof. Using the Jacobi identity of the Lie bracket, BA is proved to be symmetric (BA)∗ =
BA as follows; for all ζ1, ζ2 ∈ g,

〈BAζ1, ζ2〉 = −
〈

u,

[[
δH

δu
, ζ2

]
, ζ1

]〉
,

=

〈
u,

[
[ζ2, ζ1] ,

δH

δu

]〉
+

〈
u,

[[
ζ1,

δH

δu

]
, ζ2

]〉
,

=

〈
ad∗

(
δH

δu

)
u, [ζ1, ζ2]

〉
−

〈
u,

[[
δH

δu
, ζ1

]
, ζ2

]〉
,

= 〈BAζ2, ζ1〉,

where we used the equilibrium condition (11) in the last equality.
Let ζ(t) be a solution of (E∗). By operating A on both sides of (E∗), the same ζ(t)

satisfies

∂t(Aζ) = (AH + B)Aζ, Aζ(0) = Aζ0, (15)

which implies that Aζ(t) is the solution of (E). Since AHA + BA is symmetric, one can
prove that

∂t〈(AHA + BA)ζ, ζ〉 = 〈∂tζ, (AHA + BA)ζ〉 + 〈(AHA + BA)ζ, ∂tζ〉,
= 〈∂tζ,A∂tζ〉 + 〈A∂tζ, ∂tζ〉,
= 0. (16)
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The proof of (BA)∗ = BA and the subsequent claim, δ2H = const., has already given in
Ref. 2 with some different notations. It must be emphasized here that there is an explicit
duality between the variables ũ and ζ. The solution of the linearized Lie-Poisson equation
(E) is virtually equivalent to that of the adjoint problem (E∗) via the mapping A. This fact
and the underlying assumption (A) are required for the second (kinematically accessible)
variation δ2H of H to be invariant. We will refer to this δ2H = 〈ũ, ∂tζ〉 as the energy of
perturbation.

III. WAVE ENERGY AND WAVE ACTION

In the linear theory, it is useful to regard the perturbations ũ ∈ g∗ and ζ ∈ g as complex
variables and invoke the Fourier-Laplace transform. In what follows, we will naturally
identify g∗ as g and extend them into a complex Hilbert space L2. The inner product is
then given by 〈ũ, ζ〉 for any ũ, ζ ∈ L2, where the bar ( ) denotes complex conjugate. By
just multiplying the linearized systems by the imaginary unit i, we get Schrödinger-like
equations,

i∂tũ = Lũ, ũ(0) = ũ0, (E′)

i∂tζ = L∗ζ, ζ(0) = ζ0. (E′∗)

where we defined two pure-imaginary operators, L := i(AH + B) and L∗ := i(HA − B∗).
Note that L∗ is indeed the adjoint operator of L with respect to the L2 inner product and
the following important relation holds,

LA = AL∗. (17)

Although the solutions of (E′) and (E′∗) may look complex-valued in the Fourier-Laplace
representation, remember that they must be always real as far as the initial data ũ0 and ζ0

are real (ũ0 = ũ0 and ζ0 = ζ0).
The linear waves and their frequencies respectively correspond to the eigenfunctions and

the eigenvalues of the linear operator L. Since fluids and plasmas have infinite degree-
of-freedom, the spectrum of L generally includes the continuous spectrum as well as the
point (or discrete) spectrum. We will discuss wave energy for both kinds of spectra in this
section. However, it must be remarked that the spectral decomposition of the non-selfadjoint
operator L in functional space is mathematically nontrivial. For example, the choice of the
functional space as the domain of L depends on the smoothness of the equilibrium fields in
a complicated manner. We leave this subtle problem for future works which would be more
detailed and math-oriented. In this work, we shall utilize the Laplace transform in time
and apply the hyperfunction theory [30], which can deal formally with the singularity of the
resolvent operator, (Ω − L)−1, without consideration of the subtlety of the domain of L.

Let U(Ω) and Z(Ω) (Ω ∈ C) be the solutions of

(Ω − L)U(Ω) = iũ0, (18)

(Ω − L∗)Z(Ω) = iζ0. (19)

The spectrum Sp(L) ⊂ C of L is then characterized by the singularities of U(Ω) on the
complex Ω-plane;

Sp(L) = {ω ∈ C : U(Ω) = i(Ω − L)−1ũ0 is not regular at Ω = ω}. (20)



8

Similarly, the singularities of Z(Ω) correspond to the spectrum Sp(L∗), which is generally

known to be the complex conjugate of Sp(L); Sp(L) = Sp(L∗). Note that U(Ω) [or Z(Ω)]
is nothing but the double-sided Laplace transform of ũ(t) [or ζ(t)], which is valid for all,
positive and negative, times, namely,

U(Ω) =

∫ ∞

0

ũ(t)eiΩtdt for =(Ω) > sup
ω∈Sp(L)

[=(ω)], (21)

U(Ω) =

∫ −∞

0

ũ(t)eiΩtdt for =(Ω) < inf
ω∈Sp(L)

[=(ω)], (22)

where =(◦) denotes the imaginary part. The inverse of this transform is especially called
the Dunford-Taylor integral (see Ref. 31).

When the initial data is restricted by the assumption (A), the resultant solution may not
include all eigenmodes and, hence, its spectrum is possibly a subset of Sp(L), which will be
denoted by σ ⊂ Sp(L).

Lemma 3. Let ũ(t) be the solution of (E) under the assumption (A). Then, the spectrum
σ ⊂ Sp(L) of ũ(t), defined by

σ = {ω ∈ C : AZ(Ω) = i(Ω − L)−1Aζ0 is not regular at Ω = ω}, (23)

satisfies σ ⊂ Sp(L∗) and σ = σ = −σ = −σ.

Proof. By operating A on the both sides of (19) and using the property LA = AL∗, we get

(Ω − L)AZ(Ω) = iAζ0 = iũ0, (24)

and the Laplace transform of ũ(t) turns out to be U(Ω) = AZ(Ω). Now, σ is identified as
the set of Ω ∈ C at which AZ(Ω) is not regular for some ζ0. All singularities of AZ(Ω)
necessarily comes from that of Z(Ω), which implies σ ⊂ Sp(L∗).
(Proof of σ = σ) For any ω ∈ σ, there exist some ζ1, ζ2 ∈ L2 such that a function f(Ω) :=〈
ζ1, (Ω − L)−1iAζ2

〉
is not regular at Ω = ω. Using LA = AL∗ again, this function can be

rewritten as

f(Ω) =
〈
(Ω − L)−1iAζ1, ζ2

〉
. (25)

Since this expression is not regular at Ω = ω too, it proves that ω ∈ σ and, hence, σ = σ.
(Proof of σ = −σ) By taking the complex conjugate of (Ω−L∗)Z(Ω) = iζ0 and then replacing
Ω by −Ω, we get

(Ω − L∗)Z(−Ω) = iζ0, (26)

where we used L∗ = −L∗ and ζ0 = ζ0. It follows from (19) that Z(Ω) satisfies Z(Ω) = Z(−Ω)
and, hence, σ = −σ.

The spectrum of HD and MHD waves is composed of the point spectrum σp and the
continuous spectrum σc; σ = σp∪σc. In this paper, we assume that the continuous spectrum
lies on the real axis, σc ⊂ R, as is common with ideal fluids and plasmas. In addition, all
point spectra are supposed to be semi-simple for simplicity.
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The solution ũ(t) is expressed by the Dunford-Taylor integral (or the double-sided inverse
Laplace transform),

ũ(t) = − 1

2π

∮
Γ(σ)

U(Ω)e−iΩtdΩ, (27)

where the path of integration Γ(σ) encircles the all spectrum σ in the counterclockwise
direction as illustrated in Figure 1(a). This Γ(σ) can be analytically deformed into the
neighborhood of each point and continuous spectra as in Figure 1(b). Since the semi-simple
point spectra ωj ∈ σp, j = 1, 2, . . . , appear as the poles of the first order in the Ω-plane, the
residue theorem yields the corresponding eigenfunctions of L and L∗, denoted respectively
by

ˆ̃u(ωj) := − 1

2π

∮
Γ(ωj)

U(Ω)dΩ, (28)

ζ̂(ωj) := − 1

2π

∮
Γ(ωj)

Z(Ω)dΩ. (29)

As for the continuous spectrum σc ⊂ R, the path of integration is deformed into the two
paths that run parallel to σc at the slightly upper and lower sides;

− 1

2π

∮
Γ(σc)

U(Ω)dΩ = lim
ε→0

1

2π

∫
σc

[U(ω + iε) − U(ω − iε)] dω.

Hence, it is reasonable to define the generalized eigenfunction for ω ∈ σc by

ˆ̃u(ω) :=
1

2π
[U(ω + i0) − U(ω − i0)] , (30)

ζ̂(ω) :=
1

2π
[Z(ω + i0) − Z(ω − i0)] . (31)

This definition of ˆ̃u(ω) is consistent with the Fourier transform of ũ(t) according to Sato’s

hyperfunction theory [30] (see also the Appendix of Ref. 32). The eigenfunction ˆ̃u(ω) for
the continuous spectrum ω ∈ σc is therefore a generalized (or singular) function. This fact
has been pointed out in many literatures; for example, see Case [33, 34], Sedláček [35] and
Tataronis [36].

Since we have U(Ω) = AZ(Ω) under the assumption (A), the following relation is satisfied;

ˆ̃u(ω) = Aζ̂(ω) for ω ∈ σp ∪ σc. (32)

While A is usually a differential operator, this relation holds even for ω ∈ σc in the sense of
hyperfunction (note that hyperfunctions are infinitely differentiable).

We must remark that the eigenfunctions we defined above are not normalized, that is,
the amplitudes of the eigenmodes are included in the definition of {ˆ̃u(ω) : ω ∈ σ}. Correctly
speaking, they must be called the projections of ũ0 into the eigenspaces. Nevertheless, the
normalization does not seem to be essential in the present case because the eigenfunctions
are non-orthogonal to each other due to the non-selfadjointness of L and, furthermore, they
may not be square integrable as for the continuous spectrum.

The wave action defined below, without normalizing the amplitude, is found to be more in-
sightful. Although the eigenfunctions {ˆ̃u(ωj)} for point spectra ωj ∈ σp are non-orthogonal,
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ℑ(Ω)

ℜ(Ω)

Γ(σ)

ℑ(Ω)

ℜ(Ω)

Γ(ωj)

Γ(σc)

(a) (b)

FIG. 1: Path of the Dunford integration

the dual basis is provided by the eigenfunctions {ζ̂(ωj)} of the adjoint operator L∗. As is
well known from linear algebra, we have the following orthogonality,〈

ζ̂(ωj), iAζ̂(ωl)
〉

=
〈
ζ0, iAζ̂(ωj)

〉
δjl =: µp(ωj)δjl for ωj, ωl ∈ σp, (33)

where δjl denotes the Kronecker delta. We call the quantities µp(ωj), j = 1, 2, . . . , wave
actions since they will prove to be the action variables of the eigenmodes. The magnitude
of µp(ωj) depends on the square of the corresponding modal amplitude and measures the
activity of the wave. The sign of µp(ωj) can be either positive or negative (if the symmet-
ric operator, iA, is indefinite), which is of particular interest in the bifurcation theory of
Hamiltonian systems [5, 6]. In this work, we also define the action µc(ω) for the continuous
spectrum similarly as follows.〈

ζ̂(ω), iAζ̂(ω′)
〉

=
〈
ζ0, iAζ̂(ω)

〉
δ(ω − ω′) =: µc(ω)δ(ω − ω′) for ω, ω′ ∈ σc, (34)

where δ(ω−ω′) denotes the Dirac delta function. While this definition looks straightforward,

the treatment of the hyperfunctions such as ζ̂(ω) and δ(ω−ω′) requires some mathematical
justification. The orthogonality between singular eigenfunctions has been claimed in several
works [15, 24, 33], while the proof requires laborious calculations depending on the problems.
Here, we present a lemma that generally ensures this orthogonality as follows.

Lemma 4. Suppose that the operator L has a real spectrum σ ⊂ R. Let ũ(t) and ζ(t) be,

respectively, the solutions of (E′) and (E′∗). Then, the generalized eigenfunctions, ˆ̃u(ω) and

ζ̂(ω), defined in (30) and (31) satisfy〈
ˆ̃u(ω), ζ̂(ω′)

〉
= δ(ω − ω′)

〈
ũ0, ζ̂(ω)

〉
= δ(ω − ω′)

〈
ˆ̃u(ω), ζ0

〉
, (35)

for ω, ω′ ∈ σ.

The proof of this lemma according to the hyperfunction theory is given in the appendix B.
The above spectral decomposition and the orthogonality theorem are applied to the

theorem 2, which enables us to define wave energy as follows.
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Theorem 5. Let ũ(t) be a solution of (E) under the assumption (A). If the spectrum σ
is composed of semi-simple point spectra σp = {ωj ∈ C : j = 1, 2, . . . } and real continuous
spectrum σc ⊂ R, the solution is represented by

ũ(t) =
∑

ωj∈σp

ˆ̃u(ωj)e
−iωjt +

∫
σc

ˆ̃u(ω)e−iωtdω, (36)

and the energy of perturbation δ2H = 〈ũ(t), ∂tζ(t)〉 =const. is decomposed into the energy
of waves,

δ2H =
∑

ωj∈σp

<[ωjµp(ωj)] +

∫
σc

ωµc(ω)dω, (37)

where the real part (<) needs to be taken when ωj is complex.

Thus, we saw that the wave energy is generally expressed by the multiplication of the
wave frequency and the wave action, regardless of whether the wave frequency (namely, the
spectrum) is discrete or continuous. This fact is originally stemming from the assumption
(A), under which the linear perturbations behave like canonical variables.

In general, the point spectra {ωj} may not be semi-simple if some of them are degenerated.
Since the generator L of (E′) is non-selfadjoint, such multiple eigenvalues may constitute a
nilpotent in the Jordan canonical form of L (see, for example, Ref. 31), where U(Ω) includes
a multiple pole (Ω − ωj)

−n, n ≥ 2, and the solution exhibits secular growth tn−1e−iωjt. As
was discussed by MacKay [6] in finite-dimensional Hamiltonian systems, this situation can
be associated with marginal state of the Krein collision. However, Jordan’s theory is not
established for a continuous spectrum of non-selfadjoint operator. The solution stemming
from the hydrodynamic continuous spectrum is still nontrivial when some degeneracy of
spectra occurs on it [32, 37]. In Theorem 5, this difficulty remains in the singularity of ˆ̃u(ω)
for ω ∈ σc which is highly complicated in practice, and the counterpart of Jordan’s theory
is yet to be explored for infinite-dimensional systems.

Before ending this section, we introduce another expression for the wave action which
manifests a link with the dispersion relation. Let us define a linear operator E(Ω) : L2 → L2

by

E(Ω) = i(Ω − L)A, (38)

with Ω ∈ C being a complex parameter. A symmetric property E∗(Ω) = E(Ω) follows from
A = −A∗ and LA = AL∗. In this work, we will refer to the equation (24) or

E(Ω)Z(Ω) = −ũ0, (39)

as symmetric response equation, for the solution Z(Ω) represents the frequency response
to some (kinematically accessible) initial data ũ0. If our problem was a system of finite
degrees of freedom, the space L2 would be a finite-dimensional vector space and E(Ω) be
a matrix of numbers. Then, the dispersion relation would be given by the determinant,
D(Ω) = det|E(Ω)| = 0. However, since we are considering the system of infinite degrees of
freedom, E(Ω) is generally a differential operator and the continuous spectrum shows up. It
is no longer possible to obtain the dispersion relation algebraically. We, therefore, introduce
generalized dispersion relation as follows.
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Proposition 6. Define the generalized dispersion relation D : C × L2 × L2 → C as

D(Ω, ζ1, ζ2) :=
〈
ζ1, E(Ω)ζ2

〉
. (40)

Then, the wave actions for a semi-simple point spectrum ωj ∈ σp and real continuous spec-
trum ω ∈ σc are, respectively, given by

µp(ωj) =
1

2πi

∮
Γ(ωj)

D(Ω, Z(Ω), Z(Ω))dΩ, (41)

µc(ω) =
i

2π

[
lim

Ω→ω+i0
D(Ω, Z(Ω), Z(Ω)) − lim

Ω→ω−i0
D(Ω, Z(Ω), Z(Ω))

]
. (42)

While this proposition is straightforward from the definitions of µp and µc, the above
expressions will play an important role in the subsequent sections. Using a trivial relation
∂E/∂Ω = iA, one may write

µp(ωj) =

〈
ζ̂(ωj),

∂E
∂Ω

ζ̂(ωj)

〉
=

∂D

∂Ω

(
ωj, ζ̂(ωj), ζ̂(ωj)

)
, (43)

which is similar to the conventional formula (2). This relationship between the wave action
and the dispersion relation will turn out to be universal for a point spectrum. On the
contrary, another rule (42) must be applied to the case of a continuous spectrum. Indeed,
the result of Balmforth and Morrison [15] will be recovered by using (42) in Sec. V.

IV. MAGNETOHYDRODYNAMIC WAVES

In this section, we apply the general theorems discussed so far to the linearized MHD
equation. The theorem 2 is worthwhile not only for formulating the energy of perturbation
but also for reducing the equation to a simpler one. Note that, under the assumption (A),
the linearized equation (E) for the MHD case can be reduced to the equation derived by
Frieman and Rotenberg [19], which is easier to be solved especially when the mean flow is
absent (or uniform). Let u = (M ,B, ρ, s)T denote the mean fields and M = ρv. Since
the theorem 2 assures ũ(t) = Aζ(t) for all t > 0, the corresponding relations, similar to

(7)-(10), holds between ũ = (M̃ , B̃, ρ̃, s̃)T and ζ = (ξ, η, α, β)T . It is remarkable that the
ξ-component of (E∗) can be written as

∂tξ + (v · ∇)ξ − (ξ · ∇)v = V(ζ), (44)

where we defined an operator V : g → X, for later use, as

V(ζ) := ξ × (∇× v) − 1

ρ
B × (∇× η) −∇(ξ · v + α) +

β

ρ
∇s. (45)

By noting that ṽ(t) = V(ζ(t)) holds according to ũ(t) = Aζ(t) [see (7)], the variable ξ(t) ∈ X
automatically agrees with the conventional definition of the Lagrangian displacement field,
which is the displacement vector field of the fluid particle orbits [19]. Therefore, the relations

B̃ = ∇ × (ξ × B), ρ̃ = −∇ · (ρξ) and s̃ = −ξ · ∇s implies that magnetic field, mass
and entropy are frozen in the fluid particle motion, and the topological structure of the
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mean fields is preserved for this perturbation [38]. Substituting these relations into the M̃ -
component of (E), we can eliminate η, α and β from the evolution equation and reproduce
the Frieman-Rotenberg equation for ξ ∈ X with restricted initial data;

ρ∂2
t ξ + 2ρ(v · ∇)∂tξ = Fξ,

(∂tξ)(0) = −2(v · ∇)ξ0 − v × (∇× ξ0)

−ρ−1B × (∇× η0) −∇α0 + ρ−1β0∇s,

ξ(0) = ξ0.

(46)

The so-called Force operator, F : X → X, is a selfadjoint operator derived in Ref. 19 as

Fξ := ∇(ρc2
s∇ · ξ + ξ · ∇p − B · Q) + (B · ∇)Q + (Q · ∇)B

+[∇ · (ρξ)](v · ∇)v − ρ(v · ∇)R − ρ(R · ∇)v, (47)

where Q = ∇× (ξ × B), R = (v · ∇)ξ − (ξ · ∇)v and cs =
√

∂p/∂ρ. Our assumption (A)
based on the Hamiltonian structure indicates that the initial data for ∂tξ should be somewhat
restricted as above such that the perturbation remains kinematically accessible. If (∂tξ)(0)
were arbitrary, no restriction would be imposed on the initial velocity perturbation ṽ0, which
would violate the conservation laws related to the circulation theorem [20]. Evidently, the
cross helicity

∫
v ·Bd3x [or the helicity

∫
v · (∇×v)d3x in the HD case] would be perturbed

by it.
The energy of kinematically accessible perturbation δ2H, defined by Theorem 2, also

agrees with the expression of energy derived in Ref. 19 (see Ref. 20 for detailed comparison).
The positive definiteness of the potential energy, U(ξ) = −

∫
ξ ·Fξd3x ≥ 0, gives a sufficient

stability condition. This criterion works very well for static equilibria (v = 0), for which
(46) is analogous to Newton’s second law. The energy principle [39] claims that a static
equilibrium is stable if and only if the potential energy is positive definite. Linear instabil-
ities always emerge from the zero eigenvalue of the selfadjoint operator F , whose spectral
decomposition can be discussed by the well-established methods (like the Von Neumann
theorem) in the quantum mechanics.

However, Hameiri [20, 40] showed that the potential energy (and also the total energy
δ2H) of perturbation often turns out to be indefinite in the presence of the basic flow v. The
basic flow v, moreover, plays the role of the gyroscopic term [27] 2ρ(v ·∇)∂tξ in (46), which
allows the existence of neutrally stable modes with negative energy. These facts imply that
the energy stability criterion is rather difficult to be met for flowing plasmas. It then seems
to be important to evaluate the wave energy (or action) for the purpose of predicting and
understanding various instabilities.

Now, let us consider the wave energy for the MHD case. The reduction to the Frieman-
Rotenberg equation (46) is similarly applicable to the symmetric response equation (39).
By denoting the Laplace transform of ξ(t) by Ξ(Ω), the first row of (19) reads

ΩΞ(Ω) + i(v · ∇)Ξ(Ω) − i(Ξ(Ω) · ∇)v − iV(Z(Ω)) = iξ0, (48)

Using this expression, one can eliminate V(Z(Ω)) from the first row of (39). The resultant
equation of Ξ(Ω) is nothing but the Laplace-transformed Frieman-Rotenberg equation,

EFR(Ω)Ξ(Ω) = −m0(Ω), (49)
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where the operator EFR(Ω) is defined by

EFR(Ω)Ξ(Ω) := Ω2ρΞ(Ω) + 2iΩρ(v · ∇)Ξ(Ω) + FΞ(Ω). (50)

The right hand side of (49) has a nontrivial expression,

m0(Ω) :=ρ[V(ζ0) − iΩξ0 + (v · ∇)ξ0 + (ξ0 · ∇)v], (51)

= − iΩρξ0 − ρv × (∇× ξ0) − B × (∇× η0) − ρ∇α0 + β0∇s, (52)

reflecting that the initial data was restricted by the assumption (A).
Since the operator EFR(Ω) again satisfies E∗

FR(Ω) = EFR(Ω) in terms of the inner bracket∫
◦ · ◦d3x of the reduced functional space, one can regard (49) as a new symmetric response

equation and define

DFR(Ω, ξ1, ξ2) =

∫
ξ1 · EFR(Ω)ξ2d

3x. (53)

Theorem 7. In the MHD case, the wave action is represented by

µp(ωj) =i

∫
ξ̂(ωj) · m0(ωj)d

3x, (54)

=
∂DFR

∂Ω

(
ωj, ξ̂(ωj), ξ̂(ωj)

)
, (55)

=

∫
ξ̂(ωj) · 2ρ[ωj ξ̂(ωj) + i(v · ∇)ξ̂(ωj)]d

3x.

for a semi-simple point spectrum ωj ∈ σp and

µc(ω) =i

∫
ξ̂(ω) · m0(ω)d3x, (56)

for a real continuous spectrum ω ∈ σc ⊂ R, where the eigenfunction ξ̂(ωj) and the general-

ized eigenfunction ξ̂(ω) of the system (46) are generated by Ξ(Ω) in the same manner as,
respectively, (28) and (30).

Proof. It is essential to notice the following relation,∫
Ξ(Ω) · m0(Ω)d3x =

∫
Ξ(Ω) · ρ[V(ζ0) − iΩξ0 + (v · ∇)ξ0 + (ξ0 · ∇)v]d3x,

=

∫
Ξ(Ω) · ρ[V(ζ0) − ξ0 × (∇× v)]d3x

+

∫
[iΩΞ(Ω) − (v · ∇)Ξ(Ω) + (Ξ(Ω) · ∇)v] · ρξ0d

3x,

(integration by parts)

=
〈
Z(Ω),Aζ0

〉
−

∫
ρ|ξ0|2d3x, (use of (48) and integration by parts)

or, equivalently,

DFR(Ω,Ξ(Ω),Ξ(Ω)) = D(Ω, Z(Ω), Z(Ω)) +

∫
ρ|ξ0|2d3x. (57)
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One may, therefore, replace D(Ω, Z(Ω), Z(Ω)) by DFR(Ω,Ξ(Ω),Ξ(Ω)) in the formulae (41)
and (42), because the term

∫
ρ|ξ0|2d3x independent of Ω does not affect the results. Since

m0(Ω) depends on Ω analytically, these formulae yield (54) and (56) respectively.
To derive another expression (55), we invoke the fact that Ξ(Ω) has semi-simple poles at

Ω = ωj and Ω = ωj (from Lemma 3). The Laurent expansion at these points must be

Ξ(Ω) =
iξ̂(ωj)

Ω − ωj

+ . . . and Ξ(Ω) =
iξ̂(ωj)

Ω − ωj

+ . . . , (58)

where the dots (. . . ) represent the analytic parts of expansions. By expanding EFR(Ω) also
at Ω = ωj, we get

DFR(Ω,Ξ(Ω),Ξ(Ω)) =

〈
ξ̂(ωj)

Ω − ωj

,

[
EFR(ωj) + (Ω − ωj)

∂EFR

∂Ω
(ωj)

]
ξ̂(ωj)

Ω − ωj

〉
+ . . . ,

=

〈
ξ̂(ωj),

∂EFR

∂Ω
(ωj)ξ̂(ωj)

〉
1

Ω − ωj

+ . . . ,

where we used the fact that ξ̂(ωj) is an eigenfunction, EFR(ωj)ξ̂(ωj) = 0. By putting this
form into (41), the residue theorem leads to the required result (55).

Since both EFR(Ω) and m0(Ω) are regular with respect to Ω, the equation (49) and the
related dispersion relation DFR can be used anytime in place of (39). The wave energy for
a point spectrum ωj ∈ σp is now written by

ωj
∂DFR

∂Ω

(
ωj, ξ̂(ωj), ξ̂(ωj)

)
, (59)

which is similar to (2). Note that the differentiation of DFR with respect to Ω must be
done before substituting the eigenvalue and the eigenfunctions. The formula (55) is more
useful than (54) because it is symmetric and independent of initial data. For the continuous
spectrum, however, the same formula does not seem to be applicable. The singularity of
Ξ(Ω) at Ω = ω ∈ σc is far from a simple pole and varies depending on the profiles of mean
fields. We will seek the counterpart of the formula (55) for the continuous spectrum by
assuming a simple geometry later.

It is obvious from (55) that, in the absence of basic flow (v = 0), the wave action of

any neutrally stable wave ωj ∈ R is simply µp(ωj) = 2ωj

∫
ρ|ξ̂(ωj)|2d3x. Since the sign of

the wave action corresponds to that of ωj, any linear instability occurs through the zero
eigenvalue ωj = 0 (static bifurcation). In other words, the Hopf bifurcation in fluids and
plasmas is necessarily attributed to the presence of basic flow.

A. Slab equilibria

Further reduction of variables can be performed if the equilibrium state has a specific
symmetry. As the simplest (but fundamental) example, we restrict our analysis to the slab
geometry, i.e. the equilibrium is inhomogeneous only in the x direction as follows,

v = (0, vy(x), vz(x)), B = (0, By(x), Bz(x)), ρ(x) and s(x) (60)
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on a bounded domain x ∈ [x1, x2], where the boundary walls are located at x = x1, x2 and
both flow and magnetic field are always tangential to them. Without external force, this is
indeed an equilibrium state if the total pressure ptotal := p(ρ, s) + B2/2 satisfies

p′total(x) = 0, (61)

where the prime (′) denotes the x-derivative of the equilibrium fields.
For fully three-dimensional perturbations, it is useful to adopt the spatial Fourier trans-

form in the y and z directions;

ξ(x, y, z, t) =
1

2π

∫ ∫
ξ̌(x, ky, kz, t)e

i(kyy+kzz)dkydkz. (62)

Our task is to find the (x, t)-dependences of ξ̌(x, ky, kz, t) for fixed wavenumbers ky and kz.

To simplify the notations, we will denote this ξ̌(x, ky, kz, t) by ξ(x, t), omitting the check (̌ )
and the (ky, kz)-dependences, which does not cause confusion in many cases. With respect
to the fixed wavenumber vector k := (0, ky, kz), we introduce the parallel and perpendicular
components of ξ as follows.

ξ‖ :=
k · ξ

k
, ξ⊥ :=

(ex × k) · ξ
k

, (63)

where k = |k| and ex = (1, 0, 0). In this manner, we shall use (x, ‖,⊥) components rather
than (x, y, z).

Let Ξ(x, Ω) be the Laplace transform of ξ(x, t) again. We can algebraically eliminate
Ξ‖ and Ξ⊥ from (49) after the spatial Fourier transformation. As is shown generally in
Appendix C, such the elimination of variables always results in a new symmetric response
equation;

EI(Ω)Ξx(Ω) = −m0I(Ω), (64)

with the property E∗
I (Ω) = EI(Ω) in terms of the one-dimensional inner product

∫ x2

x1
◦ ◦ dx.

The left hand side of this equation corresponds to the well-known eigenvalue problem of the
Sturm-Liouville type

EIΞx := ρΠAΞx + ∂x

[
ρ
ΠSΠA

Πsf

∂xΞx

]
, (65)

which was derived by Hain and Lüst [21], and Goedbloed [22] for the case of static equi-
librium [but the generalization to the steady equilibrium (60) is straightforward]. The right
hand side of (64) represents the initial data which can be computed as

m0I := m0x − ik

[
(ΠS − Πvb

2
‖)m0‖ − Πvb‖b⊥m0⊥

Πsf

]′

. (66)

In the above expressions, we defined some functions of x and Ω as follows.

Πv(x, Ω) = [Ω − kv‖(x)]2, (67)

ΠA(x, Ω) = Πv(x, Ω) − ω2
A(x), (68)

ΠS(x, Ω) =
[
b2(x) + c2

s(x)
] [

Πv(x, Ω) − ω2
S(x)

]
, (69)

Πsf (x, Ω) = Π2
v(x, Ω) − k2ΠS(x, Ω)

= [Πv(x, Ω) − ω2
s(x)][Πv(x, Ω) − ω2

f (x)], (70)



17

where b = B/
√

ρ denotes the Alfvén speed and cs =
√

∂p(ρ, s)/∂ρ|s the sound speed. The
following characteristic frequencies are conventional,

ω2
A = k2b2

‖ : Alfvén frequency,

ω2
S = k2

b2
‖c

2
s

b2 + c2
s

: slow magneto-sonic frequency,

ω2
s,f =

k2

2

[(
b2 + c2

s

)
±

√
(b2 + c2

s)
2 − 4b2

‖c
2
s

]
: slow (−) and fast (+) turning point frequencies.

The functions ΠA, ΠS and Πsf may vanish when Πv is equal to the square of these frequencies.
The set of ω ∈ R for which there exists x0 ∈ [x1, x2] satisfying either ΠA(x0, ω) = 0 or
ΠS(x0, ω) = 0 corresponds to the continuous spectrum because such a point x0 is a regular
singular point of the ordinary differential equation (64). On the other hand, the singular
point x0 satisfying Πsf (x0, ω) = 0 is known to be apparent [41], that is, the solution Ξx(x, Ω)
remains regular at such (x0, ω). The continuous spectrum σc consists of

Alfvén continuous spectrum σA = {kv‖(x) ± ωA(x) ∈ R : x ∈ [x1, x2]}, (71)

Slow continuous spectrum σS = {kv‖(x) ± ωS(x) ∈ R : x ∈ [x1, x2]}, (72)

which may overlap each other and may fold by itself depending on the profiles of the mean
fields and the wave number k. Moreover, if either b‖(x) or b⊥(x) vanishes somewhere in
[x1, x2], some frequencies out of ωA(x), ωS(x), ωs(x) and ωf (x) would degenerate and yield
a different type of singularity in the equation [even in the incompressible case, these contin-
uous spectra exhibit a nontrivial singularity [32] when b‖(x) = 0]. We are planning detailed
and systematic investigation of the MHD continuous spectrum in an upcoming paper, ac-
companied with some physical considerations. In this paper, we focus on the typical case,
b‖(x) 6= 0 and b⊥(x) 6= 0 for all x, where the above four frequencies are separated.

Again, let us define the generalized dispersion relation for (64) by

DI(Ω, ξx1, ξx2) =

∫ x2

x1

ξx1EI(Ω)ξx2dx for ∀ξx1, ξx2. (73)

The following theorem holds in the same manner as Theorem 7.

Theorem 8. For the slab MHD equilibria, the wave action for a semi-simple point spectrum
ωj ∈ σp is given by

µp(ωj) = i

∫ x2

x1

ξ̂x(ωj)m0I(ωj)dx, (74)

=
∂DI

∂Ω

(
ωj, ξ̂x(ωj), ξ̂x(ωj)

)
, (75)

=

∫ x2

x1

2ρ(ωj − kv‖)
[
ξ̂x(ωj)ξ̂x(ωj) + k2N(x, ωj)∂xξ̂x(ωj)∂xξ̂x(ωj)

]
dx, (76)

where

N(x, ωj) =
b2
‖b

2
⊥Π2

v +
(
ΠS − Πvb

2
‖

)2

Π2
sf

∣∣∣∣∣∣∣
Ω=ωj

. (77)
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If b‖(x) 6= 0 and b⊥(x) 6= 0 for all x, the wave action for continuous spectrum ω ∈ σc is
given by

µc(ω) = i

∫ x2

x1

ξ̂x(ω)m0I(ω)dx. (78)

Proof. The elimination of variables is discussed in Appendix C in a general manner. One can
identify (49), being Fourier-transformed in y and z directions, as (C7) by the correspondences
Za = (Ξx) and Zb = (Ξ‖, Ξ⊥)T . After the elimination, the equation (64) parallels (C10). The
dispersion relation DI is then related to DFR through the formula (C14), in which the term
〈χb, E−1

bb χb〉b is easily computed as∫ x2

x1

(
m0‖ m0⊥

)
· 1

ρΠsf

(
ΠA −k2b‖b⊥

−k2b‖b⊥ Πv − k2(b2
⊥ + c2

s)

)(
m0‖
m0⊥

)
dx. (79)

This expression is regular in terms of Ω except for the apparent singularities stemming from
Πsf = 0. Since the apparent singularities are isolated from the genuine singularities, ΠA = 0
and ΠS = 0, due to the assumption b‖, b⊥ 6= 0, we can use DI instead of DFR (and also D)
when calculating the wave actions by (41) and (42). The remaining part of the proof is the
same as Theorem 7. The computation of the Ω-derivative in (75) results in (76).

For a real point spectrum ωj ∈ R, the integrand of (76) is positive except for ωj −kv‖(x).
It follows that the wave action is positive (respectively, negative) if the phase velocity ωj/k
of the wave is faster (respectively, slower) than v‖(x), i.e. the velocity of the basic flow
along the k direction, everywhere on [x1, x2]. When the Hopf bifurcation is concerned,
linear instability occurs through the Krein collision (namely, coalescing on the real axis and
splitting toward the upper and lower half planes) between a pair of eigenvalues with positive
and negative actions. Such the collision is possible only when ωj is included in the region
{kv‖(x) ∈ R : x ∈ [x1, x2]}, from which any unstable eigenvalue =(ωj) > 0 must emerge.

However, we must recall that there exists the continuous spectrum on the real axis. It
seems that, besides the conventional Krein collision, degeneracy between point and continu-
ous spectra or one between two continua may cause linear instability as was pointed out by
Balmforth and Morrison [15]. To derive the sign of µc(ω) requires some careful treatment
of the singularity. We demonstrate this technique for the hydrodynamic case in the next
section. Our result includes that of Ref. 15 and the derivation becomes more straightforward
by means of the hyperfunction theory. The similar technique probably applies to the MHD
continuous spectrum, which will be reported in the upcoming paper.

V. PARALLEL SHEAR FLOW

We can recover the hydrodynamic case easily by putting B = 0 in the MHD case. The
equation EI(Ω)Ξx(Ω) = −m0I(Ω) that was given in (64) reduces to

EIΞx = ρΠvΞx + ∂x

[
ρc2

sΠv

Πv − k2c2
s

∂xΞx

]
, (80)
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and

m0I = m0x − ik

[
c2
sm0‖

Πv − k2c2
s

]′

(81)

= −iρ(Ω − kv‖)ξ0x − (ρv · ξ′
0 + ρα′

0 − β0s
′) − k

[
ρc2

s(Ωξ0‖ + kv⊥ξ0⊥ + kα0)

Πv − k2c2
s

]′

. (82)

The singularity caused by Πv − k2c2
s = 0 in this equation is again apparent. Notice that

both the Alfvén and slow continuous spectra degenerate into

σc = {kv‖(x) ∈ R : x ∈ [x1, x2]}, (83)

in the hydrodynamic case and the genuine singularity is caused only by Πv = 0. The theorem
8 holds in the limit of B = 0, where the function N(x, ωj) is simplified to

N(x, ωj) =
c4
s

[(ωj − kv‖)2 − k2c2
s]

2
. (84)

The proof, however, needs a little care since the expression (79) now becomes∫ x2

x1

(
m0‖ m0⊥

)
· 1

ρ

( 1
Πv−k2c2s

0

0 1
Πv

)(
m0‖
m0⊥

)
dx. (85)

and the singularity of the term 1/Πv coincides with the continuous spectrum σc. Neverthe-
less, we find that this expression is still regular with respect to Ω (except for the apparent
singularity), by noting the fact that the expression m0⊥(Ω) = −iρ(Ω−kv‖)ξ0⊥ is proportional
to (Ω − kv‖) and the singularity 1/Πv in (85) will be always canceled out.

Now, let us seek another expression of µc(ω) that would be more useful than (78) for dis-
cussing its sign. The result hinges on the suitable transformation of variable. We introduce
a new variable Φ(Ω) as

Ξx(Ω) =
Φ(Ω)

Ω − kv‖(x)
. (86)

In Appendix C, we also show how this kind of transformation acts on the equation. Since
the transformation operator T (Ω) = [Ω − kv‖(x)]−1 satisfies the condition T ∗(Ω) = T (Ω),
it necessarily produces a new symmetric response equation;

EII(Ω)Φ(Ω) = −m0II(Ω), (87)

where

EIIΦ :=

[
ρ +

c2
s(ρkv′

‖)
′

(Πv − k2c2
s)(Ω − kv‖)

+ ρcs

2cs(kv′
‖)

2 − c′sΠ
′
v

(Πv − k2c2
s)

2

]
Φ + ∂x

[
ρc2

s

Πv − k2c2
s

∂xΦ

]
, (88)

and

m0II :=
m0I

Ω − kv‖
. (89)
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Although this equation looks more formidable than its original form, the purpose of the
variable transformation is to regularize the singularity of Ξx(Ω) appropriately. For a given
ω ∈ σc, there is (at least) one regular singular point x = xc such that ω−kv‖(xc) = 0, which
is so-called the critical layer. Recall that the behavior of the solution in the neighborhood
of xc is obtained by the Frobenius method of expansion [42, 43] and, thereby, Ξx(x, Ω) is
found to be a linear combination of two independent solutions, say,

ξ1(x, Ω) = A0 + A1s + A2s
2 + . . . , (90)

ξ2(x, Ω) = ξ1(x, Ω) ln s + B0s
−1 + B1 + B2s + . . . . (91)

where s ∈ C is the complex continuation of the real variable x−xc; we have <[s] = x−xc and
Ω−kv‖(x) = −kv′

‖(xc)s+O(s2). Except for some special cases (such as v′
‖(xc) = 0), Ξx(x, Ω)

includes the term 1/s, which implies that the singular eigenfunction ξ̂x(x, ω) includes the
delta function δ(ω − kv‖(x)) and the principal value of 1/(ω − kv‖(x)). We have therefore
transformed Ξx to Φ so that this singularity 1/s be regularized. It is interesting to note that
this idea is analogous to (58) for point spectra. Since the singularity of Φ is at worst s ln s,

the generalized eigenfunction φ̂ (given below) is a continuous function.
For this variable transformation, the formula (C3) in Appendix C is helpful and the wave

action can be represented in terms of φ̂ as follows.

Theorem 9. The wave action for the continuous spectrum σc = {kv‖(x)} is represented by

µc(ω) =
π2

k

∫ x2

x1

(ρv′
‖)

′δ(ω − kv‖)
[
|φ̂(ω)|2 + |φ̂†(ω)|2

]
dx

− 2π

∫ x2

x1

δ(ω − kv‖)<
{

φ̂†(ω)
[
(ρv⊥)′ξ0⊥ + ρ′(v‖ξ0‖ + α0) + s′β0

]}
dx, (92)

where the singular eigenfunction φ̂(ω) and its Hilbert transform φ̂†(ω) are, respectively, given
by

φ̂(ω) =
1

2π
[Φ(ω + i0) − Φ(ω − i0)], (93)

φ̂†(ω) =
1

2π
[Φ(ω + i0) + Φ(ω − i0)]. (94)

Proof. Note that the right most term of the formula (C14) will not be affected whenever we
apply any variable transformation T (Ω) satisfying T ∗(Ω) = T (Ω). Therefore, as we have
done repeatedly in this work, we may use a new generalized dispersion relation,

DII(Ω, φ1, φ2) =

∫ x2

x1

φ1EII(Ω)φ2dx, (95)

instead of D in (42). Before taking the limit of Ω → ω ± i0, we apply the formula (C3) to
this dispersion relation DII and obtain

µc(ω) =
1

2πi
lim

Ω→ω+i0

∫ x2

x1

[
F (Ω)[EII(Ω) − EII(Ω)]F (Ω) + G(Ω)[EII(Ω) − EII(Ω)]G(Ω)

+ G(Ω)[m0II(Ω) − m0II(Ω)] + [m0II(Ω) − m0II(Ω)]G(Ω)

]
dx, (96)
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where

F (Ω) :=
1

2
[Φ(Ω) − Φ(Ω)], (97)

G(Ω) :=
1

2
[Φ(Ω) + Φ(Ω)]. (98)

To estimate this limit, let us exploit the Plemelj formula (B7), which enables us to get

EII(ω + i0) − EII(ω − i0) = 2πi
(ρv′

‖)
′

k
δ(ω − kv‖), (99)

m0II(ω + i0) − m0II(ω − i0) = −2πiδ(ω − kv‖)[(ρv⊥)′ξ0⊥ + ρ′(v‖ξ0‖ + α0) + s′β0]. (100)

By noting that πφ̂(ω) = F (ω + i0) and also πφ̂†(ω) = G(ω + i0) are continuous functions,
the required result is immediately derived by substituting these expressions.

Since both the integrals in (92) include the delta function that may be rewritten as

δ(ω − kv‖(x)) =
1

|kv′
‖(xc)|

δ(x − xc), (101)

only the value of each integrand at x = xc is of interest to the calculation of µc(ω). We,
nevertheless, prefer the integral form (92) because of its simplicity and generality. For
instance, the critical layer xc is not always unique for each ω ∈ σc when the shear profile
v‖(x) is a non-monotonic function. The formula (92), without modification, can deal with
such cases of several critical layers.

We remark that our result corresponds to that of Balmforth and Morrison [15] by re-
stricting our problem to the incompressible 2D Euler equation, namely, by considering uni-
directional parallel flows

v = (0, vy(x), 0), ρ(x) = const. and s(x) = const., (102)

and two-dimensional perturbations, kz = 0 and ξ0⊥ ≡ 0. The incompressible limit (cs → ∞)

can be taken in the equation (87) and the eigenvalue problem EII(ω)φ̂(ω) = 0 corresponds
to the Rayleigh equation [44]. In this case, the second integral in the right hand side of
(92) vanishes and the sign of µc(ω) is determined solely by that of v′′

y(xc). As was pointed
out in Ref. 15, this result agrees with the conventional stability theories such as Rayleigh’s
inflection theorem [44] and Arnold’s energy criterion [1].

For compressible and fully three-dimensional perturbations, the sign of µc(ω) is not so
self-evident. We notice that this difficulty is attributed to the degeneracy of two continuous
spectra on σc. Recall that there were two kinds of continuous spectrum, σA and σS, in the
MHD case and they are now exactly overlapping due to the limit B → 0. We can indirectly
ensure this fact by choosing a certain initial data. For (ξ0, α0, β0) satisfying

(ρv⊥)′ξ0⊥ + ρ′(v‖ξ0‖ + α0) + s′β0 = 0, (103)

the wave action for ω ∈ σc becomes

µc(ω) =
π2

k

∫ x2

x1

(ρv′
‖)

′δ(ω − kv‖)
[
|φ̂(ω)|2 + |φ̂†(ω)|2

]
dx, (104)
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and the sign of µc(ω) coincides with that of (ρv′
‖)

′ at x = xc (i.e., sgn[µc(ω)] = sgn[(ρv′
‖)

′(xc)])

in the same way as the 2D Euler equation. On the other hand, for (ξ0, α0, β0) satisfying
ξ′0x + ikξ0‖ = 0,

v′
‖ξ0x + ik(v · ξ0 + α0) = 0,

ρv′′
‖ξ0x + ik(ρv′

⊥ξ0⊥ + s′β0) = 0,

(105)

we can prove, after some manipulations, that Φ(x, Ω) = iξ0x(x) is the exact solution of (87).
The wave action (92), then, becomes

µc(ω) = −1

k

∫ x2

x1

(ρv′
‖)

′δ(ω − kv‖)|ξ0x|2dx, (106)

whose sign is exactly opposite of the previous case (104). This another kind of a continuous
spectrum is provided by the (inviscid) Squire equation [43] for three-dimensional perturba-
tions. With this example, we have illustrated that the wave action for each ω ∈ σc can be
positive or negative depending on the initial data, which implies that there exist two overlap-
ping continuous spectra associated with the positive and negative wave actions. Therefore,
the energy of three-dimensional perturbation is by no means definite and, moreover, the
coalescence between spectra of positive and negative energy modes (like the marginally sta-
ble state of the Krein collision) is realized everywhere on the two continuous spectra. While
Krein’s bifurcation theory is not yet established for a continuous spectrum, it is highly possi-
ble that the two continuous spectra are marginally stable, because some external forces or the
deviation from the slab symmetry are known to cause three-dimensional local instabilities
(see the section II.5.G. of Ref. 2 and references therein).

Finally, we extend the Krein’s idea to the case of coalescence between point and contin-
uous spectra. The following argument is traced back to the findings of Briggs et al. [25],
though they were not aware of the viewpoint of energetics. We put emphasis on the ap-
pearance of the operator EII(ω + i0) − EII(ω − i0) in the expression of µc(ω) because it has
implications of possible bifurcation as follows.

Let ω0 ∈ R be a real point spectrum isolated from (but, close to) the continuous spectrum

σc = {kv‖(x)} as illustrated in Fig. 2a. The corresponding eigenfunction φ̂(ω0) satisfies the

eigenvalue problem EII(ω0)φ̂(ω0) = 0 and, of course, the dispersion relation,

DII(ω0, φ̂(ω0), φ̂(ω0)) =

∫ x2

x1

φ̂(ω0)EII(ω0)φ̂(ω0)dx = 0. (107)

In the present case, such the point spectrum can certainly exists as the acoustic wave. If ω0

is on the right side of σc as in Fig. 2a, its wave action µp(ω0) must be positive as was proved
generally in Theorem 8.

As is common in the bifurcation theory, we consider what happens when the mean flow
profile slightly changes from v‖(x) to v‖(x) + δv‖(x) such that ω0 enters the range of the
new continuous spectrum σc = {kv‖(x) + kδv‖(x)}. The operator EII(Ω), then, turns into
EII(Ω) + δEII(Ω), where δEII(Ω) would be no longer regular at Ω = ω0 due to ω0 ∈ σc.

Assume that the point spectrum ω0 moves to ω0 + δω after the change. When δω is
complex, the other point spectrum ω0 + δω must also exist and, hence, one may assume
=[δω] ≥ 0 without loss of generality. The eigenfunction φ̂(ω0) would slightly change into

φ̂(ω0) + δφ̂+ for ω0 + δω ∈ σp, (108)

φ̂(ω0) + δφ̂− for ω0 + δω ∈ σp, (109)
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FIG. 2: Coalescence between point and continuous spectra

in such a way that the dispersion relation again holds. As for ω0 + δω ∈ σp, it reads∫ x2

x1

[φ̂(ω0) + δφ̂−] [EII(ω0 + δω) + δEII(ω0 + δω)] [φ̂(ω0) + δφ̂+]dx = 0. (110)

The variations δω and δφ± are supposed to be small. We carry out the Taylor expansion as
follows,

EII(ω0 + δω) + δEII(ω0 + δω) = EII(ω0) +
∂EII

∂Ω
(ω0)δω + δEII(ω0 + i0) + . . . (111)

where the fact =[δω] ≥ 0 has been used. At the first order, the dispersion relation can be
written as ∫ x2

x1

φ̂(ω0)

[
∂EII

∂Ω
(ω0)δω + δEII(ω0 + i0)

]
φ̂(ω0)dx = 0. (112)

The same argument for the other point spectrum ω0 + δω ∈ σp yields∫ x2

x1

φ̂(ω0)

[
∂EII

∂Ω
(ω0)δω + δEII(ω0 − i0)

]
φ̂(ω0)dx = 0. (113)

By taking the difference of these expressions, we can estimate the imaginary part of δω as
follows.

=[δω] = −
1
2i

∫ x2

x1
φ̂(ω0)[δEII(ω0 + i0) − δEII(ω0 − i0)]φ̂(ω0)dx∫ x2

x1
φ̂(ω0)

∂EII

∂Ω
(ω0)φ̂(ω0)dx

, (114)

= −
π
k

∫ x2

x1
(ρv′

‖)
′δ(ω0 − kv‖)|φ̂(ω0)|2dx

µp(ω0)
, (115)
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The denominator exactly corresponds to the wave action µp(ω0) that the point spectrum
ω0 ∈ σp originally has. Since we know µp(ω0) > 0 in Fig. 2, we can predict how this eigenvalue
ω0 will deviate from the real axis by observing the sign of the numerator. Note that the
numerator has a similar expression to the first term of µc(ω0) given by (92) (namely, the wave
action of the continuous spectrum ω0 ∈ σc that appears after the change), because they are
derived from the same limit EII(ω+i0)−EII(ω−i0). While we found two kinds of continuous
spectrum containing opposite signs of the wave actions (104) and (106), only the former one
is related to the movement of the point spectrum (the latter one seems to be decoupled in
this setting). Let x = xc be the critical layer corresponding to ω0 ∈ σc. If this continuous
spectrum has negative wave action (ρv′

‖)
′(xc) < 0, there will be two point spectra ω0 + δω

and ω0 + δω representing, respectively, exponentially growing and damping waves (Fig. 2b).
Note that, apart from an infinite number of singular modes, these two modes originate from
only one neutral mode that is free from the critical layer. This phenomenon, so-called the
critical layer instability [23], was investigate by Iga [24] in a different configuration addressing
the two-layer problem of a geostrophic flow, where he evaluated the pseudomomentum (or
wave momentum) that corresponds to the wave action multiplied by the wave number in
our context. Only when (ρv′

‖)
′(xc) = 0, the point spectrum will remain on the real axis and

will be embedded in the continuous spectrum (Fig. 2c) [42].
It is remarkable that, if the continuous spectrum has positive wave action (ρv′

‖)
′(xc) > 0,

the assumption =(δω) ≥ 0 is violated, implying that the point spectrum will vanish from
the complex plane (Fig. 2d). Even in this case, the expression (115) has a special meaning,
namely, it indicates the Landau damping of the mode [25]. By the analytic continuation
of Φ(Ω) from the upper half plane into the lower one over the singularity of the continuous
spectrum σc [which is indeed a branch cut of Φ(Ω)], we can find a fictious point spectrum on
another Riemannian sheet as shown in Fig. 3. Although the genuine spectrum is still σc ⊂ R,
the inverse Laplace transform admits such the equivalent deformation of singularities (from
Fig. 2d to Fig. 3). Actually, the transient behavior stemming from σc exhibits the damping
mode predicted by (115),∫

σc

φ̂(ω)e−iωtdω =
[
φ̂(ω0) + δφ̂+

]
e−i(ω0+δω)t + O(t−2). (116)

This exponential behavior, so-called the Landau damping, will be eventually overwhelmed by
the long-term algebraic decay O(t−2) of the superposed singular modes [34, 45]. The Landau
damping of a vortical mode in incompressible shear flows was found by Briggs et al. [25],
and we saw that their result can be generalized to any neutral waves (including acoustic
waves) in compressible shear flows. The most striking observation that we made here is the
expression for the growth or damping rate =[δω] in (114) whose denominator and numerator
are, respectively, associated with the wave actions of the point and continuous spectra. It
seems that the formula (114) applies to more general cases not only to parallel shear flows.
Our demonstration suggests that the “Krein collision” between point and continuous spectra
may be generally classified in the same way as Fig. 2.

VI. SUMMARY

In this work, we provide a solid definition of wave energy starting with the noncanonical
Hamiltonian theory and applying the spectral analysis (or the Laplace transform) to the
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FIG. 3: Landau damping of the point spectrum

linearized system. We assumed in (A) that initial perturbations are kinematically accessible
from the unperturbed state (i.e. the perturbed state is accessible without violating all
kinematical conservation laws). Under this assumption, the linear perturbation ũ(t) remains
kinematically accessible for all t > 0 and there is an adjoint variable ζ(t) which is combined
with the linear solution through a mapping, ũ(t) = Aζ(t). While the dynamical system is
originally noncanonical, linear perturbations restricted in this way are endowed with many
canonical features. The energy of perturbation can be defined by δ2H = 〈ũ, ∂tζ〉, which is
indeed a constant of motion. When the perturbation is decomposed into eigenmodes, the
spectrum σ ⊂ C (i.e. complex frequencies of the eigenmodes) satisfies σ = σ = −σ = −σ like
canonical systems. In Theorem 5, the energy of each eigenmode is represented by the form
of (energy)=(frequency)×(action) in an analogous manner to the simple harmonic oscillator.
By generalizing the notion of dispersion relation appropriately, we could express the action
variable, or the wave action, in terms of it. This expression takes a different appearance
between for a point spectrum (41) and for a continuous spectrum (42).

Under the kinematical constraint (A), the linearized MHD equation reduces to the
Frieman-Rotenberg (FR) equation, where we remarked that the initial data should be some-
what restricted as shown in (46). A generalized dispersion relation (53) was established for
the FR equation on the ground of the general framework developed in Sec. III. By special-
izing the slab geometry of the equilibrium (60), the FR equation further reduced to the
ordinary differential equation (64) of Sturm-Liouville type with a complicated inhomoge-
neous term. Even for this equation, the formulae (41) and (42) remains applicable in terms
of the newly defined dispersion relation. At all events, the wave action corresponding to the
point spectrum can be always represented by the derivative of the dispersion relation with
respect to the frequency as exemplified by (55) and (75), which is a generalization of the
conventional formula (2) for plane waves. The sign of the wave action can be read off if the
phase velocity of the wave is faster (or slower) than the mean flow everywhere. Even for
strongly inhomogeneous mean fields, our formula computes the wave action of each mode
by substituting the eigenvalue and the eigenfunction.

On the contrary, the same argument is not true for a continuous spectrum and associated
singular eigenmodes. To extract a satisfactory expression for the wave action from (42), the
detailed information about the singularity is required for an appropriate choice of the variable
transformation. Once we have worked it out, the use of the identity (C3) for the dispersion
relation seems to be effective when estimating the limit Ω → ω ± i0 of (42). For simplicity,
we considered parallel shear flows with no magnetic field, where the regular singular point of
the Sturm-Liouville equation yields the singular solution Ξx(x, Ω) containing 1/[Ω−kv‖(x)].
In this case, we chose the variable transformation (86) such that Φ(x, Ω) will be continuous
even when Ω → ω ± i0. After this transformation, we could represent the wave action
of each singular eigenmode by (92). Our result includes that of Ref. 15 and generalizes
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it to the case of compressible and three-dimensional perturbations. For three-dimensional
perturbations, there are two kinds of continuous spectrum overlapping with each other. And,
furthermore, the corresponding wave actions have opposite signs, which explains why the
energy of perturbation (δ2H) is hopelessly indefinite in the three-dimensional case as was
observed in many literatures.

By taking advantage of this successful example, we examined the Krein collision between
point and continuous spectra by adapting Briggs’ approach. The formula (114), which
seems to be universal, predicts the following bifurcation processes. If the signs of the wave
actions for point and continuum were opposite, the single point spectrum would split into
two ones which represent exponentially growing and damping waves. On the other hand,
if the signs were same, the point spectrum would disappear from the complex plane, while
the corresponding wave would be observed transiently as if a damping mode (the Landau
damping). Our schematic picture Fig. 2 goes beyond the scope of the original Krein collision
between two point spectra, though the bifurcation is inferred from the knowledge of the
signs of actions. The generalization to the collision between two continua seems to be more
involved but will be discussed elsewhere based on this work.

APPENDIX A: LINEAR OPERATORS IN THE LINEARIZED MHD EQUATION

The linearized MHD equation for perturbations ũ = (M̃ , B̃, ρ̃, s̃)T is represented by the
form of (E), where the linear operators A, H and B are explicitly written in 4 × 4 matrix
forms as follows.

A =


−M∇ · ◦ −∇(M · ◦) − (∇× M ) × ◦ −B × (∇× ◦) −ρ∇◦ ◦∇s

∇× (◦ × B) 0 0 0
−∇ · (ρ◦) 0 0 0
− ◦ ·∇s 0 0 0

 , (A1)

H =


1
ρ

0 −M
ρ2 0

0 1 0 0

−M
ρ2 0 |M|2

ρ3 + ∂2(ρe)
∂ρ2

∂2(ρe)
∂ρ∂s

0 0 ∂2(ρe)
∂ρ∂s

∂2(ρe)
∂s2

 , (A2)

B =


−∇ · v −∇(◦ · v) − (∇× ◦) × v (∇× B) × ◦ ∇[ |v|

2

2 − h] ρT∇◦
0 ∇× (v × ◦) 0 0
0 0 −∇ · (◦v) 0
0 0 0 −v · ∇◦

 , (A3)

where h(ρ, s) = ∂[ρe(ρ, s)]/∂ρ denotes the enthalpy per unit mass and T (ρ, s) = ∂e(ρ, s)/∂s
the temperature. One can derive these operators by linearizing the Lie-Poisson structure of
the MHD equation [17, 20, 26].

APPENDIX B: PROOF OF LEMMA 4

Consider the Laplace transform of the two equations (E′) and (E′∗);

(Ω − L)U(Ω) = iũ0, (B1)

(Ω′ − L∗)Z(Ω′) = iζ0. (B2)
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The inner products, 〈(B1), Z(Ω′)〉 and 〈U(Ω), (B2)〉, lead to

Ω
〈
U(Ω), Z(Ω′)

〉
−

〈
LU(Ω), Z(Ω′)

〉
= −i

〈
ũ0, Z(Ω′)

〉
, (B3)

Ω′
〈
U(Ω), Z(Ω′)

〉
−

〈
LU(Ω), Z(Ω′)

〉
= i

〈
U(Ω), ζ0

〉
. (B4)

By taking the difference of these two expressions, we get

(Ω′ − Ω)
〈
U(Ω), Z(Ω′)

〉
= i

[〈
U(Ω), ζ0

〉
+

〈
ũ0, Z(Ω′)

〉]
. (B5)

From the definitions (30) and (31), we can calculate the inner product in question as
follows,〈

ˆ̃u(ω), ζ̂(ω′)
〉

= lim
ε,ε′→+0

1

4π2

[〈
U(ω + iε), Z(ω′ + iε′)

〉
−

〈
U(ω + iε), Z(ω′ − iε′)

〉
−

〈
U(ω − iε), Z(ω′ + iε′)

〉
+

〈
U(ω − iε), Z(ω′ − iε′)

〉 ]
,

= lim
ε,ε′→+0

i

4π2

[〈
U(ω + iε), ζ0

〉
+

〈
ũ0, Z(ω′ + iε′)

〉
−(ω − iε) + ω′ + iε′

−

〈
U(ω + iε), ζ0

〉
+

〈
ũ0, Z(ω′ − iε′)

〉
−(ω − iε) + ω′ − iε′

−

〈
U(ω − iε), ζ0

〉
+

〈
ũ0, Z(ω′ + iε′)

〉
−(ω + iε) + ω′ + iε′

+

〈
U(ω − iε), ζ0

〉
+

〈
ũ0, Z(ω′ − iε′)

〉
−(ω + iε) + ω′ − iε′

]
, (B6)

where we used (B5).
In the hyperfunction theory, the Dirac delta function δ(ω) is defined by the well-known

Plemelj formula;

1

ω ± i0
= p.v.

1

ω
∓ πiδ(ω), ω ∈ R, (B7)

where p.v. denotes the principal value. Using this fact, the limit of ε′ → +0 followed by
ε → +0 results in

〈
ˆ̃u(ω), ζ̂(ω′)

〉
=

i

2π

[〈
ũ0, ζ̂(ω′)

〉
ω′ − ω + i0

−

〈
ũ0, ζ̂(ω′)

〉
ω′ − ω − i0

]
= δ(ω − ω′)

〈
ũ0, ζ̂(ω′)

〉
. (B8)

On the other hand, the limit of ε → +0 followed by ε′ → +0 gives

〈
ˆ̃u(ω), ζ̂(ω′)

〉
=

i

2π


〈

ˆ̃u(ω), ζ0

〉
ω′ − ω + iε′

−

〈
ˆ̃u(ω), ζ0

〉
ω′ − ω − iε′

 = δ(ω − ω′)
〈

ˆ̃u(ω), ζ0

〉
. (B9)
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Actually, we find that these two limits converge to the same value. To show this, let us
substitute Ω = Ω′ into (B5), leaving〈

U(Ω), ζ0

〉
+

〈
ũ0, Z(Ω)

〉
= 0. (B10)

Using this relation, we can confirm that〈
ũ0, ζ̂(ω)

〉
=

1

2π

[〈
ũ0, Z(ω + i0)

〉
−

〈
ũ0, Z(ω − i0)

〉]
(B11)

=
1

2π

[
−

〈
U(ω − i0), ζ0

〉
+

〈
U(ω + i0), ζ0

〉]
(B12)

=
〈

ˆ̃u(ω), ζ0

〉
. (B13)

APPENDIX C: ELIMINATION AND TRANSFORMATION OF VARIABLES

Here, we newly pose a general problem that extracts only mathematical aspect of the
symmetric response equation (39), and see how the elimination and transformation of vari-
ables work in this settings.

For that purpose, we consider a complex Hilbert space L2 with an inner product 〈◦, ◦〉
and the following equation for Z ∈ L2,

E(Ω)Z(Ω) = −χ(Ω), (C1)

where a linear operator E(Ω) : L2 → L2 and χ(Ω) ∈ L2 are given and depend on a parameter
Ω ∈ C. Only the assumption is that the adjoint operator E∗(Ω) satisfies E∗(Ω) = E(Ω). The
solution Z(Ω) therefore depends on Ω, too, and may not exist for some values of Ω at which
E−1(Ω) is singular.

Define a function D : C×L2×L2 → C by D(Ω, Z1, Z2) := 〈Z1, E(Ω)Z2〉. Then, we obtain
the following formula which turns out to be important in the main text.

Proposition 10.

−D(Ω, Z(Ω), Z(Ω)) =
〈
Z(Ω), χ(Ω)

〉
=

〈
χ(Ω), Z(Ω)

〉
, (C2)

=
〈
F (Ω), E(Ω)F (Ω)

〉
+

〈
G(Ω), E(Ω)G(Ω)

〉
+

〈
G(Ω), χ(Ω)

〉
+

〈
χ(Ω), G(Ω)

〉
, (C3)

where

F (Ω) =
1

2
[Z(Ω) − Z(Ω)], (C4)

G(Ω) =
1

2
[Z(Ω) + Z(Ω)]. (C5)

Proof. The equality (C2) is trivial. To derive the last expression (C3), we begin with the
following identity,

0 =
〈
G(Ω), E(Ω)Z(Ω) + χ(Ω)

〉
−

〈
E(Ω)Z(Ω) + χ(Ω), F (Ω)

〉
. (C6)
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Substituting the relations Z(Ω) = G(Ω) + F (Ω) and Z(Ω) = G(Ω) − F (Ω), and using the
properties F (Ω) = −F (Ω) and G(Ω) = G(Ω), this identity transforms into

0 =
〈
G(Ω), E(Ω)G(Ω)

〉
+

〈
G(Ω), χ(Ω)

〉
+

〈
F (Ω), E(Ω)F (Ω)

〉
−

〈
χ(Ω), F (Ω)

〉
.

By substituting F (Ω) = Z(Ω) − G(Ω) into the last term of the right hand side, the same
expression as (C3) is obtained.

Now, suppose that there is an orthogonal decomposition L2 = L2
a⊕L2

b with inner products
〈◦, ◦〉a and 〈◦, ◦〉b for each subspaces. If we denote the corresponding decomposition by
Z = Za + Zb, the equation can be written as(

Eaa(Ω) Eab(Ω)
Eba(Ω) Ebb(Ω)

)(
Za(Ω)
Zb(Ω)

)
= −

(
χa(Ω)
χb(Ω)

)
. (C7)

We eliminate Zb(Ω) by prescribing the relation,

Zb(Ω) = −E−1
bb (Ω)Eba(Ω)Za(Ω) − E−1

bb (Ω)χb(Ω), (C8)

and obtain a reduced equation for Za(Ω) ∈ L2
a as

[Eaa(Ω) − Eab(Ω)E−1
bb (Ω)Eba(Ω)]Za(Ω) = −χa(Ω) + Eab(Ω)E−1

bb (Ω)χb(Ω). (C9)

Furthermore, we introduce a variable transformation Za(Ω) = T (Ω)Z](Ω) by an operator
T (Ω) : L2

a → L2
a satisfying T ∗(Ω) = T (Ω). Then, we obtain a transformed equation

E](Ω)Z](Ω) = −χ](Ω), (C10)

where

E](Ω) := T (Ω)[Eaa(Ω) − Eab(Ω)E−1
bb (Ω)Eba(Ω)]T (Ω), (C11)

χ](Ω) := T (Ω)χa(Ω) − T (Ω)Eab(Ω)E−1
bb (Ω)χb(Ω). (C12)

The new operator E](Ω) satisfies E∗
] (Ω) = E](Ω) again, and we therefore define a function

D] : C × L2
a × L2

a → C also for this reduced equation (C10) by

D](Ω, Z]1, Z]2) :=
〈
Z]1, E](Ω)Z]2

〉
a
. (C13)

In this settings, the following formula holds;

Proposition 11.

D(Ω, Z(Ω), Z(Ω)) = D](Ω, Z](Ω), Z](Ω)) +
〈
χb(Ω), E−1

bb (Ω)χb(Ω)
〉

b
. (C14)

Proof. It is proven directly as follows.〈
Z](Ω), χ](Ω)

〉
a

=
〈
Za(Ω), χa(Ω) − Eab(Ω)E−1

bb (Ω)χb(Ω)
〉

a
, (C15)

=
〈
Za(Ω), χa(Ω)

〉
a
−

〈
E−1

bb (Ω)Eba(Ω)Za(Ω), χb(Ω)
〉

b
, (C16)

=
〈
Za(Ω), χa(Ω)

〉
a
+

〈
Zb(Ω) + E−1

bb (Ω)χb(Ω), χb(Ω)
〉

b
, (C17)

=
〈
Z(Ω), χ(Ω)

〉
+

〈
χb(Ω), E−1

bb (Ω)χb(Ω)
〉

b
, (C18)

where we used (C12) and (C8).
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Let σ ⊂ C be a set of Ω at which D(Ω, Z(Ω), Z(Ω)) becomes singular (i.e., poles, discon-
tinuity and so on). Through the reduction of variables, we find that both the terms on the
right hand side of (C14) would possibly contain more singularities other than σ, because
the inverse operator E−1

bb (Ω) may not be defined or bounded for some parameters Ω, say
Ω ∈ σb ⊂ C. These new singularities σb are clearly apparent. When applying the formula
(C14) to the calculation of (41) and (42), there is no need to dwell on the apparent singu-
larity σb and one may naively replace D(Ω, Z(Ω), Z(Ω)) with D](Ω, Z](Ω), Z](Ω)) in (41) and
(42). However, in case that the genuine and apparent singularities degenerate (σ ∩ σb 6= ∅),
the reduction does not work so effectively; one needs to retain the second term on the right
hand side of (C14) for ω ∈ σ ∩ σb.
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equations

MHF2005-6 Kenji KAJIWARA, Tetsu MASUDA, Masatoshi NOUMI, Yasuhiro OHTA &
Yasuhiko YAMADA
Construction of hypergeometric solutions to the q‐Painlevé equations
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