
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

High Performance, Low Power Reconfigurable
Processor for Embedded Systems

Mehdipour, Farhad
Computing and Communication Center, Kyushu University

Noori, Hamid
Department of Informatics, Kyushu University

Inoue, Koji
Department of Informatics, Kyushu University

Murakami, Kazuaki
Department of Informatics, Kyushu University

https://hdl.handle.net/2324/8315

出版情報：International SoC Design Conference, pp.51-55, 2007-10
バージョン：
権利関係：

HIGH PERFORMANCE, LOW POWER
RECONFIGURABLE PROCESSOR FOR
EMBEDDED SYSTEMS

Farhad Mehdipour, Hamid Noori, Koji Inoue,
Kazuaki Murakami

Kyushu University, Japan

Kyushu University ISOCC 2007@Seoul, Korea 2/38

Oct 16, 2007

OUTLINE

Introduction
Motivations for Supporting Control Instructions
Basic Requirements for Supporting Conditional Execution
Algorithms for CDFG Temporal Partitioning
Case study: Extending an Extensible Processor to Support
Conditional Execution
Experimental Results
Conclusion

Kyushu University ISOCC 2007@Seoul, Korea 3/38

Oct 16, 2007

OUTLINE

Introduction
Motivations for supporting Control Instructions
Basic Requirements for Supporting Conditional Execution
Algorithms for CDFG Temporal Partitioning
Case study: Extending an Extensible Processor to Support
Conditional Execution
Experimental Results
Conclusion

Kyushu University ISOCC 2007@Seoul, Korea 4/38

Oct 16, 2007

INTRODUCTION

Designing Embedded Systems
Embedded Microprocessors
Application Specific Integrated Circuits (ASICs)
Application Specific Instruction set Processors (ASIPs)
Extensible Processors

CPU

Instruction Dispatcher

Register File

+ & x LD/ST CFU1 CFU2

LD/ST: Load / Store

CFU: Custom Functional Unit

Kyushu University ISOCC 2007@Seoul, Korea 5/38

Oct 16, 2007

GOAL

Improving the performance and energy efficiency of
embedded processors, while maintaining compatibility
and flexibility.

Kyushu University ISOCC 2007@Seoul, Korea 6/38

Oct 16, 2007

EXTENSIBLE PROCESSORS

Enhancing the performance of a processor in embedded systems
Using an accelerator for accelerating frequently executed portions of
applications

Accelerator implementations
reconfigurable fine/coarse grain hw
custom hardware (such as ASIP or Extensible Processors)

AND AND

OR

AND2_OR

CPU

Instruction Dispatcher

Register File

+ & x LD/ST CFU1 CFU2

LD/ST: Load / Store

CFU: Custom Functional Unit

Kyushu University ISOCC 2007@Seoul, Korea 7/38

Oct 16, 2007

CUSTOM INSTRUCTIONS

Critical segments Most frequently executed portions of the applications

Instruction set customization hardware/software partitioning

Custom Instructions (CIs) are
extracted from critical segments of an application and
executed on an Custom Functional Unit (CFU)

A CI is represented as a Data Flow Graph (DFG)

CI or DFG generation levels
high level or
binary level (DFG nodes are the instructions level operations)

Kyushu University ISOCC 2007@Seoul, Korea 8/38

Oct 16, 2007

ADAPTIVE EXTENSIBLE PROCESSORS

Issues of Extensible Processors
High NRE (Non-Recurring Engineering) and manufacturing costs
Long time-to-market

Adaptive Extensible Processor
Adding and generating custom instructions after fabrication
Using a reconfigurable functional unit (RFU) instead of custom functional unit

CPU
Instruction Dispatcher

Register File

+ & x LD/ST CFU1 CFU2RFU Config
Mem

CFU: Custom Functional Unit

RFU: Reconfigurable Functional Unit

Kyushu University ISOCC 2007@Seoul, Korea 9/38

Oct 16, 2007

HOW EXTENSIBLE PROCESSOR WORKS

GPP: General Purpose Processor

RFU: Reconfigurable Functional Unit

Register File

ID/EXE Reg

RFUALU

MUX

EXE/MEM Reg

GPP Augmented HW

400680 subiu $25,$25,1
400688 lbu $13,0($7)
400690 lbu $2,0($4)
400698 sll $2,$2,0x18
4006a0 sra $14,$2,0x18
4006a8 addiu $4,$4,1
4006b0 srl $8,$2,0x1c
4006b8 sll $2,$8,0x2
4006c0 addu $2,$2,$25
4006c8 lw $2,0($2)
4006d0 xori $13,$13,1
4006d8 addu $10,$10,$2
400680 subiu $25,$25,1
400698 sll $2,$2,0x18
4006a0 sra $14,$2,0x18
400688 lbu $13,0($7)
4006e0 bgez $10,4006f0
.
.
.

Hot Basic Block

Config
Memory

Kyushu University ISOCC 2007@Seoul, Korea 10/38

Oct 16, 2007

OUTLINE

Introduction
Motivations for supporting Control Instructions
Basic Requirements for Supporting Conditional Execution
Algorithms for CDFG Temporal Partitioning
Case study: Extending an Extensible Processor to Support
Conditional Execution
Experimental Results
Conclusion

Kyushu University ISOCC 2007@Seoul, Korea 11/38

Oct 16, 2007

CONTROL DATA FLOW GRAPH: DEFINITION

CDFG The DFG containing control instructions (e.g. branch instruction)

The sequence of execution changes due to the result of a branch
instructions

Types of CDFGs:
CDFGs containing at most one branch instruction (last instruction)
accelerator does not need to support conditional execution

CDFGs containing more than one branch instruction accelerator should
support conditional execution

Kyushu University ISOCC 2007@Seoul, Korea 12/38

Oct 16, 2007

WHY NEED TO SUPPORT CONTROL
INSTRUCTIONS- MOTIVATIONS (1/2)

Quantitative analysis approach using applications of Mibench
DFG extraction process

Short distance control instructions small size DFGs (SSDFG)
SSDFGs do not offer noticeable speedup have to be run on the base
processor

Kyushu University ISOCC 2007@Seoul, Korea 13/38

Oct 16, 2007

WHY NEED TO SUPPORT CONTROL
INSTRUCTIONS- MOTIVATIONS (2/2)

Analysis on 17 application of Mibench
bitcount

almost 92% of application is hot
32% out of 92% of hot portions do not worth to be accelerated due to the SSDFGs

fft, fft(inv) and sha
include few branch instructions
supporting conditional execution results in no considerable speedup

0
10
20
30
40
50
60
70
80
90

100

ad
pcm

(en
c)

ad
pcm

(dec
)

bitc
ounts

blowfis
h

blowfis
h (d

ec
)

bas
icm

ath
cjp

eg crc
dijk

str
a

djpeg fft
fft

 (in
v)

lam
e

patr
ici

a

sh
a

str
ingse

arc
h

su
sa

n

%

Percentage of hot portions Percentage of eliminated hot portions due to SSDFGs

Kyushu University ISOCC 2007@Seoul, Korea 14/38

Oct 16, 2007

OUTLINE

Introduction
Motivations for supporting Control Instructions
Basic Requirements for Supporting Conditional Execution
Algorithms for CDFG Temporal Partitioning
Case study: Extending an Extensible Processor to Support
Conditional Execution
Experimental Results
Conclusion

Kyushu University ISOCC 2007@Seoul, Korea 15/38

Oct 16, 2007

BASIC REQUIREMENTS

DFG nodes receive their input from a single source
CDFG nodes can have multiple sources
The correct source is selected at run time according to the results of branches

Kyushu University ISOCC 2007@Seoul, Korea 16/38

Oct 16, 2007

BASIC REQUIREMENTS

Capability of selective receiving of inputs from both accelerator
primary inputs and output of other instructions (FUs) for each node

Capability of selecting the valid outputs from several outputs
generated by accelerator according to conditions made by branch
instructions

Accelerator should be equipped by control path to provide with the
correct selection of inputs and outputs for each FU and entire
accelerator

Kyushu University ISOCC 2007@Seoul, Korea 17/38

Oct 16, 2007

CDFG GENERATION-EXAMPLE (1/3)

BB1 BB2 BB3

BB4

2 5 beq 7 8bgez3 9

18 17 16 14151920bne

bne10 11 1210

…………….30

load load

Kyushu University ISOCC 2007@Seoul, Korea 18/38

Oct 16, 2007

Example

2 5 beq 7 8bgez3 10

1920bne

bne11 120
exit4

exit3

exit1

exit2

2 5 beq 7 8bgez3 9

18 17 16 14151920bne

bne10 11 1210

BB1
BB2 BB3

BB4

…………….30

CDFG GENERATION-EXAMPLE (2/3)

Kyushu University ISOCC 2007@Seoul, Korea 19/38

Oct 16, 2007

CDFG GENERATION-EXAMPLE (3/3)

inst. # address inst. operands (dest, src1, src2)

1 400418 lw R23 100 R2
2 400420 addiu R4 R4 2
3 400428 subu R3 R2 R11
4 400430 bgez 400440 R3
5 400438 addiu R13 R0 8
6 400440 beq 400468 R13
7 400448 subu R3 R0 R3
8 400450 addu R10 R0 R0
9 400458 lw R8 R9 0x3
10 400460 slt R2 R3 R9

13 400478 bne 4004a8 R2
14 400480 addiu R10 R0 4
15 400488 subu R3 R3 R9
16 400490 addu R8 R8 R9
17 400498 sra R9 R9 0x1
18 4004a0 slt R2 R3 R9

21 4004b8 bne 400410 R2

19 4004a8 ori R10 R10 2
20 4004b0 subu R3 R3 R9

22 4004c0 slt R2 R3 R9

11 400468
12 400470

0 400410 addu R13 R0 R0

inst. # address inst. operands (dest, src1, src2)

1 400410 lw R23 100 R2

2 400420 addiu R4 R4 2
3 400428 subu R3 R2 R11
4 400430 bgez 400440 R3
5 400438 addiu R13 R0 8
6 400440 beq 400468 R13
7 400448 subu R3 R0 R3
8 400450 addu R10 R0 R0

9 400460 lw R8 R9 0x3
10 400458 slt R2 R3 R9

13 400478 bne 4004a8 R2
14 400480 addiu R10 R0 4
15 400488 subu R3 R3 R9
16 400490 addu R8 R8 R9
17 400498 sra R9 R9 0x1
18 4004a0 slt R2 R3 R9

21 4004b8 bne 400410 R2

19 4004a8 ori R10 R10 2
20 4004b0 subu R3 R3 R9

22 4004c0 slt R2 R3 R9

11 400468
12 400470

0 400418 addu R13 R0 R0

Code before generating MECI Code after generating MECI

ori R10 R10 1
addu R8 R8 R9

ori R10 R10 1
addu R8 R8 R9

2 5 beq 7 8bgez3 10

1920bne

bne11 120
exit4

exit3

exit1

exit2

Kyushu University ISOCC 2007@Seoul, Korea 20/38

Oct 16, 2007

OUTLINE

Introduction
Motivations for supporting Control Instructions
Basic Requirements for Supporting Conditional Execution
Algorithms for CDFG Temporal Partitioning
Case study: Extending an Extensible Processor to Support
Conditional Execution
Experimental Results
Conclusion

Kyushu University ISOCC 2007@Seoul, Korea 21/38

Oct 16, 2007

CDFG TEMPORAL PARTITIONING
ALGORITHMS

CDFGs extracted from various applications
have different sizes
for some of the CDFGs

• the whole of CDFG can not be mapped on the accelerator due to the
resource limitations of the accelerator

Resource constraints
the number of inputs, outputs, logics and routing resource
constraints

Kyushu University ISOCC 2007@Seoul, Korea 22/38

Oct 16, 2007

CDFG TEMPORAL PARTITIONING
ALGORITHMS

Temporal partitioning
Temporally divides a DFG into a number of smaller partitions
each partition can fit into the target hardware
dependencies among the nodes are not violated

Temporal Partitioning algorithms for CDFGs
Not-Taken Path Traversing alg. (NTPT)
Frequency based TP alg.

Kyushu University ISOCC 2007@Seoul, Korea 23/38

Oct 16, 2007

TP BASED ON NOT-TAKEN PATHS (NTPT)

Adds instructions from not-taken path of a control instruction to a
partition until

violating the target hardware architectural constraints or
reaching to a terminator control instruction

Generating a new partition is started with the branch instructions
which at least one of their taken or not-taken instructions has not
been located in the current partition

Terminator instruction
an instruction which changes execution direction of the program
an exit point for a CDFG

Kyushu University ISOCC 2007@Seoul, Korea 24/38

Oct 16, 2007

TP BASED ON NOT-TAKEN PATHS (NTPT)

2 5 beq 7 8bgez3 9

18 17 161920bne

bne10 11 1210

…

0 1 2 53 bgez beq 7 8 9 10beq 7 8 9 10 11 12 bne 151414 15

…

First partition Second partition

Kyushu University ISOCC 2007@Seoul, Korea 25/38

Oct 16, 2007

FREQUENCY-BASED TP ALGORITHM

NTPT algorithm
instructions were selected only from not-taken paths of branches

Frequency-based algorithm
execution frequency of taken and not-taken paths is an effective factor
in adding them to the current partition
a frequency threshold is defined to determine that whether instruction is
critical or not
one of the taken or not-taken paths or both of them can be critical

Kyushu University ISOCC 2007@Seoul, Korea 26/38

Oct 16, 2007

FREQUENCY-BASED TP ALGORITHM

2 5 beq 7 8bgez3 9

18 17 161920bne

bne10 11 12100 1 2 53 bgez beq 7 8 9 10 11 12 bne 151414 15

50%

50%

90%

10%

11

80%

20%

12

…

…

First partition Second partition
First partition

Kyushu University ISOCC 2007@Seoul, Korea 27/38

Oct 16, 2007

EVALUATING TP ALGORITHMS

Average Partition No. Efficiency

0
1
2
3
4
5
6

ad
pcm

c

ad
pcm

d
blowfis

h(en
c)

blowfis
h(dec

)

crc

dijk
str

a

A
ve

ra
ge

 P
ar

tit
io

n
N

o.

NTPT Alg. Frequency Based Partitioning Alg.

0
1
2
3
4
5
6
7
8

ad
pc

mc

ad
pc

md
blow

fis
h(en

c)
blow

fis
h(dec

)

crc

dijk
str

a

Ef
fic

ie
nc

y

NTPT Alg. Frequency Based Partitioning Alg.

Kyushu University ISOCC 2007@Seoul, Korea 28/38

Oct 16, 2007

OUTLINE

Introduction
Motivations for supporting Control Instructions
Basic Requirements for Supporting Conditional Execution
Algorithms for CDFG Temporal Partitioning
Case study: Extending an Extensible Processor to Support
Conditional Execution
Experimental Results
Conclusion

Kyushu University ISOCC 2007@Seoul, Korea 29/38

Oct 16, 2007

CASE STUDY: EXTENDING AN EXTENSIBLE PROCESSOR
TO SUPPORT CONDITIONAL EXECUTION

AMBER
an extensible processor targeted
for embedded systems
Goal: accelerating application
execution
Including :

• a general RISC processor
• Profiler
• Sequencer
• a coarse grain RFU

RFU: an accelerator without
conditional execution support

Kyushu University ISOCC 2007@Seoul, Korea 30/38

Oct 16, 2007

EXTENDING AMBER’s RFU (CRFU)

The selectors of muxes are
used for choosing data for FU inputs
controlled by the configuration bits

The outputs of FUs are only applied to the Selector-Muxes in the lower-
level rows

Kyushu University ISOCC 2007@Seoul, Korea 31/38

Oct 16, 2007

CRFU

Selection using
branch results

Inputs of Selector-Mux (one-bit width) originate from the FUs executing branch
instructions

Data Selector-MuxSelection using
configuration bits

Selection using
configuration bits

Kyushu University ISOCC 2007@Seoul, Korea 32/38

Oct 16, 2007

OUTLINE

Introduction
Motivations for supporting Control Instructions
Basic Requirements for Supporting Conditional Execution
Algorithms for CDFG Temporal Partitioning
Case study: Extending an Extensible Processor to Support
Conditional Execution
Experimental Results
Conclusion

Kyushu University ISOCC 2007@Seoul, Korea 33/38

Oct 16, 2007

EXPERIMENTAL RESULTS

Synthesis result of the extended RFU
Synopsys tools and Hitachi 0.18μm
area 2.1 mm2

CDFG configuration bit-stream 615 bits
Control signals: 375 bits

Executing applications on the Simplescalar as ISS
Profiling and extracting hot instruction sequence

NTPT temporal partitioning algorithm for generating
mappable CDFGs

Kyushu University ISOCC 2007@Seoul, Korea 34/38

Oct 16, 2007

EXPERIMENTAL RESULTS - SPEEDUP

Speedup Comparison

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3

ad
pcm

 (e
nc)

ad
pcm

 (d
ec

)
blowfis

h (e
nc)

blowfis
h (d

ec
)

crc

dijk
str

a

Ave
rag

e

Sp
ee

du
p

DFG
CDFG

Average Speedup: 2.1 (CDFG) versus 1.1 (DFG)

Kyushu University ISOCC 2007@Seoul, Korea 35/38

Oct 16, 2007

EXPERIMENTAL RESULTS – ENERGY
CONSUMPTION

Energy Saving

0
10
20
30
40
50
60
70
80

ad
pcm

(en
c)

ad
pcm

(de
c)

blowfis
h(en

c)
blowfis

h(dec
)

crc
dijk

str
a

Ave
rag

e

To
ta

l E
ne

rg
y

R
ed

uc
tio

n
(%

)
 C

D
FG

 v
s

D
FG

DFG
CDFG

Average Energy Saving: 43% (CDFG) versus 21% (DFG)

Kyushu University ISOCC 2007@Seoul, Korea 36/38

Oct 16, 2007

EXPERIMENTAL RESULTS -
COMPARISON

Kyushu University ISOCC 2007@Seoul, Korea 37/38

Oct 16, 2007

OUTLINE

Introduction
Motivations for supporting Control Instructions
Basic Requirements for Supporting Conditional Execution
Algorithms for CDFG Temporal Partitioning
Case study: Extending an Extensible Processor to Support
Conditional Execution
Experimental Results
Conclusion

Kyushu University ISOCC 2007@Seoul, Korea 38/38

Oct 16, 2007

CONCLUSION

Handling branch instruction & extending DFGs to CDFGs
Basic requirements for an accelerator featuring conditional
execution
CDFG temporal partitioning algorithms

NTPT traverse not-taken path of the branch instructions
Frequency-based temporal partitioning algorithm

Extending AMBER’s RFU to support conditional execution
Increasing speedup
Reducing energy consumption

THANK YOU!

