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ABSTRACT 
Replacing functional units of an extensible processor with 
reconfigurable functional units enhances performance and 
flexibility of processors to execute custom instructions. That is 
due to the ability of reconfigurable functional units to perform 
computations in hardware to increase performance, while 
retaining much of the flexibility of a software solution. In this 
paper, we develop a heterogeneous architecture for the 
reconfigurable functional unit of an extensible processor. To 
verify the efficiency of our architecture, we applied it to 8 
applications of Mibench. Our experiments show that compared 
to the similar architectures, ours supports a wide range of 
custom instructions. In addition, use of the new architecture 
improves execution time of custom instructions by 20% to 30% 
on average. Moreover, compared with the previous 
architecture, area is reduced by 15%.  

Keywords: Custom Instruction, Extensible Processor, 
Reconfigurable Functional Unit. 

1. Introduction 
Embedded systems, having proven their abilities in a wide 
range of applications, are extensively used in communications 
and consumer products. Regarding prevalence of these 
systems, different methods, such as general purpose processors 
(GPPs) and application specific integrated circuits (ASIC), 
have been adapted to implement them. Although the use of 
GPPs, as a usual approach of implementing embedded systems 
results in high flexibility, because of their inefficiency in 
performance and power consumption, they are not widely 
applicable. As a result, ASICs have been proposed. Deep 
submicron issues of interconnect delay and signal integrity 
have significantly increased design costs of ASICs both due to 
the higher engineering costs resulting from longer design 
cycles and increasing cost of design tools  [1]. Another recent 
approach of embedded systems implementation, and in fact a 
way to fill the gap between GPP and ASIC era, is the use of 
custom hardware in special applications. In such way, even 
instructions could be customized. Application-specific 
instruction-set processors (ASIPs) have been an important 
design and implementation methodology for system-on-chip 
processors in the last decade. Compared to GPPs, ASIPs have 
more potential to meet high-performance demands of 
embedded applications. However, synthesis of ASIPs 
traditionally involved the generation of a complete instruction 
set architecture for the target application. On the other hand, 
GPPs are very flexible but may not offer the necessary 
performance. Hence, as a complement to the approach of 

ASIPs, processors with extensible instruction sets have been 
introduced. The important motivation toward specialization of 
existing processors versus the design of complete ASIPs is to 
avoid the complexity of a complete processor and toolset 
development. In these systems, a core collaborates with a 
reconfigurable functional unit (which can be implemented 
either coarsely or finely). Even after the design and 
implementation of the instruction set architecture of such 
systems, custom instructions (CIs) can be added to the system. 
These instructions are extracted regarding hot basic blocks 
(HBB). A basic block is a sequence of instructions which is 
ended with a control instruction. HBBs are referred to the 
basic blocks which are repeated more than a threshold number 
of times during the execution of a certain program. With such 
definition, critical sections of programs are extracted as data 
flow graphs (DFG), mapped and executed on a hardware 
accelerator or a functional unit (FU) bound to the main core. 
In this paper, A new tightly coupled fast-interconnected 
reconfigurable functional unit (RFU) is presented for the 
previously introduced Adaptive dynaMic extensiBlE processoR 
(AMBER)  [2]. Enhancing AMBER's functionality, we reduced 
critical path delay of the RFU by replacing collections of 
individual identical FUs with some other non-identical ones. 
The rest of paper is organized as follows: In Section 2 a 
background of systems with reconfigurable functional units 
will be given. In Section 3 and Section 4 AMBER processor, 
which is used as a basis for our implementations, is introduced 
continued with a proposed structure for the RFU in Section 5. 
The mechanics of DFG clustering and their mapping on the 
RFU are presented in Section 6. In Section 7, binding of the 
RFU to the main processor is discussed. The issue of 
configuration memory is discussed in Section 8. In Section 9, 
experimental results are reported and finally, the paper is 
concluded with some proposals for the future works. 

2. Related Work 
Recently design and implementation of extensible processors 
FUs has been much of concern in numerous papers. 
Programmable accelerators augmenting to a base processor fall 
in two categories based on the granularity of their structure, 
fine grain and coarse grain. Fine grain accelerators are suitable 
for very flexible computations. However, long latency and slow 
reconfiguration time are two of the most important drawbacks 
associated with these systems. They also need a large amount 
of memory for storing the configuration bits. To compensate 
the computational inefficiency and configuration latency most 
of them deal with very large sub-graphs. Some of the fine 
grained hardware accelerators are introduced in  [3] [12]. 



Chimaera  [4], OneChip  [5] and XiRisc  [6] are some instances 
of fine grain programmable hardware integrated with GPPs. 
ADRES  [7] is a counterpart of the formers with a coarse grain 
structure.  
The number of inputs/outputs and integration method of 
accelerator and base processor differ for each design. For 
example, PRISC uses an RFU with two inputs and one output, 
while RFU of Chimaera has nine inputs and one output.  
Accelerators are divided into two general categories as loosely 
coupled and tightly coupled. A loosely coupled accelerator 
plays the role of a co-processor which helps balancing of the 
load on the main processor and itself. Use of these accelerators 
calls for exclusive compilers and refinement of portions of the 
opcode  [10] [11]. In loosely coupled systems like MorphoSys 
 [8] and Garp  [9] there is an overhead for transferring data 
between the base processor and the coprocessor. In contrast, 
use of tightly coupled accelerators does not require any 
overhead in information transfer. Further more, there is no 
need to worry about an individual compiler or refinement of 
opcode.  
In [2] [3] an extensible processor named AMBER is introduced 
which utilizes a tightly coupled coarse grain RFU. In AMBER, 
there is no need for a new programming model, compiler, 
opcode for new instructions, source code modification or 
recompilation. The user just runs the applications on the base 
processor then generation of custom instructions and handling 
their execution are done transparently and automatically. The 
main concern in [2] [3] was to cover as much CIs as possible or 
in other words has a coverage percentile as close to as 100%. 
We further enhanced this structure by introducing a new 
heterogeneous architecture which reduces critical path delay 
and configuration bits while increasing CI coverage with no 
penalty in area or total wire length. AMBER architecture is 
introduced in the following section. 

3. Overview of AMBER 
AMBER is an extensible processor which can be utilized in 
different applications of embedded systems. It consists of a 
microprocessor, profiler, RFU, and a scheduler. The base 
processor is a 4-issue in-order RISC processor that supports 
MIPS instruction set. Figure 1 demonstrates AMBER 
components that will be elaborated in the following sections. 
 

 

 
Figure 1. Components of AMBER 

3.1 Profiler 
AMBER has two modes of operation: Training and Normal. In 
the training mode, applications are profiled to extract HBBs. 
Then the object code is used to extract the configuration bits. 
Training can be done either dynamically or statically. In the 

former case, there is a sheer need for extra hardware to 
perform profiling (profiler). In addition, all elaboration 
functions such as HBB recognition and CI generation are done 
on the main processor. On the other hand, in the latter case, a 
host computer simulates and profiles the programs prior to 
their execution on AMBER. The host computer works 
independently from AMBER. However, dynamic profiling can 
be done during intermittent idle periods of the main processor. 
In this case, generation of CIs does not interfere with the main 
tasks of the processor. 
Profiler contains the following components: 1) two registers 
one for the previous program counter (PC) and the other for 
current PC, 2) a comparator to compare values of the two 
registers; and 3) a table to store the start addresses of HBBs 
and their execution frequency. In every clock cycle, the profiler 
compares values of the two aforementioned registers. If the 
difference of these two values is not equal to the instruction 
length, a taken branch or jump has occurred. The profiler has a 
table with a counter for each entry that keeps the execution 
frequency of basic blocks. In the case of a taken branch/jump, 
the profiler's table is checked. If the target address (the current 
PC) is in the table, the corresponding counter is incremented, 
otherwise current PC is added as a new entry and its counter is 
initialized to one. Using the profiler's table and a predefined 
threshold value, the start addresses of HBBs are detected 
according to their frequency of occurrence  [3]. 

3.2 Reconfigurable Functional Unit (RFU) 
Portions of applications suitable for acceleration are the ones 
which are executed frequently. These portions can be executed 
on a reconfigurable core in AMBER that is the RFU. The RFU 
is a matrix of FUs. As it has been also mentioned in  [15], 
according to the processor's size of data, a matrix of FUs seems 
an efficient and reasonable hardware for accelerating sub-
dataflow graphs as CIs. Exploiting such core can increase the 
execution speed dramatically  [2]. Hence, promisingly, 
increasing the number of CIs (mappable on the RFU) can 
decrease the application runtime. 

3.3 Scheduler 
Scheduler is responsible to decide whether operations to be 
executed on the microprocessor or on the RFU. This unit 
contains a table in which the starting address of each CI (in the 
reconfigurable memory unit) along with the required clock 
cycles for execution of the instruction is stored. This table is 
given the values based on the starting address of each CI in the 
object code. During the execution, as soon as the scheduler 
observes the PC equal to one of the entries in this table, FU of 
the microprocessor halts and the RFU takes the responsibility 
to execute the CI. In this situation, the scheduler waits for 
completion of the CI, and then it sets value of the PC according 
to the length of the recently executed CI. 

4. An Architecture for the RFU:                      
A Quantitative Approach 
The quantitative flow in Figure 2 was applied to 20 
applications of Mibench  [13] to identify suitable CIs. To do it, 
Simplescalar  [14] is used as the simulation tool and it is 
modified to keep track of taken branches and jumps. The trace 
file is employed as input by the profiler to detect beginning of 
HBBs  [3]. Then a DFG is generated for each HBB and passed 
to the CI generator tool. The CI generator makes CIs. Mapping 
tool receives CIs and maps them on the RFU. Results of the 
mapping tool lead to the RFU architecture. To reduce 



implementation overhead and increase efficiency, two primary 
constraints are considered for CIs: a) supporting only fixed-
point instructions excluding multiply, divide and load, b) 
including at most one store and at most one control instruction 
in a CI. Multiply and divide were excluded due to their low 
execution frequency and large area occupancy. 
 

 
Figure 2. Quantitative approach flow 

In order to justify the use of heterogeneous functional units, in 
this section an overview of the previous work in  [3] is 
presented firstly then our proposed architecture is introduced. 

4.1 Homogeneous Architecture of RFU 
To determine the proper number of inputs and outputs, first it 
is assumed that all DFGs corresponding to the extracted CIs 
can be mapped on the architecture. Based on the analyses of 
CIs in 20 test applications of Mibench, concerning higher 
mapping rate as well as less consumption of resources, proper 
numbers of inputs and outputs were proved to be 8 and 6 
respectively  [3] (Figure 3). This means that having an RFU 
with 8 inputs and 6 outputs, nearly 100%  of CIs with 8 inputs 
and 6 outputs are mappable on such structure (mapping rate is 
almost equal to 100%). 
 

 
Figure 3. Mapping rate for different numbers of I/O 

In the next step there should be an appraisal on the total 
number of Functional Units (FUs) in the RFU. This is to 
acquire a high mapping rate using as few FUs as possible. 
Based on the observations (Figure 4), provided that the 
limitation put on the number of inputs and outputs is 
considered, mapping rate curve levels out around the number 
16. Hence the minimum proper number of FUs is 16.  
Number of inputs, outputs and FUs being determined, to 
preserve the high mapping rate it is assumed that all the FUs 
are identical and each is able to implement an individual 
function per configuration. Based on this assumption other 
analyses were performed to determine the dept and number of 
FUs for every row. 

 
Figure 4. Mapping rate for different numbers of FUs 

Aforementioned observations resulted in the architecture 
depicted in Figure 5. In this architecture, there are 16 identical 
FUs which implement a single function per configuration 
based on their configuration bits. Interconnection of these 16 
units is established through multiplexers programmed by 
configuration bits other than the ones associated with the 
configuration of FUs. 
 

 
Figure 5. Proposed architecture of RFU using identical FUs 

5. New Heterogeneous Architecture of RFU  
One of the most important aspects of RFU construction which 
did not receive much of concern in the similar works is the 
length of critical path and its effect on performance. Critical 
path is referred to the path incorporating maximum number of 
active sequential FUs from one input to one output. Frequent 
occurrence of CIs inherently calls for reduction of CIs 
execution time. Consider a mapped CI which requires two 
clock cycles to be accomplished on the RFU. CI execution time 
is equal to the integer number of clock cycles multiplied by the 
length of a cycle. This time directly depends on the critical 
path delay. If the specified CI is to be repeated for 2000 times 
in the course of the whole program execution, reducing its run 
time to one clock cycle will make the whole program execution 
time 2000 cycles shorter which is a considerable gain in 
comparison to the former case. Shortening CIs execution time 
calls for reduction of critical path delay. 
Based on these premises, experiments have been conducted on 
the relativity of delay of different components of RFU to the 
overall RFU critical path delay. Results show that delay 
associated with the multiplexers being used for interconnection 
of FUs constitutes a grate portion of the overall delay. This is 



shown in Table 1 (RFU's circuit is synthesized with TSMC 
0.18u technology). Intuitively, reducing number of 
multiplexers affiliated with the structure of a mapped CI on the 
RFU will reduce the critical path dramatically. 
 

Table 1. Critical path delays of different component of RFU in 
TSMC 0.18u technology. 

Unit delay of critical 
path (ns) Unit delay of critical 

path (ns) 
mux3-1 1.16 mux7-1 1.7 

mux 4-1 1.24 mux8-1 1.86 

mux5-1 1.47 FU 6.94 

mux6-1 1.52   
 

Based on this assumption, in order to reduce the number of 
multiplexers in the critical path without affecting the mapping 
rate, we proposed an RFU comprising non-identical FUs. This 
means, FUs of this new architecture are able to execute 
multiple instructions (one, two or three) with every regular 
consecution in a DFG structure (based on the FU's structure). 
We define a regular DFG as the one in which output of every 
node is not connected to more than one node. Analyses over 20 
applications of Mibench show that almost 97% of DFGs have 
this attribute. Considering these regular DFGs structures, we 
proposed FUs which can implement every consecutive two and 
three-instruction sets representing sub-data flow graphs (sub-
DFG) depicted in Figure 6. We referred these FUs as bi- and 
tri-instruction FUs respectively. 
 

 
Figure 6. Regular executable sub-DFGs on tri and bi-

instruction FUs (left to right)   
By replacing a number of previous uni-FUs and multiplexers 
of RFU with bi/tri-FUs a considerable reduction in critical path 
delay of mapped CIs can be resulted as is shown in Table 2. 

Table 2. Replacing a number of uni-FUs and multiplexers 
with bi/tri-FUs (Synthesized in TSMC 0.18u technology) 

Units Critical path 
delay (ns) 

Replaced 
Unit 

Critical path 
delay (ns) 

2 uni-FU and 1 Mux 14.47 bi-FU 10.7 

3 uni-FU  and 2 Mux 23.8 tri-FU 15.9 
 

To determine the structure of RFU, first we must indicate the 
proper numbers for RFU inputs and outputs. We inspected 
mapping rate of generated CIs of 20 applications of Mibench 
on the RFU. Then, we mapped our generated CIs on the RFU 
without considering any constraints. By examining the 
mapping rate for different numbers of inputs and outputs we 
tried to choose proper numbers. According to the results 
depicted in Figure 3, eight and six are good candidates for 
input and output numbers, respectively. 
We also conducted an analysis to determine the number of 
uni/bi and tri-instruction FUs. According to Figure 3, putting 
constraints on the number of inputs and outputs, 85% of CIs 
contain less than 9 nodes. Hence, to have a more reliable 
analysis, we observed precisely all the regular DFGs consisting 
less than 9 nodes with different topologies (multiplicities of 
these DFGs are shown in Table 3). Moreover for the analysis 

of CIs with more than 8 instructions we used mapping rate 
frequency by which we mean the percentage of generated CIs 
for 20 applications of Mibench that can be mapped on the 
RFU. 
 

Table 3. Possible numbers of regular DFGs with different 
numbers of nodes 

Num of DFG 
nodes 

Num of regular 
DFGs 

Num of DFG 
nodes 

Num of regular 
DFGs 

1 1 5 6 

2 1 6 11 

3 2 7 23 

4 3 8 46 
 

Many different architectures and configurations considering 
the mapping rate results were examined. Based on the 
conducted analyses the RFU architecture depicted in Figure7 is 
introduced. 
 

 
Figure 7. The first proposed heterogeneous architecture of 

RFU 

In this architecture when an input data is needed by FUs 
located in rows other than first row or when the output of one 
row is used by FUs placed in a non-subsequent row, move 
instruction are mapped on the intermediate FUs to pass over 
the data. Assuming these limitations the mapping rate 
decreases to 84.72%. To improve the mapping rate, many 
different architectures and configurations considering the 
mapping rate results were examined. We reached to the 
architecture illustrated in Figure 8.  
 

 
Figure 8. The proposed fast interconnected heterogeneous 

architecture of RFU 



To facilitate data accesses for FUs and reduce the inserted 
move instructions (which occupy FUs), besides the connections 
that exist from outputs of each row to the inputs of subsequent 
row, ten other longer connections were added. One longer 
connection is: from outputs of row 1 to inputs of row 3 and 
other connections are: from main inputs of RFU to the inputs 
of row 2 and 3. In rows 1 and 2 unidirectional connections to 
the neighbor FUs were added. These three connections support 
those long CIs that do not have much parallelism but their 
operations are very dependent. Using these connections CIs 
with lengths less than 13 nodes can be supported by the RFU.  
This RFU is able to map all CIs consisting of less than 9 nodes 
and 78% of CIs 9 to 16 nodes long. As a result the mapping 
rate becomes 95.31%. Experiments show that each FU of the 
RFU does not need to support all of microprocessor supported 
instructions. We defined three types of instructions: logical 
(type 1), add/sub/compare (type 2) and shift operations (type 
3). Distribution and multiplicity of each type for each row are 
given in Table 4. 
 

Table 4. Type of functions for each FU 
 

Row Number uni-FU uni or bi-FU tri-FU 

1 Type 1,2 Type 3 Type 1,2,3 

2 - Type 2 Type 1,2,3 

3 Type 1,2 Type 1,2,3 Type1,2 
 

Enforcing all of constraints, the mapping rate becomes 94.86% 
which is almost 6% better than the previous architecture  [2]. In 
addition regarding the homogeneous architecture of the RFU 
proposed in  [2] (Figure 5), DFGs longer than 8 nodes are not 
mappable. This limitation is improved to DFGs 12 nodes long 
in our proposed architecture. Each CI configuration needs 287 
bits for storing control signals and 201 bits for immediate 
values. Therefore, configuration of each CI on the RFU 
requires 488 bits totally compared to 512 bits for the RFU 
proposed in  [3]. 

6. DFG Clustering 
Regarding difference of FUs and their varying ability to 
implement certain sub-DFGs, clustering of DFGs requires 
certain considerations to be mappable on the RFU. For 
optimum utilization we used a greedy algorithm to cluster CIs, 
thus first the biggest branch of the graph is clustered, then a 
new sub-graph is established. The same step will be repeated 
on the sub-graph based on the remaining resources in the RFU.  
Optimum clustering is the most of concern in this algorithm. 
As efficiency of clustering is affected by the limit on the 
number of resources, architecture of the RFU is designed 
based on the mostly repeated patterns in DFGs. In other words, 
for establishment of interconnections, the structures which are 
more frequent are noticed. As a result our structure will 
inherently be optimum for our way of clustering. On the other 
hand, for less frequent structures, clustering will be affected by 
the limitations of interconnection network which will deviate 
the result from optimality. Figure 9 illustrates an example of 
DFG clustering and its corresponding CI mapping on the RFU.  
In order to obtain better results we applied a new mechanism 
called "Structure Profiling" to map CIs less than 9 nodes long. 
In our survey, all regular structures of DFGs with less than 9 
nodes were identified then traversed bottom up. So for all of 
these DFGs we generated a configuration profile stored in the 
configuration memory. During CI mapping every new DFG is 
traversed then compared with the previously profiled ones. If 
one of the stored profiles is identical to the corresponding 

DFG, it will be used to map the CI on the RFU. Every 
configuration profile is stored in the mapping tool.  
 

 
Figure 9. An example of DFG clustering and CI mapping on 

the RFU 

7. RFU and Main Processor Connection 
The core processor of AMBER is a 4-issue in-order RISC 
microprocessor. Connection of this processor to the RFU is 
shown in Figure 10. 
 

 
Figure 10. Integrating the RFU and the core processor 

 As it is shown, in/output ports of the microprocessor and the 
RFU are common. This way of connection eliminates the need 
for extra lines to separate intputs/outputs while eliminating 
parallelism of these two units as well. As a large portion of 
application code is executed on the RFU, inherently there is no 
opportunity for parallelism which in turn reduces the need for 
accommodating exclusive in/output lines. As stated before, the 
RFU has 6 outputs; hence, two registers are added to the RFU 
structure which will store extra outputs (more than 4). 
Contents of these registers are written to the register file in the 
next cycle. 

8. Configuration Memory 
As computed in Section 6, each CI configuration needs 488 
bits. As a result for an application such as rijndael with 117 
CIs we need around 6.96 KBs to keep the configuration data. 
However, experiments show that similar CIs provide good 
opportunities to reduce the configuration memory by merging 
their configuration data to one. The problem is that in most 
cases, the configuration bits which are related to functions and 
connections are the same but the control bits for inputs, 
outputs or immediate values differ. In order to reduce the size 
of configuration memory, CI configuration data is divided to 
four parts. In other words RFU is provided with partial 
reconfiguration. 138 bits for configuring intermediate 
connections and selecting functions of FUs (P1), 90 bits for 
selecting inputs (P2), 60 bits for outputs (P3) and 196 bits for 
immediate values (P4).  



We added another stage to our tool flow in which we receive 
generated CIs as inputs and look for similar CIs and their 
subsets and then merge their configuration data into one. Two 
CIs are similar if their P1 are the same and a CI is a subset of 
another CI if its P1 is a subset of the bigger one. Although we 
generate one P1 for a CI and its subsets, as their P2, P3 and P4 
are different they will generate the desired results. For inputs 
(P2), outputs (P3) and immediate values (P4), we just look for 
equal configuration bits and generate one configuration data 
for them. In the next step to make the configuration memory 
smaller, we try to merge P1 of small CIs into one 
configuration. Using these two techniques and using less 
intermediate multiplexers we were able to reduce the 
configuration memory. The other advantage of using these two 
techniques is that the number of context switching will be 
decreased due to fewer configurations. 

9. Experimental Results 
Average execution times of CIs derived from 8 applications of 
Mibench on both homogeneous and heterogeneous 
architectures are given in Figure 11. As it is shown, owing the 
fact that the critical path is reduced in our newly proposed 
architecture, CI execution times are 20-30% shorter than the 
previous architecture. Moreover as in the new architecture the 
number of multiplexers is reduced, configuration bits of 
multiplexers are reduces which in turn results in less memory 
and power consumption. All these improvements are besides 
the reduction in the area which proved to be reduced by 15%, 
according to the reports of MAGMA's layout synthesis tool. 
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Figure 11. Comparing average execution time of CIs on 

previous and new architecture 

10. Conclusion 
Exploiting non-identical FUs in a heterogeneous RFU can 
improve the runtime and mapping rate of CIs compared to their 
homogeneous counterparts. In this paper we proposed a 
heterogeneous architecture for RFU of an extensible processor 
named AMBER, based on a quantitative and analytical 
approach. The mapping rate of CIs on this architecture was 
94.86%. In addition, the CI execution speed on this 
architecture was improved drastically compared to the previous 
one. Our RFU consists of 8 inputs, 6 outpus, 3 tri-instruction 
FUs, 2 bi-instruction FUs and 3 uni-instruction FUs. 
As a continuation of this work and to improve the overall 
runtime of applications, one can work on the architecture and 
mapping mechanisms to support floating point operations. In 
addition, it would be worth trying to work on some methods to 
reduce overall power consumption of the unit. 
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