
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

An efficient Heterogeneous Reconfigurable
Functional Unit for an Adaptive Dynamic
Extensible Processor

Mehdizadeh, Arash
Computer Engineering Department, Amirkabir University of Technology

Ghavami, Behnam
Computer Engineering Department, Amirkabir University of Technology

Zamani, Morteza Saheb
Computer Engineering Department, Amirkabir University of Technology

Pedram, Hossein
Computer Engineering Department, Amirkabir University of Technology

他

https://hdl.handle.net/2324/8319

出版情報：VLSI-SoC 2007, 2007-10-16
バージョン：
権利関係：

An efficient Heterogeneous Reconfigurable Functional
Unit for an Adaptive Dynamic Extensible Processor

Arash Mehdizadeh Behnam Ghavami Morteza Saheb Zamani Hossein Pedram Farhad Mehdipour*

 { a_mehdizadeh, ghavami, szamani, pedram}@ aut.ac.ir, *farhad@c.csce.kyushu-u.ac.jp
Computer Engineering Department, Amirkabir University of Technology (Tehran Polytechnic)

424 Hafez Ave, Tehran 15785, Iran

*Computing and Communication Center, Kyushu University
3-8-33-309 Momochihama, Sawara-ku, Fukuoka 814-0001, Japan

ABSTRACT
Replacing functional units of an extensible processor with
reconfigurable functional units enhances performance and
flexibility of processors to execute custom instructions. That is
due to the ability of reconfigurable functional units to perform
computations in hardware to increase performance, while
retaining much of the flexibility of a software solution. In this
paper, we develop a heterogeneous architecture for the
reconfigurable functional unit of an extensible processor. To
verify the efficiency of our architecture, we applied it to 8
applications of Mibench. Our experiments show that compared
to the similar architectures, ours supports a wide range of
custom instructions. In addition, use of the new architecture
improves execution time of custom instructions by 20% to 30%
on average. Moreover, compared with the previous
architecture, area is reduced by 15%.

Keywords: Custom Instruction, Extensible Processor,
Reconfigurable Functional Unit.

1. Introduction
Embedded systems, having proven their abilities in a wide
range of applications, are extensively used in communications
and consumer products. Regarding prevalence of these
systems, different methods, such as general purpose processors
(GPPs) and application specific integrated circuits (ASIC),
have been adapted to implement them. Although the use of
GPPs, as a usual approach of implementing embedded systems
results in high flexibility, because of their inefficiency in
performance and power consumption, they are not widely
applicable. As a result, ASICs have been proposed. Deep
submicron issues of interconnect delay and signal integrity
have significantly increased design costs of ASICs both due to
the higher engineering costs resulting from longer design
cycles and increasing cost of design tools [1]. Another recent
approach of embedded systems implementation, and in fact a
way to fill the gap between GPP and ASIC era, is the use of
custom hardware in special applications. In such way, even
instructions could be customized. Application-specific
instruction-set processors (ASIPs) have been an important
design and implementation methodology for system-on-chip
processors in the last decade. Compared to GPPs, ASIPs have
more potential to meet high-performance demands of
embedded applications. However, synthesis of ASIPs
traditionally involved the generation of a complete instruction
set architecture for the target application. On the other hand,
GPPs are very flexible but may not offer the necessary
performance. Hence, as a complement to the approach of

ASIPs, processors with extensible instruction sets have been
introduced. The important motivation toward specialization of
existing processors versus the design of complete ASIPs is to
avoid the complexity of a complete processor and toolset
development. In these systems, a core collaborates with a
reconfigurable functional unit (which can be implemented
either coarsely or finely). Even after the design and
implementation of the instruction set architecture of such
systems, custom instructions (CIs) can be added to the system.
These instructions are extracted regarding hot basic blocks
(HBB). A basic block is a sequence of instructions which is
ended with a control instruction. HBBs are referred to the
basic blocks which are repeated more than a threshold number
of times during the execution of a certain program. With such
definition, critical sections of programs are extracted as data
flow graphs (DFG), mapped and executed on a hardware
accelerator or a functional unit (FU) bound to the main core.
In this paper, A new tightly coupled fast-interconnected
reconfigurable functional unit (RFU) is presented for the
previously introduced Adaptive dynaMic extensiBlE processoR
(AMBER) [2]. Enhancing AMBER's functionality, we reduced
critical path delay of the RFU by replacing collections of
individual identical FUs with some other non-identical ones.
The rest of paper is organized as follows: In Section 2 a
background of systems with reconfigurable functional units
will be given. In Section 3 and Section 4 AMBER processor,
which is used as a basis for our implementations, is introduced
continued with a proposed structure for the RFU in Section 5.
The mechanics of DFG clustering and their mapping on the
RFU are presented in Section 6. In Section 7, binding of the
RFU to the main processor is discussed. The issue of
configuration memory is discussed in Section 8. In Section 9,
experimental results are reported and finally, the paper is
concluded with some proposals for the future works.

2. Related Work
Recently design and implementation of extensible processors
FUs has been much of concern in numerous papers.
Programmable accelerators augmenting to a base processor fall
in two categories based on the granularity of their structure,
fine grain and coarse grain. Fine grain accelerators are suitable
for very flexible computations. However, long latency and slow
reconfiguration time are two of the most important drawbacks
associated with these systems. They also need a large amount
of memory for storing the configuration bits. To compensate
the computational inefficiency and configuration latency most
of them deal with very large sub-graphs. Some of the fine
grained hardware accelerators are introduced in [3] [12].

Chimaera [4], OneChip [5] and XiRisc [6] are some instances
of fine grain programmable hardware integrated with GPPs.
ADRES [7] is a counterpart of the formers with a coarse grain
structure.
The number of inputs/outputs and integration method of
accelerator and base processor differ for each design. For
example, PRISC uses an RFU with two inputs and one output,
while RFU of Chimaera has nine inputs and one output.
Accelerators are divided into two general categories as loosely
coupled and tightly coupled. A loosely coupled accelerator
plays the role of a co-processor which helps balancing of the
load on the main processor and itself. Use of these accelerators
calls for exclusive compilers and refinement of portions of the
opcode [10] [11]. In loosely coupled systems like MorphoSys
 [8] and Garp [9] there is an overhead for transferring data
between the base processor and the coprocessor. In contrast,
use of tightly coupled accelerators does not require any
overhead in information transfer. Further more, there is no
need to worry about an individual compiler or refinement of
opcode.
In [2] [3] an extensible processor named AMBER is introduced
which utilizes a tightly coupled coarse grain RFU. In AMBER,
there is no need for a new programming model, compiler,
opcode for new instructions, source code modification or
recompilation. The user just runs the applications on the base
processor then generation of custom instructions and handling
their execution are done transparently and automatically. The
main concern in [2] [3] was to cover as much CIs as possible or
in other words has a coverage percentile as close to as 100%.
We further enhanced this structure by introducing a new
heterogeneous architecture which reduces critical path delay
and configuration bits while increasing CI coverage with no
penalty in area or total wire length. AMBER architecture is
introduced in the following section.

3. Overview of AMBER
AMBER is an extensible processor which can be utilized in
different applications of embedded systems. It consists of a
microprocessor, profiler, RFU, and a scheduler. The base
processor is a 4-issue in-order RISC processor that supports
MIPS instruction set. Figure 1 demonstrates AMBER
components that will be elaborated in the following sections.

Figure 1. Components of AMBER

3.1 Profiler
AMBER has two modes of operation: Training and Normal. In
the training mode, applications are profiled to extract HBBs.
Then the object code is used to extract the configuration bits.
Training can be done either dynamically or statically. In the

former case, there is a sheer need for extra hardware to
perform profiling (profiler). In addition, all elaboration
functions such as HBB recognition and CI generation are done
on the main processor. On the other hand, in the latter case, a
host computer simulates and profiles the programs prior to
their execution on AMBER. The host computer works
independently from AMBER. However, dynamic profiling can
be done during intermittent idle periods of the main processor.
In this case, generation of CIs does not interfere with the main
tasks of the processor.
Profiler contains the following components: 1) two registers
one for the previous program counter (PC) and the other for
current PC, 2) a comparator to compare values of the two
registers; and 3) a table to store the start addresses of HBBs
and their execution frequency. In every clock cycle, the profiler
compares values of the two aforementioned registers. If the
difference of these two values is not equal to the instruction
length, a taken branch or jump has occurred. The profiler has a
table with a counter for each entry that keeps the execution
frequency of basic blocks. In the case of a taken branch/jump,
the profiler's table is checked. If the target address (the current
PC) is in the table, the corresponding counter is incremented,
otherwise current PC is added as a new entry and its counter is
initialized to one. Using the profiler's table and a predefined
threshold value, the start addresses of HBBs are detected
according to their frequency of occurrence [3].

3.2 Reconfigurable Functional Unit (RFU)
Portions of applications suitable for acceleration are the ones
which are executed frequently. These portions can be executed
on a reconfigurable core in AMBER that is the RFU. The RFU
is a matrix of FUs. As it has been also mentioned in [15],
according to the processor's size of data, a matrix of FUs seems
an efficient and reasonable hardware for accelerating sub-
dataflow graphs as CIs. Exploiting such core can increase the
execution speed dramatically [2]. Hence, promisingly,
increasing the number of CIs (mappable on the RFU) can
decrease the application runtime.

3.3 Scheduler
Scheduler is responsible to decide whether operations to be
executed on the microprocessor or on the RFU. This unit
contains a table in which the starting address of each CI (in the
reconfigurable memory unit) along with the required clock
cycles for execution of the instruction is stored. This table is
given the values based on the starting address of each CI in the
object code. During the execution, as soon as the scheduler
observes the PC equal to one of the entries in this table, FU of
the microprocessor halts and the RFU takes the responsibility
to execute the CI. In this situation, the scheduler waits for
completion of the CI, and then it sets value of the PC according
to the length of the recently executed CI.

4. An Architecture for the RFU:
A Quantitative Approach
The quantitative flow in Figure 2 was applied to 20
applications of Mibench [13] to identify suitable CIs. To do it,
Simplescalar [14] is used as the simulation tool and it is
modified to keep track of taken branches and jumps. The trace
file is employed as input by the profiler to detect beginning of
HBBs [3]. Then a DFG is generated for each HBB and passed
to the CI generator tool. The CI generator makes CIs. Mapping
tool receives CIs and maps them on the RFU. Results of the
mapping tool lead to the RFU architecture. To reduce

implementation overhead and increase efficiency, two primary
constraints are considered for CIs: a) supporting only fixed-
point instructions excluding multiply, divide and load, b)
including at most one store and at most one control instruction
in a CI. Multiply and divide were excluded due to their low
execution frequency and large area occupancy.

Figure 2. Quantitative approach flow

In order to justify the use of heterogeneous functional units, in
this section an overview of the previous work in [3] is
presented firstly then our proposed architecture is introduced.

4.1 Homogeneous Architecture of RFU
To determine the proper number of inputs and outputs, first it
is assumed that all DFGs corresponding to the extracted CIs
can be mapped on the architecture. Based on the analyses of
CIs in 20 test applications of Mibench, concerning higher
mapping rate as well as less consumption of resources, proper
numbers of inputs and outputs were proved to be 8 and 6
respectively [3] (Figure 3). This means that having an RFU
with 8 inputs and 6 outputs, nearly 100% of CIs with 8 inputs
and 6 outputs are mappable on such structure (mapping rate is
almost equal to 100%).

Figure 3. Mapping rate for different numbers of I/O

In the next step there should be an appraisal on the total
number of Functional Units (FUs) in the RFU. This is to
acquire a high mapping rate using as few FUs as possible.
Based on the observations (Figure 4), provided that the
limitation put on the number of inputs and outputs is
considered, mapping rate curve levels out around the number
16. Hence the minimum proper number of FUs is 16.
Number of inputs, outputs and FUs being determined, to
preserve the high mapping rate it is assumed that all the FUs
are identical and each is able to implement an individual
function per configuration. Based on this assumption other
analyses were performed to determine the dept and number of
FUs for every row.

Figure 4. Mapping rate for different numbers of FUs

Aforementioned observations resulted in the architecture
depicted in Figure 5. In this architecture, there are 16 identical
FUs which implement a single function per configuration
based on their configuration bits. Interconnection of these 16
units is established through multiplexers programmed by
configuration bits other than the ones associated with the
configuration of FUs.

Figure 5. Proposed architecture of RFU using identical FUs

5. New Heterogeneous Architecture of RFU
One of the most important aspects of RFU construction which
did not receive much of concern in the similar works is the
length of critical path and its effect on performance. Critical
path is referred to the path incorporating maximum number of
active sequential FUs from one input to one output. Frequent
occurrence of CIs inherently calls for reduction of CIs
execution time. Consider a mapped CI which requires two
clock cycles to be accomplished on the RFU. CI execution time
is equal to the integer number of clock cycles multiplied by the
length of a cycle. This time directly depends on the critical
path delay. If the specified CI is to be repeated for 2000 times
in the course of the whole program execution, reducing its run
time to one clock cycle will make the whole program execution
time 2000 cycles shorter which is a considerable gain in
comparison to the former case. Shortening CIs execution time
calls for reduction of critical path delay.
Based on these premises, experiments have been conducted on
the relativity of delay of different components of RFU to the
overall RFU critical path delay. Results show that delay
associated with the multiplexers being used for interconnection
of FUs constitutes a grate portion of the overall delay. This is

shown in Table 1 (RFU's circuit is synthesized with TSMC
0.18u technology). Intuitively, reducing number of
multiplexers affiliated with the structure of a mapped CI on the
RFU will reduce the critical path dramatically.

Table 1. Critical path delays of different component of RFU in
TSMC 0.18u technology.

Unit delay of critical
path (ns) Unit delay of critical

path (ns)
mux3-1 1.16 mux7-1 1.7

mux 4-1 1.24 mux8-1 1.86

mux5-1 1.47 FU 6.94

mux6-1 1.52

Based on this assumption, in order to reduce the number of
multiplexers in the critical path without affecting the mapping
rate, we proposed an RFU comprising non-identical FUs. This
means, FUs of this new architecture are able to execute
multiple instructions (one, two or three) with every regular
consecution in a DFG structure (based on the FU's structure).
We define a regular DFG as the one in which output of every
node is not connected to more than one node. Analyses over 20
applications of Mibench show that almost 97% of DFGs have
this attribute. Considering these regular DFGs structures, we
proposed FUs which can implement every consecutive two and
three-instruction sets representing sub-data flow graphs (sub-
DFG) depicted in Figure 6. We referred these FUs as bi- and
tri-instruction FUs respectively.

Figure 6. Regular executable sub-DFGs on tri and bi-

instruction FUs (left to right)
By replacing a number of previous uni-FUs and multiplexers
of RFU with bi/tri-FUs a considerable reduction in critical path
delay of mapped CIs can be resulted as is shown in Table 2.

Table 2. Replacing a number of uni-FUs and multiplexers
with bi/tri-FUs (Synthesized in TSMC 0.18u technology)

Units Critical path
delay (ns)

Replaced
Unit

Critical path
delay (ns)

2 uni-FU and 1 Mux 14.47 bi-FU 10.7

3 uni-FU and 2 Mux 23.8 tri-FU 15.9

To determine the structure of RFU, first we must indicate the
proper numbers for RFU inputs and outputs. We inspected
mapping rate of generated CIs of 20 applications of Mibench
on the RFU. Then, we mapped our generated CIs on the RFU
without considering any constraints. By examining the
mapping rate for different numbers of inputs and outputs we
tried to choose proper numbers. According to the results
depicted in Figure 3, eight and six are good candidates for
input and output numbers, respectively.
We also conducted an analysis to determine the number of
uni/bi and tri-instruction FUs. According to Figure 3, putting
constraints on the number of inputs and outputs, 85% of CIs
contain less than 9 nodes. Hence, to have a more reliable
analysis, we observed precisely all the regular DFGs consisting
less than 9 nodes with different topologies (multiplicities of
these DFGs are shown in Table 3). Moreover for the analysis

of CIs with more than 8 instructions we used mapping rate
frequency by which we mean the percentage of generated CIs
for 20 applications of Mibench that can be mapped on the
RFU.

Table 3. Possible numbers of regular DFGs with different
numbers of nodes

Num of DFG
nodes

Num of regular
DFGs

Num of DFG
nodes

Num of regular
DFGs

1 1 5 6

2 1 6 11

3 2 7 23

4 3 8 46

Many different architectures and configurations considering
the mapping rate results were examined. Based on the
conducted analyses the RFU architecture depicted in Figure7 is
introduced.

Figure 7. The first proposed heterogeneous architecture of

RFU

In this architecture when an input data is needed by FUs
located in rows other than first row or when the output of one
row is used by FUs placed in a non-subsequent row, move
instruction are mapped on the intermediate FUs to pass over
the data. Assuming these limitations the mapping rate
decreases to 84.72%. To improve the mapping rate, many
different architectures and configurations considering the
mapping rate results were examined. We reached to the
architecture illustrated in Figure 8.

Figure 8. The proposed fast interconnected heterogeneous

architecture of RFU

To facilitate data accesses for FUs and reduce the inserted
move instructions (which occupy FUs), besides the connections
that exist from outputs of each row to the inputs of subsequent
row, ten other longer connections were added. One longer
connection is: from outputs of row 1 to inputs of row 3 and
other connections are: from main inputs of RFU to the inputs
of row 2 and 3. In rows 1 and 2 unidirectional connections to
the neighbor FUs were added. These three connections support
those long CIs that do not have much parallelism but their
operations are very dependent. Using these connections CIs
with lengths less than 13 nodes can be supported by the RFU.
This RFU is able to map all CIs consisting of less than 9 nodes
and 78% of CIs 9 to 16 nodes long. As a result the mapping
rate becomes 95.31%. Experiments show that each FU of the
RFU does not need to support all of microprocessor supported
instructions. We defined three types of instructions: logical
(type 1), add/sub/compare (type 2) and shift operations (type
3). Distribution and multiplicity of each type for each row are
given in Table 4.

Table 4. Type of functions for each FU

Row Number uni-FU uni or bi-FU tri-FU

1 Type 1,2 Type 3 Type 1,2,3

2 - Type 2 Type 1,2,3

3 Type 1,2 Type 1,2,3 Type1,2

Enforcing all of constraints, the mapping rate becomes 94.86%
which is almost 6% better than the previous architecture [2]. In
addition regarding the homogeneous architecture of the RFU
proposed in [2] (Figure 5), DFGs longer than 8 nodes are not
mappable. This limitation is improved to DFGs 12 nodes long
in our proposed architecture. Each CI configuration needs 287
bits for storing control signals and 201 bits for immediate
values. Therefore, configuration of each CI on the RFU
requires 488 bits totally compared to 512 bits for the RFU
proposed in [3].

6. DFG Clustering
Regarding difference of FUs and their varying ability to
implement certain sub-DFGs, clustering of DFGs requires
certain considerations to be mappable on the RFU. For
optimum utilization we used a greedy algorithm to cluster CIs,
thus first the biggest branch of the graph is clustered, then a
new sub-graph is established. The same step will be repeated
on the sub-graph based on the remaining resources in the RFU.
Optimum clustering is the most of concern in this algorithm.
As efficiency of clustering is affected by the limit on the
number of resources, architecture of the RFU is designed
based on the mostly repeated patterns in DFGs. In other words,
for establishment of interconnections, the structures which are
more frequent are noticed. As a result our structure will
inherently be optimum for our way of clustering. On the other
hand, for less frequent structures, clustering will be affected by
the limitations of interconnection network which will deviate
the result from optimality. Figure 9 illustrates an example of
DFG clustering and its corresponding CI mapping on the RFU.
In order to obtain better results we applied a new mechanism
called "Structure Profiling" to map CIs less than 9 nodes long.
In our survey, all regular structures of DFGs with less than 9
nodes were identified then traversed bottom up. So for all of
these DFGs we generated a configuration profile stored in the
configuration memory. During CI mapping every new DFG is
traversed then compared with the previously profiled ones. If
one of the stored profiles is identical to the corresponding

DFG, it will be used to map the CI on the RFU. Every
configuration profile is stored in the mapping tool.

Figure 9. An example of DFG clustering and CI mapping on

the RFU

7. RFU and Main Processor Connection
The core processor of AMBER is a 4-issue in-order RISC
microprocessor. Connection of this processor to the RFU is
shown in Figure 10.

Figure 10. Integrating the RFU and the core processor

 As it is shown, in/output ports of the microprocessor and the
RFU are common. This way of connection eliminates the need
for extra lines to separate intputs/outputs while eliminating
parallelism of these two units as well. As a large portion of
application code is executed on the RFU, inherently there is no
opportunity for parallelism which in turn reduces the need for
accommodating exclusive in/output lines. As stated before, the
RFU has 6 outputs; hence, two registers are added to the RFU
structure which will store extra outputs (more than 4).
Contents of these registers are written to the register file in the
next cycle.

8. Configuration Memory
As computed in Section 6, each CI configuration needs 488
bits. As a result for an application such as rijndael with 117
CIs we need around 6.96 KBs to keep the configuration data.
However, experiments show that similar CIs provide good
opportunities to reduce the configuration memory by merging
their configuration data to one. The problem is that in most
cases, the configuration bits which are related to functions and
connections are the same but the control bits for inputs,
outputs or immediate values differ. In order to reduce the size
of configuration memory, CI configuration data is divided to
four parts. In other words RFU is provided with partial
reconfiguration. 138 bits for configuring intermediate
connections and selecting functions of FUs (P1), 90 bits for
selecting inputs (P2), 60 bits for outputs (P3) and 196 bits for
immediate values (P4).

We added another stage to our tool flow in which we receive
generated CIs as inputs and look for similar CIs and their
subsets and then merge their configuration data into one. Two
CIs are similar if their P1 are the same and a CI is a subset of
another CI if its P1 is a subset of the bigger one. Although we
generate one P1 for a CI and its subsets, as their P2, P3 and P4
are different they will generate the desired results. For inputs
(P2), outputs (P3) and immediate values (P4), we just look for
equal configuration bits and generate one configuration data
for them. In the next step to make the configuration memory
smaller, we try to merge P1 of small CIs into one
configuration. Using these two techniques and using less
intermediate multiplexers we were able to reduce the
configuration memory. The other advantage of using these two
techniques is that the number of context switching will be
decreased due to fewer configurations.

9. Experimental Results
Average execution times of CIs derived from 8 applications of
Mibench on both homogeneous and heterogeneous
architectures are given in Figure 11. As it is shown, owing the
fact that the critical path is reduced in our newly proposed
architecture, CI execution times are 20-30% shorter than the
previous architecture. Moreover as in the new architecture the
number of multiplexers is reduced, configuration bits of
multiplexers are reduces which in turn results in less memory
and power consumption. All these improvements are besides
the reduction in the area which proved to be reduced by 15%,
according to the reports of MAGMA's layout synthesis tool.

0

5

10

15

20

25

30

35

40

FFT bmath patr susan string
search

adpcmc gsm djpeg

Test cases

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
of

 C
I

(n
s)

Hetergenious RFU
Homogenious RFU

Figure 11. Comparing average execution time of CIs on

previous and new architecture

10. Conclusion
Exploiting non-identical FUs in a heterogeneous RFU can
improve the runtime and mapping rate of CIs compared to their
homogeneous counterparts. In this paper we proposed a
heterogeneous architecture for RFU of an extensible processor
named AMBER, based on a quantitative and analytical
approach. The mapping rate of CIs on this architecture was
94.86%. In addition, the CI execution speed on this
architecture was improved drastically compared to the previous
one. Our RFU consists of 8 inputs, 6 outpus, 3 tri-instruction
FUs, 2 bi-instruction FUs and 3 uni-instruction FUs.
As a continuation of this work and to improve the overall
runtime of applications, one can work on the architecture and
mapping mechanisms to support floating point operations. In
addition, it would be worth trying to work on some methods to
reduce overall power consumption of the unit.

Reference
[1] Keutzer. K., S.Malik, A.R.Newton, J.M.Rabaey and A.Sangiovanni-

Vincentelli. 2000. "System-Level Design: Orthogonalization of
Concerns & Platform-based Design". In IEEE Transactions on CAD
of Integrated Circuits and Systems, 19, No.12, 1523-1543.

[2] Hamid Noori, Farhad Mehdipour, Kazuaki Murakami, Koji Inoue
and Morteza Saheb Zamani, "A Reconfigurable Functional Unit for
an Adaptive Dynamic Extensible Processor," IEEE International
Conference on Field Programmable Logic and Applications
(FPL'06), Spain, 2006.

[3] H. Noori, K. Murakami, and K. Inoue, “A General Overview of an
Adaptive Dynamic Extensible Procesor”, in Proc. Workshop on
Introspective Architecture, 2006.

[4] S. Hauck, T. Fry, M. Hosler, and J. Kao, “The Chimaera
reconfigurable functional unit,” in Proc. IEEE Symp. FPGAs for
Custom Computing Machines, pp. 87–96, Apr.1997.

[5] J. E. Carrillo, and P. Chow, “The effect of reconfigurable units in
superscalar processors,” in Proc.of the 2001 ACM/SIGDA FPGA,
pp. 141–150, 2002

[6] A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo, and R.
Guerrieri , “A VLIW Processor with Reconfigurable Instruction Set
for Embedded Applications,” IEEE Journal of Solid-State Circuits,
vol. 38, no. 11, pp. 1876–1886, 2003.

[7] B. Mei, S. Vernalde, D. Verkest, and R. Lauwereinsg, “Design
Methodolody for a Tightly Coupled VLIW/Reconfigurable Matrix
Architecture: A Case Study,” in Proc. Design, Automation and Test
in Europe, 2004.

[8] M. H. Lee, H. Singh, G. Lu, N. Bagherzadeh, and F. J. Kurdahi ,
“Design and implementation of the MorphoSys Reconfigurable
Computing Processor,” Journal of VLSI and Signal Processing-
Systems for Signal, Image and Video Technology, Mar. 2000.

[9] J. R. Hauser, and J. Wawrzynek, “GARP: A MIPS processor with a
reconfigurable processor,” in IEEE Symp. On FPGAs for Custom
Computing Machines, Apr. 1997.

[10] K. Compton, and S. Hauck, “Reconfigurable Computing: A Survey
of Systems and Software,” ACM Computing Surveys, vol. 34, no. 2,
pp. 171–210, 2002.

[11] F. Barat, and R. Lauwereins, “Reconfigurable Instruction Set
Processors: A Survey,” International Workshop on Rapid System
Prototyping, 2000.

[12] S. Vassiliadis, and et al., “The MOLEN Polymorphic Processor,”
IEEE Transactions on Computers, vol. 53, no. 11, Nov. 2004, pp.
1363–1375.

[13] www.eecs.umich.edu/mibench

[14] www.Simplescalar.com

[15] N. Clark, M. Kudlur, H. Park, S. Mahlke and K. Flautner,
“Application-Specific Processing on a General-Purpose Core via
Transparent Instruction Set Customization”, in Proc. MICRO-37,
2004.

