
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Energy Consumption Evaluation of an Adaptive
Extensible Processor

Noori, Hamid
Institute of Systems and Information Technologies/KYUSHU

Mehdipour, Farhad
Research Institute for Information Technology, Kyushu University

Goudarzi, Maziar
System LSI Research Center, Kyushu University

Yamaguchi, Seiichiro
Department of Computer Science and Communication Engineering, Kyushu University

他

https://hdl.handle.net/2324/8694

出版情報：Proceedings of the Second Annual Reconfigurable and Adaptive Architecture Workshop,
2007-12-01
バージョン：
権利関係：

Energy Consumption Evaluation of an Adaptive Extensible Processor

Hamid Noori
±
, Farhad Mehdipour

‡
, Maziar Goudarzi

§
, Seiichiro Yamaguchi

††
, Koji Inoue

†
, and

Kazuaki Murakami
†

±
Institute of Systems and Information Technologies/KYUSHU

†
Department of Informatics, Kyushu University

‡
Research Institute for Information Technology, Kyushu University

§
System LSI Research Center, Kyushu University

††
Department of Computer Science and Communication Engineering, Kyushu University

noori@isit.or.jp

{farhad, seiichiro}@c.csce.kyushu-u.ac.jp, goudarzi@slrc.kyushu-u.ac.jp,

{inoue, murakami@i.kyushu-u.ac.jp}

Abstract
Most embedded systems rely on batteries as their source of

energy, and hence, low power consumption is inherently

essential for them. In processor-based embedded systems, a

large portion of power is consumed for accessing instruction

memories (including on-chip caches and off-chip memories),

register-file, and also in the clock-distribution tree.

Encapsulating critical computation subgraphs as application-

specific instruction set extensions is an effective technique to

reduce above-mentioned accesses and execution time (clock

energy) and consequently, enhance the energy efficiency of

these systems. However, the addition of custom functional

units to the base processor is required to support the execution

of custom instructions, which due to the increase of

manufacturing and design costs in new nanometer-scale

technologies and shorter time-to-market it is becoming an

issue. To address these issues, in our proposed approach, the

custom functional units are replaced with a reconfigurable

functional unit and instruction customization is done after

chip-fabrication. Therefore, while maintaining the flexibility of

a conventional microprocessor, the energy reduction feature

of customization is utilized for enhancing the energy

efficiency. Our reconfigurable functional-unit is capable of

executing custom instructions with multiple exits, resulting in

15% more energy saving compared to the single-exit

counterpart. Moreover, two custom instruction invocation

techniques are compared in terms of energy saving.

Experimental results show up to 79% reduction (37% on

average) energy saving on MiBench benchmark suit.

1. Introduction
The requirement of portability of embedded systems places

severe restrictions on power consumption. Even though battery

technology is improving continuously and processors and

displays are rapidly improving in terms of power consumption,

battery life-time and battery weight are issues that will have a

marked influence on how embedded systems can be used.

Moreover, more computing power is required by these devices

for new generations due to more functionality and complexity

of the supported applications [24]. Therefore, power

consumption is becoming the limiting factor in the amount of

functionality and complexity that can be placed in these

devices. These properties raise the need to increase the energy

efficiency and to extend the battery lifetime of embedded

systems.

Hardware/software partitioning [1] is shown to be effective

for minimizing the power consumption of embedded

processor-based systems. Other effective techniques to

enhance the efficiency of these systems, are using Application

Specific Instruction set Processors (ASIPs) or extensible

processors [3] [4] [13] [14] [15] [16]. A custom instruction (CI)

encapsulates the computation of a frequently executed

subgraph of the program’s dataflow graph (DFG). Using CIs

results not only in more speedup but also less energy

consumption [2] [3] [4], due to reducing accesses to different

components of the base processors (e.g. memories, decoder,

register file, etc) and the execution time (i.e. less clock

energy), compared to a conventional embedded

microprocessor. The targets of these approaches are custom

hardware. Although performance/energy efficiency can be

obtained through custom hardwired implementation, however

it impacts flexibility. Moreover, the time and cost of designing

and verifying a base processor with augmented custom

hardware, causes many issues associated with designing a new

processor from scratch, such as longer time-to-market and

significant NRE (Non-Recurring Engineering) costs, specially

that the NRE and design costs keep on increasing for the new

technologies [5] [24]. Therefore, reconfigurability is becoming

more important in future embedded processors [6].

Although reconfigurable hardware consumes more energy

compared to custom hardware, still it shows the potential in

energy reduction while maintaining the flexibility

 [7] [8] [9] [10] [11] [12].

In this paper, we describe our proposed ADaptive

EXtensible processOR (ADEXOR) in which, CIs are

generated and added after chip-fabrication automatically. To

cover higher percentage of dynamic instructions, unlike other

methods for identifying and generating optimal set of CIs such

as [13] [14] [15] [16] that focus on CIs with a single entry and a

single exit, we propose CIs with single entry but multiple exits.

Consequently, the proposed multi-exit CIs (MECIs) can cover

hot directions of several branches into the CI without being

limited to selecting just one or all of the directions. This brings

about larger CIs, more instruction level parallelism (ILP),

hiding branch misprediction penalty and reduction in accesses

to the branch predictor. MECIs can cover both directions of

branches if both are hot. Moreover, we use a coarse-grain

reconfigurable functional unit (referred in this paper as CRFU)

instead of custom functional units, which brings flexibility and

enables to support more CIs. The conditional execution is

supported by the CRFU to handle multi-exit feature of the

proposed CIs. Experimental results show that using the

proposed approach the energy consumption can be reduced up

to 79% and 37% in average, while providing flexibility and

compatibility. The contributions of this paper are 1) energy

evaluation of the proposed architecture, 2) showing its

effectiveness on energy reduction, 3) comparing two MECI

invocation techniques in terms of energy saving, and 4)

showing the effectiveness of proposed MECIs over CIs limited

to one basic block on energy efficiency enhancement.

2. Related Work
The conventional embedded microprocessors are the most

flexible devices for implementing embedded and mobile

systems, however their energy consumption is very high. One

solution is moving frequently executed portions of the

applications to custom hardware.

Henkel [1] presents an approach that minimizes the power

consumption of embedded core-based systems through

hardware/software partitioning among a processor and ASICs.

A concept of instruction subsetting is introduced in [2] to

create an ASIP from a more general processor. This work

defines the notion of instruction subsetting and explores its use

as a means of reducing power consumption from the system

level of design. The work in [3] describes an automatic

methodology to select CIs to augment an extensible processor,

in order to maximize its performance/energy efficiency for a

given application program. Biswas et al., present an instruction

set extension identification technique in [4] that can

automatically identify state-holding custom functional units,

thus being able to reduce memory traffic from cache and main

memory to improve performance and reduce energy.

Significant manufacturing and design cost and shrinking time-

to-market are becoming issues for these approaches [5] [24].

Wan [7] presents a fine-grain loosely-coupled

reconfigurable architecture template for low-power digital

signal processing, and then an energy conscious design

methodology to bridge the algorithm to architecture gap. Stitt

 [8] describes a loop-oriented partitioning for moving critical

code from software to a fine-grain loosely-coupled accelerator.

They show the effectiveness of their proposed method in

energy reduction as well as obtaining higher speedup. XiRisc

 [9] is a VLIW processor with a tightly coupled fine-grain

reconfigurable functional unit. Mapping computation intensive

algorithmic portions on the reconfigurable unit allows a more

efficient elaboration, thus leading to an improvement in both

timing performance and power consumption. Fine-grain

accelerators allow for very flexible computations, but they

consume more energy, have a longer latency and

reconfiguration time compared to coarse grain counterparts.

Furthermore, they need a larger amount of memory (more

energy consumption) for storing configuration bits.

CRISP [10] is a coarse-grain reconfigurable instruction

set processor designed for multimedia applications. Its

reconfigurable functional unit is composed of complex blocks

such as ALUs and is tightly coupled with the base processor.

Average 2.5 times the performance of a RISC processor is

achieved with an average of 18% energy increase. In [11] a

new low-power Processor-In-Memory-based 32-bit

reconfigurable datapath optimized for multimedia applications

is presented. They also show the effectiveness of

reconfigurable accelerator for reducing energy. Almost all of

the proposed reconfigurable processors and systems need new

programming model, new compiler, source code modifications,

or new opcode for CIs which results in binary or object code

incompatibility.

The method proposed in [12] shows the effectiveness of

dynamic hardware/software partitioning on energy reduction,

using binary code instead of high level or source code.

However, it needs online profiler and hardware for dynamic

optimization and synthesis. In this method loops are

accelerated on their proposed fine-grain configurable logic.

In our approach a coarse-grain reconfigurable functional

unit is used, however to make it more energy efficient, the

amount of augmented hardware is evaluated through a

quantitative approach [17]. In the proposed architecture there

is no need to a new programming model, new compiler, or new

opcodes which obviate rewriting or recompiling the source

codes. Consequently, our approach maintains binary

compatibility and is applicable to cases where the source code

is not available. To obviate extra hardware for online profiler,

dynamic optimization and synthesis, two phases are defined.

3. Overview of ADEXOR Architecture
ADEXOR is composed of four main components: i) a base

processor which is a 4-issue in-order RISC processor, ii) a

coarse grain reconfigurable functional unit (CRFU) whose

functions and connections are controlled by configuration bits,

iii) a configuration memory for keeping the configuration bits

of the CRFU for each MECI and iv) counters for controlling

the read/write signals of the register file and selecting between

ALUs and the CRFU (Fig. 1).

DEC/EXE Pipeline Registers

ALU1 ALU2 ALU3 ALU4 CRFU

Reg0 ………………………………...

.

Reg31

EXE/MEM Pipeline Registers

Counter

Config

Memory

Counter
From decode stage

Triggered by mtc1

Triggered by mtc1

CRFU Input Regs
En

Result bus

or sequencer

or sequencer

Figure 1. Integrating the base processor with the CRFU

In order not to increase the number of read/write ports of the

register file, it is shared between CRFU and ALUs. To make

the CRFU inactive while application is running on the base

processor and also inactivate ALUs while MECIs are executed

on the CRFU, two sets of input registers have been considered

for the ALUs and the CRFU, with complement enable signal.

The CRFU is in parallel with ALUs. It is fully combinational

and is based on matrix of functional units (FUs) with eight

inputs, six outputs and 16 FUs (Fig. 2). The CRFU reads

(writes) from (to) register file. The CRFU is assumed to be

multi-cycle to avoid becoming the critical path of the circuit.

The required execution cycles for running MECIs on the

CRFU is variable and depends on the depth of the DFG of

each MECI and the clock frequency of the base processor

which is kept as part of configuration bit-stream.

Connections from input ports to

inputs of the rows

CRFU Input Ports

CRFU Output Ports

Outputs of 1st row to the
inputs of 3rd, 4th and 5th rows

Outputs of 2nd row to the
inputs of 4th and 5th rows

Row1

Row5

Configuration
bits

Configuration

bits

Configuration
bits

FU FU FU FU

Figure 2. Proposed architecture for the CRFU

When a MECI is detected in the object code, the required

clock cycles for executing the corresponding MECI is loaded

from configuration memory into the counters. For the specified

clock cycles the counters select the configuration bits to enable

the required input and output registers of the MECI for the

CRFU and its inputs and outputs.

Each FU of CRFU can support fixed-point instructions of

the base processor except multiply, divide and load. It can

support MECIs including at most one store. CRFU uses

configuration memory to update the program counter (PC) and

find the valid exit point, after executing each MECI. The

specifications of the CRFU have been determined using a

quantitative approach [17]. In our quantitative approach, first

the MECIs were generated for 21 applications of Mibench [20]

without considering any constraints (i.e. number of inputs,

outputs, FUs, connections and etc). Then according to the

mapping rate (which shows the percentage of the generated

MECIs for 21 applications that can be mapped on the CRFU

considering their execution frequency and execution time of

each application) different constraints such as number of

inputs, outputs, FUs and etc are determined for the CRFU. The

result is the proposed architecture for the CRFU in Fig. 2, for

which 81.34% of generated MECIs for 21 applications can be

mapped on it. The remaining 18.66% of generated MECIs are

partitioned to smaller and mappable MECIs using our

proposed integrated mapping-temporal partitioning framework

 [19]. The CRFU can support conditional execution via

conditional data selection which is required for executing

MECI [17].

Two phases have been defined for using ADEXOR:

configuration phase and normal phase (Fig. 3). In the

configuration phase, which is done offline, target applications

are run on an instruction set simulator (ISS) and profiled at

binary level. Then, the start addresses of hot basic blocks

(HBBs) are detected. An HBB is a basic block with an

execution frequency more than a given threshold. MECIs are

generated by linking HBBs. Mapping the MECIs to generate

configuration bits for the CRFU is done in this phase as well.

In the normal phase, the CRFU, its configuration memory and

counters are employed for executing MECIs.

Design Phase

Chip Fabrication

Testbench
Applications

Proposing
CRFU

architecture

S
yn
th
es
is
,v
er
if
ic
at
io
n,

la
yo
ut
,e
tc

ADEXOR

T
ar
ge
t

A
pp
lic
at
io
n New object

code

Configuration
Bits

Configuration Phase Normal Phase

CRFU

Base
Proc.

Config
Mem

ADEXOR

P
ro
ce
ss
es
in

F
ig
.5

Fig. 3. Different phases for designing and using ADEXOR

4. Generating Multi-Exit Custom Instructions

4.1. Motivation example
Fig. 4 shows the control flow graph (CFG) of the main loop in

adpcm [20]. The number of instructions in each blocks range

from 1 to 6 with an average of 2.24 instructions. Each block is

quite small, as shown by these numbers therefore, extending

custom instructions over a basic block helps to cover more

instructions. Continuous red arcs are hot directions (with an

execution frequency greater than a given threshold) and dotted

black ones are not. Both directions are hot for the majority of

the branches. In these cases, covering both directions of a

branch can aid the creation of larger CIs, hence more

parallelism, as well as eliminate branch misprediction

penalties, and reducing accesses to the branch predictor. In

extensible processors with custom functional units, because the

amount of augmented hardware can be determined by the

designer before fabrication and since handling CIs with single

exit is easier, the designers prefer to select single entry-, single

exit subgraphs as a CI. However, in our case because the

hardware resources (CRFU) are fixed, in order to be able to

extend CIs over basic blocks effectively and use the available

hardware (CRFU) efficiently, MECIs are proposed.

B1

S1

B2

S2

B3

B4

S3

B5

S4

B6

S5

J1

B7

S6

J2

B8

B9

S7

B10

S8

S9

B11

J3

B12

S10

B1

S1

B2

S2

B3

B4

S3

B5

S4

B6

S5

J1

B7

S6

J2

B8

B9

S7

B10

S8

S9

B11

J3

B12

S10

Figure 4. Control flow graph of main loop in adpcm

4.2. Generating MECIs
Fig. 5 shows the chain of main functions and tools that are

used for generating MECIs. First the applications are run on

the ISS (1) and profiled at binary level (2). Using the profiling

data, the HBBs are detected (3) and linked to make hot

instruction sequence (HIS). MECIs should not cross loop

boundaries. Therefore, first, hot loops are detected and sorted

from the innermost loop to the outermost in the ascending

order of their start addresses. To generate a HIS, the start

address of the first HBB of the loop is passed and checked

whether it has been covered by previous MECIs or not. If it

has not been covered, the HBB is read from the object code (4)

and added to the current HIS. For each HBB the last

instruction is checked. If the not-taken direction is hot the

HBB in the not-taken is added to the HIS. If the taken

direction is hot, the HBB in taken direction is added and if

both taken and not-taken are hot, both are added to the HIS

using a recursive function. This process is repeated for each

new added HBB until HIS reaches to the end (terminal) points

in all directions. When generating HIS is done for the loops,

similar process is continued for the remaining HBBs (5).

Then the control dataflow graph (CDFG) is generated (6)

and passed to the MECI generator. In current implementation,

each MECI can include only fixed-point instructions except

multiply, divide and load. It can support at most one store

instruction, up to five branches and four exit points. The exit

points of a MECI are: i) branch with only one hot direction, ii)

indirect jump, return and call, iii) hot backward branch and iv)

an instruction where its next instruction is non-executable.

Executable instructions are those instructions that can be

executed by the CRFU and non-executable (i.e. floating point,

load, divide, multiply, second store) are those that are not

supported by the CRFU.

MECI generator looks for the largest subgraph that can be

executed on the CRFU, in the CDFG. Then, after checking the

flow-, anti-, and output-dependence, executable instructions in

each HBB are moved and added to the entry point (head) and

exit point(s) (tails) of the detected subgraph (7). For those

parts that instructions are moved, the object code is rewritten.

Then it is passed to the integrated framework [19] to partition

large MECIs to mappable MECIs on the CRFU (9). Next,

generated MECIs are mapped on the CRFU.

Instruction
Set Simulator
(Simplescalar)

Profiler
Detecting

Start Address
of HBBs

Reading HBBs

from Object
code

Linking HBBs using
Profiling Information
and Generating HISs

Generating

CDFG for

HISs

Generating
Multi-Exit

Instructions
Custom

Updating CDFG
and Binary
rewriting

(Partitioning and
Mapping MECIs)

Integrated
Framework

(1)
(2)

(3) (4) (5)

(6)(7)(8)
(9)

Fig. 5. Tool chain for generating MECIs

To insert MECIs into the instruction stream and remove the

individual instructions from the stream at the normal phase,

two MECI invocation techniques are used. In the first method

the entry point instruction of the subgraph of each MECIs is

overwritten by mtc1 (move to coprocessor) instruction in the

object code to flag the start of a MECI. In the normal phase

when the mtc1 is decoded, its operand is used for indexing and

loading configuration bits from configuration memory of the

CRFU for the corresponding MECI.

In the second approach a hardware called sequencer is

utilized. The sequencer is a table (a context address memory or

CAM) that keeps the address of logically previous instructions

of MECIs. The sequencer is initialized at the configuration

phase. In the normal phase for each access to the instruction

cache, the program counter is applied to the sequencer. For a

hit the corresponding data is used for indexing the

configuration memory to load the configuration bits of the

MECI on the CRFU.

5. Energy Consumption Evaluation Model
In 180nm (our target technology) the leakage power is

negligible compared to the active power [23], therefore, it has

been neglected in our model. The energy consumption of the

base processor comprises from three main parts: i) energy of

the clock-tree, ii) energy of different components of the base

 hot path

 non-hot path

processor, and iii) energy for accessing off-chip memory. The

energy of clock-tree is the product of number of execution

clock cycles and the energy for each clock pulse. The energy

of each component is measured by number of accesses to each

component times the energy of each access and finally, the

energy of off-chip access is the product of number of misses of

instruction and data caches and energy for each off-chip access

(Eq. (1)).

Base Processor Energy = (num_exec_cycle * energy(clock))

+∑
comp

compenergycompaccessnum)(*)(_ +

(icache_miss+ dcache_miss) * energy_off_chip_access

Eq.(1)

where energy(X) = power(X) * clock_period Eq. (2)

The num_access(comp) and power(comp), respectively are

number of accesses and power consumption of different

components of the base processors (e.g. instruction and data

caches, integer and floating point ALUs, result bus, register

file, and etc) which are obtained through running each

application on the Wattch [21]. The num_exec_cycle,

icache_miss, and dcache_miss, which show the number of

execution clock cycles for an application, number of

instruction and data cache misses, are obtained using Wattch as

well. The penalty for each miss is assumed to be 20 cycles and

according to [22] the energy for each off-chip access is

considered to be 40nJ. The target of Wattch has been set for

180nm technology. The clock_period is clock period of the

base processor. Five different clock_period fvalues are

examined in Section 5.

The energy of ADEXOR is calculated similar to the base

processor, which is added to energy overhead (due to the

CRFU, and configuration memory). The numbers of accesses

to different components (Anum_access), instruction cache miss

(Aicache_miss), and execution clock cycles

(Anum_exec_cycle) changes due to the execution of MECIs on

the CRFU (Eq. 3). The MECIs do not affect the number misses

of data cache. The Energy_Overhead is the energy overhead of

ADEXOR due to the extra hardware.

ADEXOR Energy = Anum_exec_cycle * enrgy (clock) +

∑
comp

compenergycompaccessAnum)(*)(_ +

(Aicache_miss+dcache_miss)*energy_off_chip_access +

Energy_Overhead Eq. (3)

It was mentioned that the CRFU has six outputs but Fig. 1

depicts that it has four outputs. To support CRFU with six

outputs without increasing the number of write ports of the

register file, two registers have been added to the CRFU.

When a MECI has more than four outputs, four of them are

written in one cycle and the remaining ones in the next cycle.

Therefore, for executing MECIs with more than four outputs

(comprising around 13.2% of MECIs generated for 21

applications), one more clock cycle is needed.

The number of execution clock cycles for ADEXOR

(Anum_exec_cycle) comprises of two parts.

Anum_exec_cycle = num_exec_cycle_W/O_MECI +

Clk_MECI_CRFU(clock_period) Eq. (4)

num_exec_cycle_W/O_MECI is the number of execution

clock cycles for running those portions of the application that

are executed on the base processor and Clk_MECI_CRFU is

number of clock cycles required for executing MECIs on the

CRFU. Clk_MECI_CRFU depends on the clock frequency of

the base processor because, for faster clock frequencies more

clock cycles are required for executing MECIs on the CRFU.

Therefore, the total energy of clock for ADEXOR is calculated

utilizing the following equation:

Total energy clock = (num_exec_cycle_W/O_MECI +

(NCLK_GATING*Clk_MECI_CRFU)) * energy(clock)

Eq. (5)

The CRFU is fully combinational therefore there is no need

to the clock for executing MECIs on the CRFU. If the clock

can be gated while executing MECIs on the CRFU,

NCLK_GATING will be zero, otherwise it will be one.

The energy overhead of mtc1 MECI invocation technique

has three main terms. The first term relates to the register file.

Because the register file has been shared between ALUs and

the CRFU, its fan-out has been doubled therefore, we assume

that each access to the register file consumes two times more

energy compared to the base processor without the CRFU. The

second term corresponds to the CRFU which is the summation

of the product of its power and its delay for each execution of a

MECI. The final term is the energy of the configuration

memory which is the energy for each access times the total

execution of MECIs for the target application (Eq. (6)).

mtc1_energy_overhead =

((Anum_access(regfile) * energy(regfile) +

(∑
=

MECIs

i

ifreqexec

#

1

*)(_ ((CRFU_power * CRFU_delay) +

Config_Mem_Energy) *OVH_FACT) Eq. (6)

#MECIs is the number of MECIs generated for each

application and exec_freq is the execution frequency of each

MECI. The VHDL code of the CRFU was developed and

synthesized using Synopsys tools and Hitachi 180nm library.

The area of the CRFU is 2.1 mm
2
. Since each FU output can

be accessed directly via the output ports of the CRFU and also

the depth (length of critical path in the DFG) of each MECI is

known after mapping hence, we can have a CRFU with

variable latency in which the latency depends on the depth of

each MECI. The delays of the CRFU for MECIs with various

depths from 1 to 5 are 2.2 ns, 4.2 ns, 6.1 ns, 7.9 ns and 9.8 ns,

respectively. The required clock cycles for executing each

MECI is determined according to the aforementioned numbers,

depth of its DFG and base processor clock frequency. However

we assume the worst case for CRFU_delay in Eq. (6) which is

9.8ns. Verilog-XL from Cadence, Power Compiler from

Synopsys and 180nm technology cell library from Hitachi were

exploited to measure the power of CRFU. The power

consumption of the CRFU is 246.335 mW which is used as

CRFU_power in Eq. (6). The CRFU needs 375 bits for control

signals and 240 bits for immediate values and exit points.

Therefore, each MECI needs 615 bits (~ 80 bytes) in total for

its configuration. The configuration memory is assumed to

keep up to 100 MECIs. Therefore, the size of the configuration

memory is 80x100 bytes SRAM with a 640-bit width data bus,

so that in one clock cycle the configuration can be loaded to

the CRFU. The configuration memory was modeled using

CACTI [18] in 0.18µm. The area is 0.77mm
2
 and the energy

for each access is 0.198 nJ (ConfigMem_Energy at Eq. (6)).

The energy overhead of sequencer approach equals the

energy overhead of mtc1 plus the energy of the sequencer. The

energy of sequencer is the energy for each access to sequencer

times the number of access to the instruction cache.

sequencer_energy_overhead = mtc1_energy_overhead +

(Anum_access(instr_cache)*sequencer_Energy*OVH_FACT)

 Eq. (7)

The sequencer table was modeled using CACTI. The area

of the sequencer is 0.61 mm
2
 and the energy for each access is

0.29 nJ (Sequencer_Energy).

In mtc1 the energy overhead is less compared to the

sequencer, due to less required hardware, however the

disadvantage is that the mtc1 instruction itself should be

fetched and decoded. The other advantage of sequencer is that

the object code does not need to be modified.

Since the energy of the base processor, the CRFU,

configuration memory and the sequencer have been measured

using different tools, a factor has been considered for the

energy overhead (OVH_FACT). The effect of this coefficient

on the total energy reduction is studied in the next section. The

access reduction and energy reduction used in the next section

are measured using the following equations.

access reduction(X)=
)(_

)(_)(_

Xaccessnum

XaccessAnumXaccessnum −
 * 100

energy reduction =
energyprocessorbase

energyADEXORenergyprocessorbase

__

___ −
 * 100

6. Evaluation Results
The configuration of the base processor is in Table 1. We tried

21 applications of Mibench [20].

Table 1. Base processor configuration

Issue 4-way

Level-one Instruction Cache

(2-way) and Data Cache (4-way)

16KB, 1 cycle for hit, 20

cycles for miss

Execution units 4 integer, 4 floating point

Multiplier (int, floating),

Divider (int, floating)

(1, 1)

(1, 1)

Branch predictor bimodal

Branch prediction table size 2048

Extra branch misprediction

latency

3 cycles

● Component accesses reduction

Fig. 6 shows the percentage of access reduction for different

components of the base processor when sequencer is utilized.

Due to collapsing instructions as custom instructions and

according to the types and instructions that can be supported

by MECIs, accesses to decoder, branch predictor, register file,

instruction cache, integer ALUs and result bus are reduced.

Moreover, due to access reduction to instruction cache,

number of instruction cache misses and hence off-chip memory

access is reduced as well. Reduction of instruction cache

misses is up to 86% for rijndael. As expected, because the

register file and the result bus have been shared between the

CRFU and the ALUs, the percentage of their access reduction

is less compared to the other components.

0

10

20

30

40

50

60

70

80

90

100

ba
si
cm
at
h

bi
tc
ou
nt
s

qs
or
t

su
sa
n

cj
pe
g

dj
pe
g

di
jk
st
ra

pa
tr
ic
ia

bl
ow
fis
h

ri
jn
da
el

st
ri
ng
se
ar
ch sh

a

ad
pc
m cr

c ff
t

gs
m

av
g-
se
q

av
g-
m
tc
1

R
e
d
u
c
in
g
 a
c
c
e
s
s
 t
o
 c
o
m
p
o
n
e
n
ts
 (
%
)

Decoder

Branch Predictor

Reg File

I-Cache

Int ALU

Result Bus

Miss of I-Cache

Figure 6. Access reduction to different parts of the base

processor using the CRFU & sequencer

Specially, for the register file, since before executing each

MECI all the required input registers for different paths in a

MECI should be read. avg-seq and avg-mtc1 show the average

access reduction (for 21 applications) regarding to the two

proposed MECI invocation approaches: sequencer and mtc1.

The avg-mtc1 is almost 8% less compared to avg-seq, due to

the mtc1 instructions execution overhead. The average

instruction cache miss reduction for sequencer is 22.5% while

for mtc1 is 6.5%. The average access reduction for register

file, results bus, branch predictor, and other components are

27%, 43%, 45% and around 53% using sequencer,

respectively.

●Clock energy reduction

Using MECIs and CRFU enhances the performance of the base

processor, hence less clock cycles (consequently, less energy)

is needed for executing an application. Fig. 7 shows the

percentage of clock energy reduction using CRFU compared to

the base processor without CRFU.

For higher clock frequencies, the base processor has to

wait more clock cycles until the execution of a MECI finishes

on the CRFU. The first bar for each application shows the

energy saving percentage for clock when clock is gated while

executing MECIs on the CRFU. Other bars show the energy

saving for clock considering different frequencies in a case that

clock gating is not applied but the base processor is stalled

while the MECIs are executing on the CRFU (for sequencer

invocation technique). By clock gating 10% more energy can

be saved compared to a non-clock gating 300MHz frequency

processor, in average (which is 42.6%).

0

10

20

30

40

50

60

70

80

90

100

ba
si
cm
at
h

bi
tc
ou
nt
s

qs
or
t

su
sa
n

cj
pe
g

dj
pe
g

di
jk
st
ra

pa
tr
ic
ia

bl
ow
fis
h

ri
jn
da
el

st
ri
ng
se
ar
ch sh

a

ad
pc
m cr

c ff
t

gs
m

av
g-
se
q

av
g-
m
tc
1

C
lo
c
k
 E
n
e
rg
y
 R
e
d
u
c
ti
o
n
 (
%
)

clock gating

200 MHz

250 MHz

300 MHz

350 MHz

400 MHz

Figure 7. Clock energy reduction

●Total energy reduction

Fig. 8 shows the total energy reduction for the ADEXOR

compared to the base processor for different clock frequencies

and clock gating (for sequencer). The reason for the highest

energy reduction by adpcm (79% for clock gating) is that it has

a main loop with 56 instructions, including 12 branches. For 7

of these branches, both taken and not-taken are hot, so that

27% of branches are mispredicted. Therefore, a considerable

percentage of executed clock cycles belong to the penalty of

the mispredicted branches (18%). For those branches with both

directions being hot, the MECIs include both directions, and

hence, the CRFU architecture eliminates cycles related to

mispredicted branches. Also, since HBBs are linked and longer

MECIs are generated, more ILP can be extracted. For

applications like basicmath, susan, patricia, and fft that most

of the dynamic instructions are floating point, multiply, divide

and load (69%, 45%, 44% and 57%, respectively), the energy

reduction is less than average which is already expected since

those instructions are not covered in MECIs. The average total

energy reduction for clock gating is 42% and for 300MHz

clock frequency is 37%. The average of total energy reduction

for mtc1 is almost 8% less than sequencer.

0

10

20

30

40

50

60

70

80

90

ba
si
cm
at
h

bi
tc
ou
nt
s

qs
or
t

su
sa
n

cj
pe
g

dj
pe
g

di
jk
st
ra

pa
tr
ic
ia

bl
ow
fis
h

ri
jn
da
el

st
ri
ng
se
ar
ch sh

a

ad
pc
m cr

c ff
t

gs
m

av
g-
se
q

av
g-
m
tc
1

T
o
ta
l
e
n
e
rg
y
 r
e
d
u
c
it
o
n
 (
%
)

clock gating

200 MHz

250 MHz

300 MHz

350 MHz

400 MHz

Figure 8. Total energy reduction

●The effect of energy overhead on total energy reduction

To study the effect of energy overhead on the total energy

reduction, various values were assigned to the OVH_FACT in

Eq. 6 and Eq. 7 as shown in Fig. 9. The energy consumption of

the CRFU is 12.4 times of the configuration memory and the

energy overhead of the sequencer is 1.7 times of mtc1, in

average. The results show that for each 10x factor of

OVH_COEF the average total energy reduction degrades

almost by 1.3%, 0.8%, 2% and 1.2% considering the

sequencer with clock gating, mtc1 with clock gating,

sequencer at 300MHz and mtc1 at 300MHz, respectively.

Although, the energy overhead of sequencer is more than

mtc1, still it can save more energy, due to higher coverage of

dynamic instructions. Even if the energy consumption of the

base processor becomes 50 times smaller or the overhead

energy becomes 50 times bigger, for 300MHz clock frequency,

sequencer approach still can save almost 5% more energy. For

the 100x factor this number decreases to 1%.

0

5

10

15

20

25

30

35

40

45

1x 10x 30x 50x 100x

OVH_COEF

T
o
ta
l
e
n
e
rg
y
 r
e
d
u
c
ti
o
n
 (
%
)

clock-gating-seq

clock-gating-mtc1

300 MHz-seq

300 MHz-mtc1

Figure 9. The effect of energy overhead on the total energy

reduction

●MECIs vs. CIs

To see the effectiveness of MECIs compared to custom

instructions limited to one HBB (named as CIs), we limited the

MECI generator to one HBB and regenerated the CIs. Then,

we redesigned the CRFU using the same quantitative approach.

The number of inputs, outputs and FUs are the same as before,

but it has simpler connections, less functions and FUs and does

not support conditional execution. The area of CRFU reduces

to 1.15 mm
2
 and its delay for a CI with a critical length of five

is 7.66 ns. The power also decreases to 206.85 mW. Each CI

configuration needs 512 bits. Therefore, the energy for each

access to the configuration memory reduces to 0.16 nJ. Fig. 10

shows the energy reduction obtained by MECIs and CIs

compared to the base processor for some applications when the

mtc1 is used. The energy overhead for MECIs is 2.6 times of

CIs in average. The results show that MECIs can save 15% and

12% more energy compared to CIs, correspondigly for clock

gating and 300MHz clock. Even for an OVH_FACT equal to

100x the MECIs save 8% and 3.5% more energy compared to

CIs for the cases of clock gating and 300MHz clock frequency,

respectively.

0

10

20

30

40

50

60

70

80

90

ba
si
cm
at
h

bi
tc
ou
nt
s

qs
or
t

jp
eg

di
jk
st
ra

pa
tr
ic
ia

bl
ow
fis
h

ad
pc
m cr

c
gs
m

av
g-
1x

av
g-
10
x

av
g-
50
x

av
g-
10
0x

T
o
ta
l
e
n
e
rg
y
 r
e
d
u
c
ti
o
n
 (
%
)

MECI-clock-gating

CI-clock-gating

MECI-300MHz

CI-300MHz

Fig. 10. Total energy reduction (MECIs vs. CIs)

6. Conclusions
In order to improve the energy efficiency of processor-based

mobile computing systems, we proposed an architecture

framework for an adaptive extensible processor to have the

flexibility of general purpose processors while utilizing the

energy reduction feature of custom instructions and

maintaining the compatibility of the binary code. In this

architecture, CIs are generated and added after chip

fabrication. To support post-fabrication instruction set

customization, the custom functional units are replaced by a

coarse-grain reconfigurable functional unit. To cover higher

percentage of dynamic instructions, custom instructions with

multiple exits are proposed, instead of single exit. Using the

proposed custom instructions, number of accesses (i.e. energy)

to different components of the base processor (e.g. instruction

cache, ALUs, branch predictor, result bus, decoder and register

file) is reduced as well as the number of misses of instruction

cache and clock energy. The total energy reduction is 42%

when clock can be gated while executing MECIs on the CRFU

in average and 37% for 300MHz clock frequency. Our

experimental results show that by extending custom

instructions over multiple HBBs (or using MECIs) the average

energy saving increases by 15% compared to the custom

instructions limited to only one HBB.

Acknowledgment
We would like to thank all members of the System LSI

Laboratory of Kyushu University for their valuable comments

during our technical meetings. This research was supported in

part by Grant-in-Aid for Encouragement of Young Scientists

(A) 17680005.

References
[1] J. Henkel, “A Low-Power Hardware/Software Partitioning Approach for

Core-based Embedded Systems”, DAC 1999.

[2] W. E. Dougherty, et al., “Subsetting behavioral intellectual property for

low power ASIP design”, Journal of VLSI Signal Process., 1999.

[3] F. Sun et al, “Custom Instruction Synthesis for Extensible-Processor

Platforms”, IEEE Transaction on Computer-Aided Design of Integrated

Circuits and Systems, 2004.

[4] P. Biswas et al. “Automatic Identification of Application-Specific

Functional Units with Architecturally Visible Storage”, DATE 2006.

[5] T. Sakurai, “Meeting with the forthcoming IC Design”, Keynote

Address, ASP-DAC 2007

[6] S. Wong et al., “Future Directions of Programmable and Reconfigurable

Embedded Processors”, Domain-Specific Processors: Systems,

Architectures, Modeling, and Simulation, January 2004.

[7] M. Wan et al., “Design Methodology of a Low-Energy Reconfigurable

Single-Chip DSP System”, Journal of VLSI Signal Processing, 2001.

[8] G. Stitt et al., “Energy Savings and Speedups from Partitioning Critical

Software Loops to Hardware in Embedded Systems”, ACM Transactions

on Embedded Computing Systems, February 2004.

[9] A. Lodi et al., “A VLIW Processor with Reconfigurable Instruction Set

for Embedded Applications”, IEEE Journal of Solid-State Circuits, vol.

38, no. 11, pp. 1876–1886, 2003.

[10] F. Barat et al., “Low-Power Coarse-Grained Reconfigurable Instruction

Set Processor”, FPL 2003.

[11] M. Lanuzza et al., “Cost-Effective Low-Power Processor-In-Memory-

based Reconfigurable Datapath for Multimedia Applications”, ISLPED,

2005.

[12] R. Lysecky et al., “A Study of the Speedups and Competitiveness of

FPGA Soft Processor Cores using Dynamic Hardware/Software

Partitioning”, DATE 2005.

[13] K. Atasu et. al, “Automatic application-specific instruction-set extension

under microarchitectural constraints”, DAC 2003.

[14] D. Goodwin et al., “Automatic generation of application specific

processors”, CASES 2003.

[15] P. Yu and T. Mitra, “Characterizing Embedded Applications for

Instruction-Set Extensible Processors”, DAC 2004.

[16] N. Clark et. al., “An Architecture Framework for Transparent Instruction

Set Customization in Embedded Processors”, ISCA 2005.

[17] H. Noori, et al., “Generating and Executing Multi-Exit Custom

Instructions for an Adaptive Extensible Processor”, Design Automation

and Test in Europe (DATE), 2007.

[18] D. Tarjan, et al., Cacti 4.0, HP Laboratories, Technical Report, 2006.

[19] H. Noori, et al., “Handling Control Data Flow Graphs for a Tightly

Coupled Reconfigurable Accelerator”, International Conference on

Embedded Software and Systems (ICESS-07), 2007.

[20] Mibench, www.eecs.umich.edu/mibench

[21] D. Brooks et al., “Wattch: a framework for architectural-level power

analysis and optimizations”, ISCA 2000.

[22] C. Zhang, F. Vahid, and W. Najjar, “A Highly Configurable Cache

Architecture for Embedded Systems,” ACM Transactions on Embedded

Computing Systems, Vol. 4, No. 2, May 2005.

[23] O. Semenov, et al., “Burn-in Temperature Projections for Deep Sub-

micro Technologies”, International Test Conference, 2003.

[24] Tohru Furuyama, “Challenges of Digital Consumer and Mobile SoC’s:

More Moore Possible?”, Keynote Address, Design Automation and Test

in Europe (DATE), 2007.

