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Abstract 
Most embedded systems rely on batteries as their source of 

energy, and hence, low power consumption is inherently 

essential for them. In processor-based embedded systems, a 

large portion of power is consumed for accessing instruction 

memories (including on-chip caches and off-chip memories), 

register-file, and also in the clock-distribution tree. 

Encapsulating critical computation subgraphs as application-

specific instruction set extensions is an effective technique to 

reduce above-mentioned accesses and execution time (clock 

energy) and consequently, enhance the energy efficiency of 

these systems. However, the addition of custom functional 

units to the base processor is required to support the execution 

of custom instructions, which due to the increase of 

manufacturing and design costs in new nanometer-scale 

technologies and shorter time-to-market it is becoming an 

issue. To address these issues, in our proposed approach, the 

custom functional units are replaced with a reconfigurable 

functional unit and instruction customization is done after 

chip-fabrication. Therefore, while maintaining the flexibility of 

a conventional microprocessor, the energy reduction feature 

of customization is utilized for enhancing the energy 

efficiency. Our reconfigurable functional-unit is capable of 

executing custom instructions with multiple exits, resulting in 

15% more energy saving compared to the single-exit 

counterpart. Moreover, two custom instruction invocation 

techniques are compared in terms of energy saving. 

Experimental results show up to 79% reduction (37% on 

average) energy saving on MiBench benchmark suit. 

 

1. Introduction 
The requirement of portability of embedded systems places 

severe restrictions on power consumption. Even though battery 

technology is improving continuously and processors and 

displays are rapidly improving in terms of power consumption, 

battery life-time and battery weight are issues that will have a 

marked influence on how embedded systems can be used. 

Moreover, more computing power is required by these devices 

for new generations due to more functionality and complexity 

of the supported applications  [24]. Therefore, power 

consumption is becoming the limiting factor in the amount of 

functionality and complexity that can be placed in these 

devices. These properties raise the need to increase the energy 

efficiency and to extend the battery lifetime of embedded 

systems.  

Hardware/software partitioning  [1] is shown to be effective 

for minimizing the power consumption of embedded 

processor-based systems. Other effective techniques to 

enhance the efficiency of these systems, are using Application 

Specific Instruction set Processors (ASIPs) or extensible 

processors  [3] [4] [13] [14] [15] [16]. A custom instruction (CI) 

encapsulates the computation of a frequently executed 

subgraph of the program’s dataflow graph (DFG). Using CIs 

results not only in more speedup but also less energy 

consumption  [2] [3] [4], due to reducing accesses to different 

components of the base processors (e.g. memories, decoder, 

register file, etc) and the execution time (i.e. less clock 

energy), compared to a conventional embedded 

microprocessor. The targets of these approaches are custom 

hardware. Although performance/energy efficiency can be 

obtained through custom hardwired implementation, however 

it impacts flexibility. Moreover, the time and cost of designing 

and verifying a base processor with augmented custom 

hardware, causes many issues associated with designing a new 

processor from scratch, such as longer time-to-market and 

significant NRE (Non-Recurring Engineering) costs, specially 

that the NRE  and design costs keep on increasing for the new 

technologies  [5] [24]. Therefore, reconfigurability is becoming 

more important in future embedded processors  [6]. 



Although reconfigurable hardware consumes more energy 

compared to custom hardware, still it shows the potential in 

energy reduction while maintaining the flexibility 

 [7] [8] [9] [10] [11] [12].  

In this paper, we describe our proposed ADaptive 

EXtensible processOR (ADEXOR) in which, CIs are 

generated and added after chip-fabrication automatically. To 

cover higher percentage of dynamic instructions, unlike other 

methods for identifying and generating optimal set of CIs such 

as  [13] [14] [15] [16] that focus on CIs with a single entry and a 

single exit, we propose CIs with single entry but multiple exits. 

Consequently, the proposed multi-exit CIs (MECIs) can cover 

hot directions of several branches into the CI without being 

limited to selecting just one or all of the directions. This brings 

about larger CIs, more instruction level parallelism (ILP), 

hiding branch misprediction penalty and reduction in accesses 

to the branch predictor. MECIs can cover both directions of 

branches if both are hot. Moreover, we use a coarse-grain 

reconfigurable functional unit (referred in this paper as CRFU) 

instead of custom functional units, which brings flexibility and 

enables to support more CIs. The conditional execution is 

supported by the CRFU to handle multi-exit feature of the 

proposed CIs. Experimental results show that using the 

proposed approach the energy consumption can be reduced up 

to 79% and 37% in average, while providing flexibility and 

compatibility. The contributions of this paper are 1) energy 

evaluation of the proposed architecture, 2) showing its 

effectiveness on energy reduction, 3) comparing two MECI 

invocation techniques in terms of energy saving, and 4) 

showing the effectiveness of proposed MECIs over CIs limited 

to one basic block on energy efficiency enhancement. 

 

2. Related Work 
The conventional embedded microprocessors are the most 

flexible devices for implementing embedded and mobile 

systems, however their energy consumption is very high. One 

solution is moving frequently executed portions of the 

applications to custom hardware.  

Henkel  [1] presents an approach that minimizes the power 

consumption of embedded core-based systems through 

hardware/software partitioning among a processor and ASICs. 

A concept of instruction subsetting is introduced in  [2] to 

create an ASIP from a more general processor. This work 

defines the notion of instruction subsetting and explores its use 

as a means of reducing power consumption from the system 

level of design. The work in  [3] describes an automatic 

methodology to select CIs to augment an extensible processor, 

in order to maximize its performance/energy efficiency for a 

given application program. Biswas et al., present an instruction 

set extension identification technique in  [4] that can 

automatically identify state-holding custom functional units, 

thus being able to reduce memory traffic from cache and main 

memory to improve performance and reduce energy. 

Significant manufacturing and design cost and shrinking time-

to-market are becoming issues for these approaches  [5] [24].  

Wan  [7] presents a fine-grain loosely-coupled 

reconfigurable architecture template for low-power digital 

signal processing, and then an energy conscious design 

methodology to bridge the algorithm to architecture gap. Stitt 

 [8] describes a loop-oriented partitioning for moving critical 

code from software to a fine-grain loosely-coupled accelerator. 

They show the effectiveness of their proposed method in 

energy reduction as well as obtaining higher speedup. XiRisc 

 [9] is a VLIW processor with a tightly coupled fine-grain 

reconfigurable functional unit. Mapping computation intensive 

algorithmic portions on the reconfigurable unit allows a more 

efficient elaboration, thus leading to an improvement in both 

timing performance and power consumption. Fine-grain 

accelerators allow for very flexible computations, but they 

consume more energy, have a longer latency and 

reconfiguration time compared to coarse grain counterparts. 

Furthermore, they need a larger amount of memory (more 

energy consumption) for storing configuration bits. 

CRISP  [10] is a coarse-grain reconfigurable instruction 

set processor designed for multimedia applications. Its 

reconfigurable functional unit is composed of complex blocks 

such as ALUs and is tightly coupled with the base processor. 

Average 2.5 times the performance of a RISC processor is 

achieved with an average of 18% energy increase. In  [11] a 

new low-power Processor-In-Memory-based 32-bit 

reconfigurable datapath optimized for multimedia applications 

is presented. They also show the effectiveness of 

reconfigurable accelerator for reducing energy. Almost all of 

the proposed reconfigurable processors and systems need new 

programming model, new compiler, source code modifications, 

or new opcode for CIs which results in binary or object code 

incompatibility.  

The method proposed in  [12] shows the effectiveness of 

dynamic hardware/software partitioning on energy reduction, 

using binary code instead of high level or source code. 

However, it needs online profiler and hardware for dynamic 

optimization and synthesis. In this method loops are 

accelerated on their proposed fine-grain configurable logic. 

In our approach a coarse-grain reconfigurable functional 

unit is used, however to make it more energy efficient, the 

amount of augmented hardware is evaluated through a 

quantitative approach  [17]. In the proposed architecture there 

is no need to a new programming model, new compiler, or new 

opcodes which obviate rewriting or recompiling the source 

codes. Consequently, our approach maintains binary 

compatibility and is applicable to cases where the source code 

is not available. To obviate extra hardware for online profiler, 

dynamic optimization and synthesis, two phases are defined. 

 



3. Overview of ADEXOR Architecture 
ADEXOR is composed of four main components: i) a base 

processor which is a 4-issue in-order RISC processor, ii) a 

coarse grain reconfigurable functional unit (CRFU) whose 

functions and connections are controlled by configuration bits, 

iii) a configuration memory for keeping the configuration bits 

of the CRFU for each MECI and iv) counters for controlling 

the read/write signals of the register file and selecting between 

ALUs and the CRFU (Fig. 1).  
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Figure 1. Integrating the base processor with the CRFU 

 

In order not to increase the number of read/write ports of the 

register file, it is shared between CRFU and ALUs. To make 

the CRFU inactive while application is running on the base 

processor and also inactivate ALUs while MECIs are executed 

on the CRFU, two sets of input registers have been considered 

for the ALUs and the CRFU, with complement enable signal. 

The CRFU is in parallel with ALUs. It is fully combinational 

and is based on matrix of functional units (FUs) with eight 

inputs, six outputs and 16 FUs (Fig. 2). The CRFU reads 

(writes) from (to) register file. The CRFU is assumed to be 

multi-cycle to avoid becoming the critical path of the circuit. 

The required execution cycles for running MECIs on the 

CRFU is variable and depends on the depth of the DFG of 

each MECI and the clock frequency of the base processor 

which is kept as part of configuration bit-stream. 

 
Connections from input ports to

inputs of the rows

CRFU Input Ports

CRFU Output Ports

Outputs of 1st  row to the
inputs of 3rd, 4th and 5th rows

Outputs of 2nd row to the
inputs of 4th and 5th rows

Row1

Row5

Configuration
bits

Configuration

bits

Configuration
bits

FU FU FU FU

 
Figure 2. Proposed architecture for the CRFU 

 

When a MECI is detected in the object code, the required 

clock cycles for executing the corresponding MECI is loaded 

from configuration memory into the counters. For the specified 

clock cycles the counters select the configuration bits to enable 

the required input and output registers of the MECI for the 

CRFU and its inputs and outputs. 

Each FU of CRFU can support fixed-point instructions of 

the base processor except multiply, divide and load. It can 

support MECIs including at most one store. CRFU uses 

configuration memory to update the program counter (PC) and 

find the valid exit point, after executing each MECI. The 

specifications of the CRFU have been determined using a 

quantitative approach  [17]. In our quantitative approach, first 

the MECIs were generated for 21 applications of Mibench  [20] 

without considering any constraints (i.e. number of inputs, 

outputs, FUs, connections and etc). Then according to the 

mapping rate (which shows the percentage of the generated 

MECIs for 21 applications that can be mapped on the CRFU 

considering their execution frequency and execution time of 

each application) different constraints such as number of 

inputs, outputs, FUs and etc are determined for the CRFU. The 

result is the proposed architecture for the CRFU in Fig. 2, for 

which 81.34% of generated MECIs for 21 applications can be 

mapped on it. The remaining 18.66% of generated MECIs are 

partitioned to smaller and mappable MECIs using our 

proposed integrated mapping-temporal partitioning framework 

 [19]. The CRFU can support conditional execution via 

conditional data selection which is required for executing 

MECI  [17]. 

Two phases have been defined for using ADEXOR: 

configuration phase and normal phase (Fig. 3). In the 

configuration phase, which is done offline, target applications 

are run on an instruction set simulator (ISS) and profiled at 

binary level. Then, the start addresses of hot basic blocks 

(HBBs) are detected. An HBB is a basic block with an 

execution frequency more than a given threshold. MECIs are 

generated by linking HBBs. Mapping the MECIs to generate 

configuration bits for the CRFU is done in this phase as well. 

In the normal phase, the CRFU, its configuration memory and 

counters are employed for executing MECIs.  
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Fig. 3. Different phases for designing and using ADEXOR 

 

4. Generating Multi-Exit Custom Instructions 
 

4.1. Motivation example 
Fig. 4 shows the control flow graph (CFG) of the main loop in 

adpcm [20]. The number of instructions in each blocks range 

from 1 to 6 with an average of 2.24 instructions. Each block is 

quite small, as shown by these numbers therefore, extending 



custom instructions over a basic block helps to cover more 

instructions. Continuous red arcs are hot directions (with an 

execution frequency greater than a given threshold) and dotted 

black ones are not. Both directions are hot for the majority of 

the branches. In these cases, covering both directions of a 

branch can aid the creation of larger CIs, hence more 

parallelism, as well as eliminate branch misprediction 

penalties, and reducing accesses to the branch predictor. In 

extensible processors with custom functional units, because the 

amount of augmented hardware can be determined by the 

designer before fabrication and since handling CIs with single 

exit is easier, the designers prefer to select single entry-, single 

exit subgraphs as a CI. However, in our case because the 

hardware resources (CRFU) are fixed, in order to be able to 

extend CIs over basic blocks effectively and use the available 

hardware (CRFU) efficiently, MECIs are proposed.  
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Figure 4. Control flow graph of main loop in adpcm 

 

4.2. Generating MECIs 
Fig. 5 shows the chain of main functions and tools that are 

used for generating MECIs. First the applications are run on 

the ISS (1) and profiled at binary level (2). Using the profiling 

data, the HBBs are detected (3) and linked to make hot 

instruction sequence (HIS). MECIs should not cross loop 

boundaries. Therefore, first, hot loops are detected and sorted 

from the innermost loop to the outermost in the ascending 

order of their start addresses. To generate a HIS, the start 

address of the first HBB of the loop is passed and checked 

whether it has been covered by previous MECIs or not. If it 

has not been covered, the HBB is read from the object code (4) 

and added to the current HIS. For each HBB the last 

instruction is checked. If the not-taken direction is hot the 

HBB in the not-taken is added to the HIS. If the taken 

direction is hot, the HBB in taken direction is added and if 

both taken and not-taken are hot, both are added to the HIS 

using a recursive function. This process is repeated for each 

new added HBB until HIS reaches to the end (terminal) points 

in all directions. When generating HIS is done for the loops, 

similar process is continued for the remaining HBBs (5).  

Then the control dataflow graph (CDFG) is generated (6) 

and passed to the MECI generator. In current implementation, 

each MECI can include only fixed-point instructions except 

multiply, divide and load. It can support at most one store 

instruction, up to five branches and four exit points. The exit 

points of a MECI are: i) branch with only one hot direction, ii) 

indirect jump, return and call, iii) hot backward branch and iv) 

an instruction where its next instruction is non-executable. 

Executable instructions are those instructions that can be 

executed by the CRFU and non-executable (i.e. floating point, 

load, divide, multiply, second store) are those that are not 

supported by the CRFU. 

MECI generator looks for the largest subgraph that can be 

executed on the CRFU, in the CDFG. Then, after checking the 

flow-, anti-, and output-dependence, executable instructions in 

each HBB are moved and added to the entry point (head) and 

exit point(s) (tails) of the detected subgraph (7). For those 

parts that instructions are moved, the object code is rewritten. 

Then it is passed to the integrated framework  [19] to partition 

large MECIs to mappable MECIs on the CRFU (9). Next, 

generated MECIs are mapped on the CRFU. 
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Fig. 5. Tool chain for generating MECIs 

 

To insert MECIs into the instruction stream and remove the 

individual instructions from the stream at the normal phase, 

two MECI invocation techniques are used. In the first method 

the entry point instruction of the subgraph of each MECIs is 

overwritten by mtc1 (move to coprocessor) instruction in the 

object code to flag the start of a MECI. In the normal phase 

when the mtc1 is decoded, its operand is used for indexing and 

loading configuration bits from configuration memory of the 

CRFU for the corresponding MECI. 

In the second approach a hardware called sequencer is 

utilized. The sequencer is a table (a context address memory or 

CAM) that keeps the address of logically previous instructions 

of MECIs. The sequencer is initialized at the configuration 

phase. In the normal phase for each access to the instruction 

cache, the program counter is applied to the sequencer. For a 

hit the corresponding data is used for indexing the 

configuration memory to load the configuration bits of the 

MECI on the CRFU. 

 

5. Energy Consumption Evaluation Model 
In 180nm (our target technology) the leakage power is 

negligible compared to the active power  [23], therefore, it has 

been neglected in our model. The energy consumption of the 

base processor comprises from three main parts: i) energy of 

the clock-tree, ii) energy of different components of the base 

       hot path 

       non-hot path 



processor, and iii) energy for accessing off-chip memory. The 

energy of clock-tree is the product of number of execution 

clock cycles and the energy for each clock pulse. The energy 

of each component is measured by number of accesses to each 

component times the energy of each access and finally, the 

energy of off-chip access is the product of number of misses of 

instruction and data caches and energy for each off-chip access 

(Eq. (1)). 
 

Base Processor Energy = (num_exec_cycle * energy(clock)) 

+∑
comp

compenergycompaccessnum )(*)(_  +  

(icache_miss+ dcache_miss) * energy_off_chip_access           

Eq.(1) 
                                                                                                                                          

where    energy(X) = power(X) * clock_period             Eq.  (2) 

 

The num_access(comp) and power(comp), respectively are 

number of accesses and power consumption of different 

components of the base processors (e.g. instruction and data 

caches, integer and floating point ALUs, result bus, register 

file, and etc) which are obtained through running each 

application on the Wattch  [21]. The num_exec_cycle, 

icache_miss, and dcache_miss, which show the number of 

execution clock cycles for an application, number of 

instruction and data cache misses, are obtained using Wattch as 

well. The penalty for each miss is assumed to be 20 cycles and 

according to  [22] the energy for each off-chip access is 

considered to be 40nJ. The target of Wattch has been set for 

180nm technology. The clock_period is clock period of the 

base processor. Five different clock_period fvalues are 

examined in Section 5.   

The energy of ADEXOR is calculated similar to the base 

processor, which is added to energy overhead (due to the 

CRFU, and configuration memory). The numbers of accesses 

to different components (Anum_access), instruction cache miss 

(Aicache_miss), and execution clock cycles 

(Anum_exec_cycle) changes due to the execution of MECIs on 

the CRFU (Eq. 3). The MECIs do not affect the number misses 

of data cache. The Energy_Overhead is the energy overhead of 

ADEXOR due to the extra hardware. 

 

ADEXOR Energy = Anum_exec_cycle * enrgy (clock) +  

∑
comp

compenergycompaccessAnum )(*)(_  +  

(Aicache_miss+dcache_miss)*energy_off_chip_access  +  

Energy_Overhead                                            Eq.  (3) 

 

It was mentioned that the CRFU has six outputs but Fig. 1 

depicts that it has four outputs. To support CRFU with six 

outputs without increasing the number of write ports of the 

register file, two registers have been added to the CRFU. 

When a MECI has more than four outputs, four of them are 

written in one cycle and the remaining ones in the next cycle. 

Therefore, for executing MECIs with more than four outputs 

(comprising around 13.2% of MECIs generated for 21 

applications), one more clock cycle is needed. 

The number of execution clock cycles for ADEXOR 

(Anum_exec_cycle) comprises of two parts.  

 
Anum_exec_cycle = num_exec_cycle_W/O_MECI  +  

Clk_MECI_CRFU(clock_period)                            Eq.  (4) 

 

num_exec_cycle_W/O_MECI is the number of execution 

clock cycles for running those portions of the application that 

are executed on the base processor and Clk_MECI_CRFU is 

number of clock cycles required  for executing MECIs on the 

CRFU. Clk_MECI_CRFU depends on the clock frequency of 

the base processor because, for faster clock frequencies more 

clock cycles are required for executing MECIs on the CRFU. 

Therefore, the total energy of clock for ADEXOR is calculated 

utilizing the following equation:   

 

Total energy clock = (num_exec_cycle_W/O_MECI + 

(NCLK_GATING*Clk_MECI_CRFU)) * energy(clock)          

Eq.  (5) 

 

The CRFU is fully combinational therefore there is no need 

to the clock for executing MECIs on the CRFU. If the clock 

can be gated while executing MECIs on the CRFU, 

NCLK_GATING will be zero, otherwise it will be one.  

The energy overhead of mtc1 MECI invocation technique 

has three main terms. The first term relates to the register file. 

Because the register file has been shared between ALUs and 

the CRFU, its fan-out has been doubled therefore, we assume 

that each access to the register file consumes two times more 

energy compared to the base processor without the CRFU. The 

second term corresponds to the CRFU which is the summation 

of the product of its power and its delay for each execution of a 

MECI. The final term is the energy of the configuration 

memory which is the energy for each access times the total 

execution of MECIs for the target application (Eq.  (6)).  

 

mtc1_energy_overhead =  

((Anum_access(regfile) * energy(regfile) + 

( ∑
=

MECIs

i

ifreqexec

#

1

*)(_ ((CRFU_power * CRFU_delay) + 

Config_Mem_Energy) *OVH_FACT )           Eq.  (6) 

 

#MECIs is the number of MECIs generated for each 

application and exec_freq is the execution frequency of each 

MECI. The VHDL code of the CRFU was developed and 



synthesized using Synopsys tools and Hitachi 180nm library. 

The area of the CRFU is 2.1 mm
2
. Since each FU output can 

be accessed directly via the output ports of the CRFU and also 

the depth (length of critical path in the DFG) of each MECI is 

known after mapping hence, we can have a CRFU with 

variable latency in which the latency depends on the depth of 

each MECI. The delays of the CRFU for MECIs with various 

depths from 1 to 5 are 2.2 ns, 4.2 ns, 6.1 ns, 7.9 ns and 9.8 ns, 

respectively. The required clock cycles for executing each 

MECI is determined according to the aforementioned numbers, 

depth of its DFG and base processor clock frequency. However 

we assume the worst case for CRFU_delay in Eq. (6) which is 

9.8ns. Verilog-XL from Cadence, Power Compiler from 

Synopsys and 180nm technology cell library from Hitachi were 

exploited to measure the power of CRFU. The power 

consumption of the CRFU is 246.335 mW which is used as 

CRFU_power in Eq. (6). The CRFU needs 375 bits for control 

signals and 240 bits for immediate values and exit points. 

Therefore, each MECI needs 615 bits (~ 80 bytes) in total for 

its configuration. The configuration memory is assumed to 

keep up to 100 MECIs. Therefore, the size of the configuration 

memory is 80x100 bytes SRAM with a 640-bit width data bus, 

so that in one clock cycle the configuration can be loaded to 

the CRFU. The configuration memory was modeled using 

CACTI  [18] in 0.18µm. The area is 0.77mm
2
 and the energy 

for each access is 0.198 nJ (ConfigMem_Energy at Eq. (6)). 

The energy overhead of sequencer approach equals the 

energy overhead of mtc1 plus the energy of the sequencer. The 

energy of sequencer is the energy for each access to sequencer 

times the number of access to the instruction cache. 

 

sequencer_energy_overhead = mtc1_energy_overhead + 

(Anum_access(instr_cache)*sequencer_Energy*OVH_FACT)                                              

                                                                                    Eq. (7) 

                                                                           

The sequencer table was modeled using CACTI. The area 

of the sequencer is 0.61 mm
2
 and the energy for each access is 

0.29 nJ (Sequencer_Energy). 

In mtc1 the energy overhead is less compared to the 

sequencer, due to less required hardware, however the 

disadvantage is that the mtc1 instruction itself should be 

fetched and decoded. The other advantage of sequencer is that 

the object code does not need to be modified. 

Since the energy of the base processor, the CRFU, 

configuration memory and the sequencer have been measured 

using different tools, a factor has been considered for the 

energy overhead (OVH_FACT). The effect of this coefficient 

on the total energy reduction is studied in the next section. The 

access reduction and energy reduction used in the next section 

are measured using the following equations. 

 

access reduction(X )= 
)(_

)(_)(_

Xaccessnum

XaccessAnumXaccessnum −
 * 100   

energy reduction  =
energyprocessorbase

energyADEXORenergyprocessorbase

__

___ −
 * 100 

 

6. Evaluation Results 
The configuration of the base processor is in Table 1. We tried 

21 applications of Mibench  [20]. 

 
Table 1. Base processor configuration 

Issue 4-way 

Level-one Instruction Cache 

(2-way) and Data Cache (4-way) 

16KB, 1 cycle for hit, 20 

cycles for miss 

Execution units 4 integer, 4 floating point 

Multiplier (int, floating),  

Divider (int, floating) 

(1, 1) 

(1, 1) 

Branch predictor bimodal 

Branch prediction table size 2048 

Extra branch misprediction 

latency 

3 cycles 

 

● Component accesses reduction 

Fig. 6 shows the percentage of access reduction for different 

components of the base processor when sequencer is utilized. 

Due to collapsing instructions as custom instructions and 

according to the types and instructions that can be supported 

by MECIs, accesses to decoder, branch predictor, register file, 

instruction cache, integer ALUs and result bus are reduced. 

Moreover, due to access reduction to instruction cache, 

number of instruction cache misses and hence off-chip memory 

access is reduced as well. Reduction of instruction cache 

misses is up to 86% for rijndael. As expected, because the 

register file and the result bus have been shared between the 

CRFU and the ALUs, the percentage of their access reduction 

is less compared to the other components. 
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Figure 6. Access reduction to different parts of the base 

processor using the CRFU & sequencer 

 

Specially, for the register file, since before executing each 

MECI all the required input registers for different paths in a 



MECI should be read. avg-seq and avg-mtc1 show the average 

access reduction (for 21 applications) regarding to the two 

proposed MECI invocation approaches: sequencer and mtc1. 

The avg-mtc1 is almost 8% less compared to avg-seq, due to 

the mtc1 instructions execution overhead. The average 

instruction cache miss reduction for sequencer is 22.5% while 

for mtc1 is 6.5%. The average access reduction for register 

file, results bus, branch predictor, and other components are 

27%, 43%, 45% and around 53% using sequencer, 

respectively. 

 

●Clock energy reduction 

Using MECIs and CRFU enhances the performance of the base 

processor, hence less clock cycles (consequently, less energy) 

is needed for executing an application. Fig. 7 shows the 

percentage of clock energy reduction using CRFU compared to 

the base processor without CRFU.  

For higher clock frequencies, the base processor has to 

wait more clock cycles until the execution of a MECI finishes 

on the CRFU. The first bar for each application shows the 

energy saving percentage for clock when clock is gated while 

executing MECIs on the CRFU. Other bars show the energy 

saving for clock considering different frequencies in a case that 

clock gating is not applied but the base processor is stalled 

while the MECIs are executing on the CRFU (for sequencer 

invocation technique). By clock gating 10% more energy can 

be saved compared to a non-clock gating 300MHz frequency 

processor, in average (which is 42.6%). 
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Figure 7. Clock energy reduction 

 

●Total energy reduction 

Fig. 8 shows the total energy reduction for the ADEXOR 

compared to the base processor for different clock frequencies 

and clock gating (for sequencer). The reason for the highest 

energy reduction by adpcm (79% for clock gating) is that it has 

a main loop with 56 instructions, including 12 branches. For 7 

of these branches, both taken and not-taken are hot, so that 

27% of branches are mispredicted. Therefore, a considerable 

percentage of executed clock cycles belong to the penalty of 

the mispredicted branches (18%). For those branches with both 

directions being hot, the MECIs include both directions, and 

hence, the CRFU architecture eliminates cycles related to 

mispredicted branches. Also, since HBBs are linked and longer 

MECIs are generated, more ILP can be extracted. For 

applications like basicmath, susan, patricia, and fft that most 

of the dynamic instructions are floating point, multiply, divide 

and load (69%, 45%, 44% and 57%, respectively), the energy 

reduction is less than average which is already expected since 

those instructions are not covered in MECIs. The average total 

energy reduction for clock gating is 42% and for 300MHz 

clock frequency is 37%. The average of total energy reduction 

for mtc1 is almost 8% less than sequencer.  
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Figure 8. Total energy reduction 

 

●The effect of energy overhead on total energy reduction 

To study the effect of energy overhead on the total energy 

reduction, various values were assigned to the OVH_FACT in 

Eq. 6 and Eq. 7 as shown in Fig. 9. The energy consumption of 

the CRFU is 12.4 times of the configuration memory and the 

energy overhead of the sequencer is 1.7 times of mtc1, in 

average. The results show that for each 10x factor of 

OVH_COEF the average total energy reduction degrades 

almost by 1.3%, 0.8%, 2% and 1.2% considering the 

sequencer with clock gating, mtc1 with clock gating, 

sequencer at 300MHz and mtc1 at 300MHz, respectively. 

Although, the energy overhead of sequencer is more than 

mtc1, still it can save more energy, due to higher coverage of 

dynamic instructions. Even if the energy consumption of the 

base processor becomes 50 times smaller or the overhead 

energy becomes 50 times bigger, for 300MHz clock frequency, 

sequencer approach still can save almost 5% more energy. For 

the 100x factor this number decreases to 1%. 
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Figure 9. The effect of energy overhead on the total energy 

reduction 

 

●MECIs vs. CIs 

To see the effectiveness of MECIs compared to custom 

instructions limited to one HBB (named as CIs), we limited the 

MECI generator to one HBB and regenerated the CIs. Then, 

we redesigned the CRFU using the same quantitative approach. 

The number of inputs, outputs and FUs are the same as before, 

but it has simpler connections, less functions and FUs and does 

not support conditional execution. The area of CRFU reduces 

to 1.15 mm
2
 and its delay for a CI with a critical length of five 

is 7.66 ns. The power also decreases to 206.85 mW. Each CI 

configuration needs 512 bits. Therefore, the energy for each 

access to the configuration memory reduces to 0.16 nJ. Fig. 10 

shows the energy reduction obtained by MECIs and CIs 

compared to the base processor for some applications when the 

mtc1 is used. The energy overhead for MECIs is 2.6 times of 

CIs in average. The results show that MECIs can save 15% and 

12% more energy compared to CIs, correspondigly for clock 

gating and 300MHz clock. Even for an OVH_FACT equal to 

100x the MECIs save 8% and 3.5% more energy compared to 

CIs for the cases of clock gating and 300MHz clock frequency, 

respectively. 
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Fig. 10. Total energy reduction (MECIs vs. CIs) 

 

6. Conclusions 
In order to improve the energy efficiency of processor-based 

mobile computing systems, we proposed an architecture 

framework for an adaptive extensible processor to have the 

flexibility of general purpose processors while utilizing the 

energy reduction feature of custom instructions and 

maintaining the compatibility of the binary code. In this 

architecture, CIs are generated and added after chip 

fabrication. To support post-fabrication instruction set 

customization, the custom functional units are replaced by a 

coarse-grain reconfigurable functional unit. To cover higher 

percentage of dynamic instructions, custom instructions with 

multiple exits are proposed, instead of single exit. Using the 

proposed custom instructions, number of accesses (i.e. energy) 

to different components of the base processor (e.g. instruction 

cache, ALUs, branch predictor, result bus, decoder and register 

file) is reduced as well as the number of misses of instruction 

cache and clock energy. The total energy reduction is 42% 

when clock can be gated while executing MECIs on the CRFU 

in average and 37% for 300MHz clock frequency. Our 

experimental results show that by extending custom 

instructions over multiple HBBs (or using MECIs) the average 

energy saving increases by 15% compared to the custom 

instructions limited to only one HBB.  

 

Acknowledgment 
We would like to thank all members of the System LSI 

Laboratory of Kyushu University for their valuable comments 

during our technical meetings. This research was supported in 

part by Grant-in-Aid for Encouragement of Young Scientists 

(A) 17680005. 

 

References 
[1] J. Henkel, “A Low-Power Hardware/Software Partitioning Approach for 

Core-based Embedded Systems”, DAC 1999. 

[2] W. E. Dougherty, et al., “Subsetting behavioral intellectual property for 

low power ASIP design”, Journal of VLSI Signal Process., 1999. 

[3] F. Sun et al, “Custom Instruction Synthesis for Extensible-Processor 

Platforms”, IEEE Transaction on Computer-Aided Design of Integrated 

Circuits and Systems, 2004. 

[4] P. Biswas et al. “Automatic Identification of Application-Specific 

Functional Units with Architecturally Visible Storage”, DATE 2006. 

[5] T. Sakurai, “Meeting with the forthcoming IC Design”, Keynote 

Address, ASP-DAC 2007 

[6] S. Wong et al., “Future Directions of Programmable and Reconfigurable 

Embedded Processors”, Domain-Specific Processors: Systems, 

Architectures, Modeling, and Simulation, January 2004. 

[7] M. Wan et al., “Design Methodology of a Low-Energy Reconfigurable 

Single-Chip DSP System”, Journal of VLSI Signal Processing, 2001. 

[8] G. Stitt et al., “Energy Savings and Speedups from Partitioning Critical 

Software Loops to Hardware in Embedded Systems”, ACM Transactions 

on Embedded Computing Systems, February 2004. 



[9] A. Lodi et al., “A VLIW Processor with Reconfigurable Instruction Set 

for Embedded Applications”, IEEE Journal of Solid-State Circuits, vol. 

38, no. 11, pp. 1876–1886, 2003. 

[10] F. Barat et al., “Low-Power Coarse-Grained Reconfigurable Instruction 

Set Processor”, FPL 2003. 

[11] M. Lanuzza et al., “Cost-Effective Low-Power Processor-In-Memory-

based Reconfigurable Datapath for Multimedia Applications”, ISLPED, 

2005. 

[12] R. Lysecky et al., “A Study of the Speedups and Competitiveness of 

FPGA Soft Processor Cores using Dynamic Hardware/Software 

Partitioning”, DATE 2005. 

[13] K. Atasu et. al, “Automatic application-specific instruction-set extension 

under microarchitectural constraints”, DAC 2003. 

[14] D. Goodwin et al., “Automatic generation of application specific 

processors”, CASES 2003. 

[15] P. Yu and T. Mitra, “Characterizing Embedded Applications for 

Instruction-Set Extensible Processors”, DAC 2004. 

[16] N. Clark et. al., “An Architecture Framework for Transparent Instruction 

Set Customization in Embedded Processors”, ISCA 2005. 

[17] H. Noori, et al., “Generating and Executing Multi-Exit Custom 

Instructions for an Adaptive Extensible Processor”, Design Automation 

and Test in Europe (DATE), 2007. 

[18] D. Tarjan, et al., Cacti 4.0, HP Laboratories, Technical Report, 2006. 

[19] H. Noori, et al., “Handling Control Data Flow Graphs for a Tightly 

Coupled Reconfigurable Accelerator”, International Conference on 

Embedded Software and Systems (ICESS-07), 2007. 

[20] Mibench, www.eecs.umich.edu/mibench 

[21] D. Brooks et al., “Wattch: a framework for architectural-level power 

analysis and optimizations”, ISCA 2000. 

[22] C. Zhang, F. Vahid, and W. Najjar, “A Highly Configurable Cache 

Architecture for Embedded Systems,” ACM Transactions on Embedded 

Computing Systems, Vol. 4, No. 2, May 2005. 

[23] O. Semenov, et al., “Burn-in Temperature Projections for Deep Sub-

micro Technologies”, International Test Conference, 2003. 

[24] Tohru Furuyama, “Challenges of Digital Consumer and Mobile SoC’s: 

More Moore Possible?”, Keynote Address, Design Automation and Test 

in Europe (DATE), 2007. 


