
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Performance Enhancement of an Adaptive Dynamic
Extensible Processor by Using a Heterogeneous
Reconfigurable Functional Unit

Mehdizadeh, Arash
Computer Engineering Department, Amirkabir University of Technology

Ghavami, Behnam
Computer Engineering Department, Amirkabir University of Technology

Zamani, Morteza Saheb
Computer Engineering Department, Amirkabir University of Technology

Mehdipour, Farhad
Computing and Communication Center, Kyushu University

https://hdl.handle.net/2324/8318

出版情報：International SoC Design Conference, pp.251-254, 2007-10
バージョン：
権利関係：



Performance Enhancement of an Adaptive Dynamic 
Extensible Processor by Using a Heterogeneous 

Reconfigurable Functional Unit 
Arash Mehdizadeh   Behnam Ghavami   Morteza Saheb Zamani 

Computer Engineering Department 
Amirkabir University of Technology 

Tehran, Iran 
{a_mehdizadeh, ghavami, szamani}@ aut.ac.ir 

Farhad Mehdipour 
Computing and Communication Center 

Kyushu University 
Fukuoka, Japan 

farhad@c.csce.kyushu-u.ac.jp 
 

ABSTRACT - In this paper, we develop a 
heterogeneous architecture for the reconfigurable 
functional unit of an extensible processor. To verify the 
efficiency of our architecture, we applied it to 8 
applications of Mibench. The new architecture improves 
execution time of custom instructions by 20% to 30% on 
average while supporting more custom instructions. The 
area and the total wire length are reduced by 15% and 
20% respectively. In addition, depending on the custom 
instructions being run on the unit, average dynamic 
power consumption is reduced by 9% making this unit 
more suitable for embedded applications.  

Keywords : Custom Instruction, Extensible Processor,  
Reconfigurable Functional Unit. 

1 Introduction 
One recent approach of embedded systems 

implementation, and in fact a way to fill the gap 
between general purpose processors (GPP) and 
application specific integrated circuits (ASIC), is the use 
of custom hardware in special applications. In such way, 
even instructions could be customized. Application-
specific instruction-set processors (ASIPs) have been an 
important design and implementation methodology for 
system-on-chip processors in the last decade. As a 
complement to the approach of ASIPs, processors with 
extensible instruction sets have been introduced in 
which a core collaborates with a reconfigurable 
functional unit being implemented either coarsely or 
finely  [2] [3] [5]. Even after the implementation of the 
instruction set architecture of such systems, custom 
instructions (CIs) can be added to the system. These 
instructions are extracted regarding hot basic blocks 
(HBB). A basic block is a sequence of instructions that 
is ended with a control instruction. HBBs are referred to 
the basic blocks which are repeated more than a 
threshold number of times during the execution of a 
certain program. With such definition, critical sections 
of programs are extracted as data flow graphs (DFG), 
mapped and executed on a hardware accelerator or a 
functional unit (FU) bound to the main core. In this 
paper, A new tightly coupled  [4] fast-interconnected 
reconfigurable functional unit (RFU) is presented for the 

previously introduced Adaptive dynaMic extensiBlE 
processoR (AMBER)  [1]. Enhancing AMBER's 
functionality, we reduced critical path delay of the RFU 
by replacing collections of individual identical FUs with 
some other non-identical ones. The Rest of the paper is 
organized as follows: In Section 2 the first proposed 
architecture of AMBER's RFU is presented. In section 3 
the new heterogeneous architecture is introduced. 
Sections 4 and 5 discuss mechanics of DFG clustering 
and configuration memory. In sections 6 experimental 
results are given. Finally, the paper is concluded in 
section 7. 

2 Related Work 
In  [1] [7] an extensible processor named AMBER is 

introduced which  utilizes a tightly coupled coarse grain 
RFU. In AMBER, there is no need for a new 
programming model, compiler, opcode for new 
instructions, source code modification or recompilation. 
The user just runs the applications on the base processor 
then generation of custom instructions and handling 
their execution are done transparently and 
automatically. The main concern in  [1] [7] was to cover 
as much CIs as possible or in other words has a coverage 
percentile as close to as 100%. We further enhanced this 
structure by introducing a new heterogeneous 
architecture which reduces critical path delay and 
configuration bits while increasing CI coverage with no 
penalty in area or total wire length. AMBER is an 
extensible processor consisting of a 4-issue in-order 
RISC processor supporting MIPS instruction set, 
profiler, RFU, and a scheduler. Portions of applications 
suitable for acceleration can be executed on a 
reconfigurable core in AMBER that is the RFU. The 
RFU is a matrix of FUs. As it has been also mentioned 
in  [8], according to the processor's size of data, a matrix 
of FUs seems an efficient and reasonable hardware for 
accelerating sub-dataflow graphs as CIs. 

2.1   RFU's Homogeneous Architecture 

Based on the quantitative approach in  [1] regarding 
maximum possible mapping rate, the RFU architecture 
in Figure 1 was proposed. In this architecture, there are 



16 identical FUs which implement a single function per 
configuration based on their configuration bits. 
Interconnection of these 16 units is established through 
multiplexers programmed by configuration bits other 
than those associated with the configuration of FUs and 
those storing immediate values. 

 
Figure 1. Architecture of RFU using identical FUs 

3  The New Heterogeneous Architecture  
One of the most important aspects of RFU 

construction which did not receive much of concern in 
similar works is the length of critical path and its effect 
on performance. Critical path is referred to the path 
incorporating maximum number of active sequential 
FUs from one input to one output. Frequent occurrences 
of CIs inherently call for reduction of CIs execution time 
on the RFU. This time directly depends on the critical 
path delay and therefore, its reduction leads to the 
reduction of critical path delay. Experimental results 
show that the delay associated with the multiplexers used 
for interconnection of FUs constitutes a great portion of 
the overall delay (Table 1). Intuitively, reducing the 
number of multiplexers affiliated with the structure of a 
mapped CI on the RFU can reduce the critical path delay 
dramatically. 

Table 1. Critical path delays of components of RFU in 
TSMC 0.18u technology optimized for speed. 

Unit Critical path delay (ns) Unit Critical path delay (ns) 

Mux 3-1 1.16 Mux 7-1 1.7 
Mux 4-1 1.24 Mux 8-1 1.86 
Mux 5-1 1.47 FU 6.94 
Mux 6-1 1.52   

To reduce the number of multiplexers in the 
critical path without affecting the mapping rate, we 
propose an RFU with non-identical FUs. FUs of this new 
architecture are able to execute multiple instructions 
(one, two or three) with every regular consecution in a 
DFG structure (based on the FU's structure). We define 
a regular DFG as the one in which the output of every 
node is not connected to more than one node. Analyses 
over 20 applications of Mibench  [6] show that almost 
97% of DFGs have this attribute. Considering these 
regular DFG structures, we propose FUs which can 
implement every consecutive two and three-instruction 

sets representing sub-data flow graphs (sub-DFGs) 
depicted in Figure 2. We named these FUs as bi- and tri-
instruction FUs respectively. By replacing a number of 
previous uni-FUs and multiplexers of RFU with bi/tri-
FUs, a considerable reduction in the critical path delays 
of  mapped CIs can be resulted as shown in Table 2. 

 

Figure 2. Regular executable sub-DFGs on tri and bi-
instruction FUs (left to right)   

Table 2. Replacing a number of uni-FUs and 
multiplexers with bi/tri-FUs (synthesized in TSMC 
0.18u technology optimized for speed) 

Units Critical path 
delay (ns) 

Replaced 
Unit 

Critical path 
delay (ns) 

2 uni-FU and 1 Mux 14.47 bi-FU 10.7 
3 uni-FU  and 2 Mux 23.8 tri-FU 15.9 

To determine the structure of RFU, first we must 
find proper values for the number of RFU inputs and 
outputs. Therefore, the mapping rate of the generated 
CIs were inspected in 20 applications of Mibench on the 
RFU. Then, our generated CIs were mapped on the RFU 
without considering any constraints. By examining the 
mapping rate for different numbers of inputs and 
outputs, we tried to choose proper numbers. According 
to the results, eight and six are good candidates for the 
number of inputs and outputs, respectively. 

We also conducted an analysis to determine the 
number of uni-, bi- and tri-instruction FUs. According to 
Figure 3, putting constraints on the number of inputs 
and outputs, 85% of CIs contain less than 9 nodes.  

 

Figure 3. Mapping rate for different numbers of I/O 

Therefore, to have a more reliable analysis, we 
observed precisely all the regular DFGs being composed 
of less than 9 nodes with different topologies 
(multiplicities of these DFGs are shown in Table 3). 
Moreover, for the analysis of CIs with more than 8 
instructions, mapping rate frequency was used by which 
we mean the percentage of generated CIs for the 
applications of Mibench that can be mapped on the RFU. 



Table 3. Possible number of regular DFGs with different 
number of nodes 

Num of DFG 
nodes 

Num of 
regular DFGs 

Num of DFG 
nodes 

Num of regular 
DFGs 

1 1 5 6 
2 1 6 11 
3 2 7 23 
4 3 8 46 

Many different architectures and configurations 
considering the mapping rate results were examined. 
Based on the conducted analyses, the RFU architecture 
depicted in Figure 4 (a) is introduced. In this 
architecture, when an input data is needed by the FUs 
located in rows other than the first row or when the 
output of one row is used by the FUs placed in a non-
subsequent row, move instructions are mapped on the 
intermediate FUs to pass over the data. Assuming these 
limitations, the mapping rate decreases to 84.72%. To 
improve the mapping rate, many different architectures 
and configurations were examined. Finally, we reached 
to the architecture illustrated in Figure 4 (b).  

 

Figure 4. The proposed fast interconnected 
heterogeneous RFU architectures 

To facilitate data accesses for the FUs and reduce 
the inserted move instructions, beside the connections 
that exist from outputs of each row to the inputs of the 
subsequent row, ten other longer connections were added 
as shown in Figure 4(b). In rows 1 and 2 unidirectional 
connections to the neighbor FUs were added. These three 
connections support those long CIs that do not have 
much parallelism but their operations are very 
dependent. Using these connections, the CIs shorter than 
13 nodes can be supported by the RFU. This RFU is able 
to map all CIs comprising less than 9 nodes and 78% of 
CIs 9 to 16 nodes long. In this way, the mapping rate 
becomes 95.31%. Experiments show that each FU of the 
RFU does not need to support all of the microprocessor 
supported instructions. We defined three types of 
instructions: logical (type 1), add/sub/compare (type 2) 
and shift operations (type 3). Distribution and 
multiplicity of each type for each row are given in Table 
4. 

 
 

Table 4. Type of functions for each FU 
 

Row Number uni-FU uni or bi-FU tri-FU 

1 Type 1,2 Type 3 Type 1,2,3 
2 - Type 2 Type 1,2,3 
3 Type 1,2 Type 1,2,3 Type1,2 

Enforcing all of the constraints, the mapping rate 
becomes 94.86% which is almost 6% better than the 
previous architecture  [7]. In addition, in the previous 
RFU (Figure 1), DFGs longer than 8 nodes are not 
mappable whilst it is improved to 12 nodes long in our 
proposed architecture. Each CI configuration needs 287 
bits for storing control signals and 201 bits for 
immediate values. 

4 DFG Clustering 
Due to the different FUs and their varying ability to 

implement certain sub-DFGs, DFG clustering requires 
certain considerations to be mappable on the RFU. For 
optimum utilization, we used a greedy algorithm to 
cluster CIs, It clusters the biggest branch of the graph 
and then establishes a new sub-graph. The same step is 
repeated on the sub-graph based on the remaining 
resources in the RFU. Figure 5 illustrates an example of 
DFG clustering and its corresponding CI mapping on the 
RFU. In order to obtain better results, we applied a new 
mechanism called "Structure Profiling" to map CIs less 
than 9 nodes long. In our survey, all regular structures of 
DFGs with less than 9 nodes were identified and then 
traversed bottom up. So, for all of these DFGs we 
generated a configuration profile stored in the 
configuration memory. During CI mapping, every new 
DFG is traversed and then compared with the previously 
profiled ones. If one of the stored profiles is identical to 
the corresponding DFG, it will be used to map the CI on 
the RFU. Every configuration profile is stored in the 
mapping tool.  

 

Figure 5. DFG clustering and CI mapping on the RFU 

5 Configuration Memory 
As computed in Section 3, each CI configuration 

needs 488 bits- this is already better than the 512 bits of 
[1]. As a result, in an application such as rijndael with 
117 CIs, we need about 6. 96 KBs for the configuration 
data. However, experiments show that similar CIs 



provide good opportunities to reduce the configuration 
memory by merging their configuration data to one. The 
problem is that in most cases, the configuration bits 
which are related to functions and connections are the 
same but the control bits for inputs, outputs or 
immediate values differ. In order to reduce the size of 
configuration memory, CI configuration data is divided 
to four parts. In other words, RFU is provided with 
partial reconfiguration; 138 bits for configuring 
intermediate connections and selecting functions of FUs 
(P1), 90 bits for selecting inputs (P2), 60 bits for outputs 
(P3) and 196 bits for immediate values (P4). We added 
another stage to our tool flow in which generated CIs are 
received as inputs and similar CIs and their subsets are 
searched and then their configuration data are merged 
into one. The two CIs are similar if their P1 are the same 
and a CI is a subset of another CI if its P1 is a subset of 
the bigger one. Although we generate one P1 for a CI 
and its subsets, as their P2, P3 and P4 are different they 
generate the desired results. For inputs (P2), outputs (P3) 
and immediate values (P4), we just look for equal 
configuration bits and generate one configuration data 
for them. In the next step, to make the configuration 
memory smaller, we try to merge P1 of small CIs into 
one configuration. Using these two techniques and using 
less intermediate multiplexers we were able to reduce the 
configuration memory. The other advantage of using 
these two techniques is that the number of context 
switchings is decreased due to the less number of 
configurations. 

6 Experimental Results 
Average execution times of CIs derived from 8 

applications of Mibench on both homogeneous and 
heterogeneous architectures are given in Figure 6. As it 
is shown, owing the fact that the critical path is reduced 
in our newly proposed architecture, CI execution times 
are 20-30% shorter than the previous architecture. 
Average dynamic power consumption of both 
architectures was measured during several simulation 
runs and as it is shown in Figure 7 the new architecture 
consumes less energy. All these are beside the reduction 
in the area and total wire length which proved to be 
reduced by 15% and 20% respectively, according to the 
reports of the logic and layout synthesis tools. 

 
7 Conclusion 

Exploiting non-identical FUs in a heterogeneous 
RFU can improve the runtime and mapping rate of CIs 
compared to their homogeneous counterparts. In this 
paper, a heterogeneous architecture was proposed for the 
RFU of an extensible processor named AMBER, based 
on a quantitative and analytical approach. The mapping 
rate of CIs on this architecture was 94.86% and the CI 
execution speed on our structure was improved 
drastically compared to the previous architecture. 

0

5

10

15

20

25

30

35

40

FFT bmath patr susan str search adpcmc gsm djpeg
Test cases

A
ve

ra
ge

 e
xe

cu
tio

n 
tim

e 
of

 C
I (

ns
)  

   
  I

 (n
s)

Hetergenious RFU

Homogenious RFU

 

Figure 6. Comparing average execution time of CIs on 
previous and new architecture 

0 2 4 6 8 10 12 14

FFT

bmath

patr

susan

string search

adpcmc

gsm

djpeg

Average dynamic power consumption reduction %
 

Figure 7. Average dynamic power reduction in the new 
architecture. The reduction is dependant on the structure 

and frequency of CI's in different applications. 

Reference 
[1] H. Noori, F. Mehdipour, K. Murakami, K. Inoue and M. Saheb 

Zamani, "A reconfigurable functional unit for an adaptive 
dynamic extensible processor," IEEE International Conference 
on Field Programmable Logic and Applications (FPL'06), 
Spain, 2006. 

[2] S. Hauck, T. Fry, M. Hosler, and J. Kao, “The Chimaera 
reconfigurable functional unit,” in Proc. IEEE Symp. FPGAs 
for Custom Computing Machines, pp. 87–96, 1997. 

[3] A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo, and R. 
Guerrieri , “A VLIW processor with reconfigurable instruction 
set for embedded applications,” IEEE Journal  of Solid-State 
Circuits, vol. 38, no. 11, pp. 1876–1886, 2003. 

[4] B. Mei, S. Vernalde, D. Verkest, and R. Lauwereinsg, “Design 
methodolody for a tightly coupled VLIW/reconfigurable matrix 
architecture: A case study,” in Proc. Design, Automation and 
Test in Europe, 2004. 

[5] S. Vassiliadis, and et al., “The MOLEN polymorphic 
processor,” IEEE Transactions on Computers, vol. 53, no. 11, 
Nov. 2004, pp. 1363–1375. 

[6] www.eecs.umich.edu/mibench 

[7] H. Noori, K. Murakami, and K. Inoue, “A General Overview of 
an Adaptive Dynamic Extensible Procesor”, in Proc. Workshop 
on Introspective Architecture, 2006. 

[8] N. Clark, M. Kudlur, H. Park, S. Mahlke and K. Flautner, 
“Application-Specific Processing on a General-Purpose Core 
via Transparent Instruction Set Customization”, in Proc. 
MICRO-37, 2004. 


