
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Component search engine using tree-view
interface for tourist blogs

Zeng, Jun
Graduate School of Information Science, Kyushu University

Hirokawa, Sachio
Research Institute for Information Technology, Kyushu University

https://hdl.handle.net/2324/833704

出版情報：Proceedings of 2011 3rd International Conference on Awareness Science and
Technology, iCAST 2011, pp.331-335, 2011-12-01
バージョン：
権利関係：

1http://www.welcomekyushu.jp/

Component Search Engine using Tree-View Interface

for Tourist Blogs

Jun Zeng

Graduate School of Information Science,

Kyushu University

Fukuoka, Japan

sousyun_kyusyu@yahoo.co.jp

Sachio Hirokawa

Research Institute for Information Technology,

Kyushu University

Fukuoka, Japan

hirokawa@cc.kyushu-u.ac.jp

Abstract— The existing search engines return the whole web

pages as the search results, which make user spend extra time to

read the useless information before finding the information they

really want. We propose a novel search engine model called

“Component Search Engine”, which can return the contents

satisfying user’s query rather than the whole pages. For

achieving the purpose, we adopt a Tree-View interface to display

the results. Through usability study, we determinate that

Component Search Engine using Tree-View interface can

improve user’s searching experience and efficiency.

Keywords- Component; Search Engine; Tree-View; Tourism

Blog

I. INTRODUCTION

The existing search engines, such as google, yahoo and
baidu, always return the whole web pages as the search results,
which is not easy for uses to find out the useful information at a
glance. That’s because the web pages often contain many
irrelevant contents such as advertisement, navigation, menu
and so on, which are called as “noise”. There are already many
researches on efficient content extraction from web pages.
Perhaps, it will get satisfying results, if the pages have a
uniform template (for instance, the news web pages).
Nevertheless, there are massive web pages which have
personalized templates instead of a uniform template, such as
Wiki and Blogs. It’s difficult to extract the information that the
users really want, even though the noise has been removed. It is
because that the Wiki and Blog pages may contain several
main contents that may be irrelevant to each other. For example,
there are three articles A, B and C in one blog page, which
have different contents (A is an editorial comment, B is a diary
and C is a travel note about Japan). Consider the query “where
is interesting in Japan?”. Assume that only article C can satisfy
the user’s query. Obviously, all of the three articles will be
extracted as main contents by the existing information
extraction approaches. However, in order to find out the
article C, the user has to spend extra time in reading article A
and B, which is useless for the user. In this case, article A and
B may be considered as noise by the user. Moreover, in
contrast to advertisement and navigation, perhaps this kind of
noise is more indistinguishable. It’s almost impossible to adapt
for different users’ needs in any case by existing information
extraction approaches.

To solve problem mentioned above, in this paper we
propose a novel search engine model called “Component
Search Engine”, in which the search results are not the whole
web pages any more, instead, only the contents satisfying users’
query in the page will be returned as search results. For
achieving the purpose, we adopt a Tree-View Interface to
display the search results, which can help users to acquire the
information needed easily and efficiently.

The authors of this paper have been working on novel
search engine models [1], [2]. The tourism blogs of site
“Kyushu seifuku Blog”

1
 were chosen to analysis the

effectiveness of the models. We collected 1,303 blog entities
and saved as html files and extracted 136,368 components from
these blog.

II. RELATED WORKS

 There are two kinds of search engines – a vector space

model based keywords search engine and semi-structured

documents search engine. The vector space model is an

algebraic model for representing text documents as vectors of

identifier. With the increasing of HTML/XML documents,

semi-structured documents search engine has gained more

attention. Moreover, it has been an issue to integrate the two

kinds search engine. Therefore, there is a large body of related

work in content identification and information retrieval from

HTML/XML documents.

 Gupta et al. [3] developed a DOM tree based framework

that employs easily extensible set of techniques that

incorporate advantages of previous work on content extraction.

Cai-Nicolas et al. [4] presented an approach to extract content

from news Web pages in an unsupervised fashion, which is

based on distilling linguistic and structural features from text

blocks in HTML pages. Lei et al. [5] presented a method

which combines webpage layout analysis with DOM tree rule-

base method.

However all of these papers just presented how to extract

the contents effectively and accurately, rather than consider

the users’ needs. Because the useful contents are relative, it

will change with change of users’ needs. Therefore, we won’t

try to extract the useful contents, but score the contents.

According to the score, the contents that satisfy user’s need

will get high rankings among the search results.

 As the prior study of Component Search Engine, Hirokawa

et al. [6] proposed a component-based search engine in which

the content components gain a high score in the search results.

Moreover he ranked the search results according the score of

each page. However, he didn’t realize the real component

search, because the unit of search results was still web page,

not the components.

III. COMPONENT SEARCH ENGINE

A. Definition of Component

A web page can be divided into many blocks. In this paper,
we call these blocks as “components”. Figure 1 shows a blog
page. This page contains Logo (A), Navigation (B), Article (C),
Search Box (F) and Advertisement (G). Also, (C) contains Title
(D) and Text Area (E). We call A~F as components of the blog
page. Some components can be divided into smaller
components, for instance, C can be divided into D and E. In
this case, we call D and E as “sub-components” of C. Fig. 2
shows the HTML-Tree architecture of the blog page. Each
component has a corresponding HTML-tag and each HTML-
tag has a unique X-path [7]. For example, the X-path of
component D is “html/body/div[3]/div”. So a component can
be located by a URL of the web page and an X-path of HTML-
tag. Therefore, we define a component of a web page as
follows:

 (1)

Where U is the URL of the page, Pi is the X-path of ith
HTML-tag, I is the total number of HTML-tags in the page. If
Compi is a sub-component of Compj, we define

 (2)

Figure 1. A Blog Page

B. Component Index

In order to realize the Component Search Engine, we need

to build a component index that is different from page index

used by existing search engines. We pay our attention to the

leaves of HTML-trees which do not have any sub-components.

We call this kind of component as “leaf component”. It can

guarantee that the content of each component is unique.

Therefore, we divide a web page into leaves of HTML-tree

and build the component index. Figure 3 shows a fragment of

component index.

The lines beginning with “@” present the identifier of a

component. For example, “@ 1-12” means the 12th leaf

component of the page whose id is “1”. The other lines present

the index keywords and their frequencies. The keyword

beginning with “h:” is the id of the HTML file, and the

keyword beginning with “p:” is the X-path of component.

Figure 2. HTML Tree

…
@ 1-12
1 h:1
1 p:/html/body/div[2]/div/div/p[1]/
1 what
1 can
1 one
1 …

@ 1-13

1 h:1

1 p:/html/body/div[2]/div/div/p[2]/

1 most

1 hotel

1….
.
.
.

Figure 3. Fragment of Component Index

C. Ranking Search Results

The usefulness of a search engine depends on the relevance
of the result set it gives back. While there may be a large
number of web pages that include a particular word or phrase,

B

A

C
D

E

F

G

A

B

C

E

D

F

G

some pages may be more relevant, popular, or authoritative
than others. Most search engines employ methods to rank the
results to provide the "best" results first. Therefore, ranking the
search results is a necessary step for developing a web search
engine. The existing search engines just sort the web pages
through some algorithm (for instance, PageRank of Google).
However, in Component Search Engine, the component is the
unit of search results, so we must sort the components as well.
Therefore, we divide the task into two steps – ranking pages
and ranking components. Figure 4 shows the process of
ranking the search results.

Figure 4. Fragment of Component Index

1) Ranking pages: For sorting the pages, we introduce a

formula for calculating the score of pages as follows[6]:

 (3)

Where Ci is the ith leaf component in page P, NW(Ci) is the
number of the distinct words in component Ci, Depth(Ci) is the
length of X-path of component Ci, and N is the total number of
leaf components in page P. For example, if the X-path of
component Ci is “/html/body/div[2]/div/div/p[1]/”, then
Depth(Ci) will be 6. If a page gains a higher score, it will
appear in a higher ranking.

2) Ranking components: We introduce another formula to

calculating the score of each component in page P as follows:

 (4)

The formula is for calculating all the components in page P,
so Ck is the kth component (not only the leaf component) and K
is the total number of components in page P. Depth(Ck) is the
length of X-path of component Ck. If component Ck is a leaf
component, NK(Ck) will be “1” when Ck contains keyword,
otherwise NK(Ck) will be “0”. If Ck is not a leaf component,

NK(Ck) will be the sum of leaf components Cj where Cj ⊂ Ck

and NK(Cj) =1. If a component gains a higher score, it will
appear in a higher ranking.

The formula (4) is based on the hypothesis that the
component which contains the keyword is more likely to
contain the content that can satisfy user’s need. In this case,
the root component may be considered as the most important
component because it contains all of the contents, but it is
against the purpose of component search. So we add
ln(Depth(Ck) + 1) to avoid this case. Consequently, only the

useful components can gain high scores and appear in high
ranking.

IV. USER INTERFACE DESIGN

A. Design Goal

The goal of component search is to help user to get the
useful information at a glance. This is also the goal of user
interface design. As the principles, interface design should
organize the user interface purposefully, in meaningful and
useful ways. Therefore, we will adopt the interface form that is
easy to understand as far as possible. We divide the user
interface into two stages: search result list and detail pages. In
this section, we use the blog data mentioned in Section I to
introduce the interface of component search engine.

B. Search Result List

First, we enter a query by using the keyword “麺” (noodle).

Figure 5 shows interface of the result list of the query. This
page displays the top ten results, but here we only show the top
three of them because of the page limit. Each result contains
two parts: title and component. The “Title” displays the title of
each blog. When user clicks the link of each title, the detail
page will be opened. The “Component” displays the top
component of each blog through the ranking algorithm
mentioned in Section III. Generally, the search result list page
is similar with the existing search engines such as google, bing
etc. That’s because users have become accustomed to this way
for displaying the result list.

Figure 5. Search Result List

C. Detail Pages using Tree-View Interface

Tree-View is an intuitive and common form of user
interface. Through ordinary users may do not known about
HTML-tree architecture, however, they may be no stranger to
Tree-View, since they may use folder tree of windows OS
everyday. Moreover, Tree-View makes it possible to organize
the information in the groups formed with related elements. [8]
Therefore, it is very suitable for the Component Search Engine.

Query

Ranked list of

Pages

Ranked list of

components

Component

index

Ranking

pages

Ranking

components

麺

（noodle）

Result 1

Result 2

Result 3

 Title

Component

Figure 6 shows an example of the detail page. In contrast to
the traditional search engines, the detail page contains three

parts, rather than just displays the original page. Part ① is the

original page of search result. Part ② displays the Tree-View

of HTML-tree of the page on the left. If the node contains
keyword there will be a “smile face” on the node, which can
help user to find the sentences containing keyword quickly.

Part ③ displays the contents of the top ranking component.

Initially, only the node that corresponds to the top ranking
component is open, and the other nodes are closed. User can
click any node he likes, and the contents that the node contains

will be displayed in part ③. Also, user can click the “default”

button to display the top ranking component again.

Figure 6. Detail Page Using Tree-View Interface

V. USABLITY STUDY

A. Methodology and Procedure

To evaluate the usability of Component Search Engine, we

introduce a usability experiment. We developed two search

engines, one is Component Search Engine (C-Search), and the

other one is a Normal Search Engine (N-Search) without

component ranking and Tree-View used detail page, also the

latter one don’t display the useful component in the search

results. We collected 1,303 tourism blogs from the site

“Kyushu seifuku Blog” as experimental data. 10 participants

joined in the experiment. Before the experiment, we

introduced participants the features of Component Search

Engine, since every one has not used the Component Search

Engine before. We design the task of usability experiment as

follows:

 First, participants use C-Search and N-Search to search
the information. They must choose tourism-related
keywords, since the experiment data are tourism blogs.

 Second, participants browsing the detail pages of
search results. They must find and save all the
sentences containing the keyword. Every participant
must browse 10 pages: C-Search 5 pages and N-Search
5 pages.

And then we recorded the following information:

1) URL: URLs of blogs that participants browsed;

2) Keyword: Keywords that participants chose;

3) Sentence: Sentences that participants found and saved

4) Time: The time from participants begin to browse a

detail page to they found out all of the sentences.

B. Results and Analysis

We got 100 experiment records: C-Search 50 records and

N-Search 50 records. The experiment is based on the

hypothesis that the component which contains the keyword is

more likely to contain the content that can satisfy user’s need.

Therefore, we ask the participants to find and save the

sentences containing the keywords. By analyzing the time

spent, we can evaluate if the Component Search Engine can

improve user’s searching experience and efficiency.

Before analyzing the time spent, it is necessary to judge

whether the records are valid or not. That’s because

participants might be cursory when they were doing the

experiment. They might not find out all the right sentences or

just use Ctrl+A & Ctrl+C to copy all the sentences. Therefore,

we introduce two parameters as follows:

 (5)

 (6)

 Where TS is the total number of sentences that contain

keyword in page P, TS
’
 is number of sentences that are found

by participants and contain keyword in page P, NS
’
 is the

number of sentences that are found by participants and don’t

contain keyword in page P. We consider that only the records

that R1 (P) > 0.8 and R2 (P) < 0.2 are valid records. TABLE I

shows the number of valid records in this experiment. Finally,

we got 88 valid records: C-Search 46 and N-Search 42.

TABLE I. NUMBER OF VALID RECORDS

 C-Search N-Search

R1 (P) > 0.8 & R2 (P) < 0.2 46 42

TABLE II. TIME SPENT

 C-Search N-Search

Average Time 47.5 sec 98.2 sec

Min Time 15 sec 35 sec

Max Time 85 sec 103 sec

 TABLE II shows the time spent when participants tried to

find the sentences containing keyword through C-Search and

N-Search. It is obvious that participants have spent less time to

find out the sentences containing keyword when used

Component Search Engine. These results determinate that

Component Search Engine can improve user’s searching

experience and efficiency.

①

③

②

VI. CONCLUSION AND FUTURE WORKS

The existing search engines always return the whole web
pages as the search results, which make user have to spend
extra time to read the useless parts of the pages. In this paper,
we proposed a novel search engine model called “Component
Search Engine”. In this search engine, the unit of search results
is component, rather than the whole web page. For achieving
the purpose, we not only rank the pages, but also rank the
components. In order to make the search results easy to
understand, we adopt a Tree-View Interface to display the
detail pages of search results. The usability study determinates
that Component Search Engine can help users to find the
information needed easily and efficiently.

In the future we plan to analyze user’s keyword to find out
user’s need. According the user’s need, we can improve the
ranking approach, so as to better meet the user’s demand.

VII. ACKNOWLEDGMENT

The authors appreciate many comments and discussion by
the members of the laboratory. Particularly, we thank Prof.
Itou, Prof. Nakatoh and Prof. Yin.

REFERENCES

[1] X. Wu, S. Hirokawa, C. Yin, T. Nakatoh, Y. Tabata, Extraction and

Comparison of Tourism Information on the Web, Proc. AROB2011,
2011

[2] C. Yin, T. Nakatoh, S. Hirokawa, X. Wu, J. Zeng, A proposal of search
engine ”XYZ” for tourism events, Proc. JCAI2010, 2010

[3] Gupta, S., Kaiser, G., Neistadt, D. and Grimm, P., DOM-based Content
Extraction of HTML Documents, in the proceedings of the 12th World
Wide Web conference (WWW 2003), Budapest, Hungary, May 2003.

[4] Cai-Nicolas Ziegler, Michal Skubacz, Content Extraction from News
Pages Using Particle Swarm Optimization on Linguistic and Structural
Features, WI '07 Proceedings of the IEEE/WIC/ACM International
Conference on Web Intelligence, 2007.

[5] Lei Fu, Yao Meng, Yingju Xia, Hao Yu, Web Content Extraction based
on Webpage Layout Analysis, 2010 Second International Conference on
Information Technology and Computer Science, July 24-25, 2010.

[6] Sachio Hirokawa, Chengjiu Yin, Tetsuya Nakatoh: Component-Based
Search Engine for Blogs, Proc. FUZZ-IEEE2011, pp.1074--1078, 2011

[7] http://www.w3.org/TR/xpath/

[8] Nilsson, M., Palmér, M. & Brase, J.. The LOM RDF binding - Principles
and implementation. In Proceedings of the 3rd Annual ARIADNE
Conference, November 20-21, 2003.

