
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

High Performance, Low Power Reconfigurable
Processor for Embedded Systems

Mehdipour, Farhad
Computing and Communication Center, Kyushu University

Noori, Hamid
Department of Informatics, Kyushu University

Inoue, Koji
Department of Informatics, Kyushu University

Murakami, Kazuaki
Department of Informatics, Kyushu University

https://hdl.handle.net/2324/8315

出版情報：International SoC Design Conference, pp.51-55, 2007-10
バージョン：
権利関係：

High Performance, Low Power Reconfigurable Processor

for Embedded Systems

Farhad Mehdipour

Computing and Communication Center,

Kyushu University, Fukuoka, Japan
farhad@c.csce.kyushu-u.ac.jp

Hamid Noori , Koji Inoue , Kazuaki Murakami

Department of Informatics, Kyushu University, Fukuoka, Japan
noori@c.csce.kyushu-u.ac.jp

{inoue, murakami}@i.kyushu-u.ac.jp

Abstract - Using an extensible processor in which data

flow graphs (DFGs) are generated from frequently executed

portions (hot portions) of applications and are executed

after chip-fabrication provides flexibility as well as

addressing the time-to-market and significant non-

recurring engineering costs issues. In this paper, the effect

of extending DFGs to control data flow graphs (CDFGs)

through covering control instructions on the speedup is

studied. Moreover, basic requirements for an accelerator

with conditional execution support are presented. A

temporal partitioning algorithm is introduced to partition

the large CDFGs to smaller mappable ones under the

accelerator resource constraints. To demonstrate

effectiveness of the proposed ideas, they are applied to the

accelerator of an extensible processor called AMBER

which utilizes a matrix of functional units to accelerate the

execution of the DFGs. Experimental results approve the

considerable effectiveness of covering control instructions

and using CDFGs versus DFGs in the aspects of

performance and energy reduction.

Keywords: Reconfigurable accelerator, conditional

execution, control data flow graph, temporal partitioning,

reconfigurable processor.

1 Introduction

 Using an accelerator for executing critical or hot (most

frequently executed) portions of applications is an effective

technique to enhance the performance and energy saving of

processors in embedded systems. In this technique, data

flow graphs (DFGs) extracted from critical portions of an

application are executed on an accelerator and remaining

portions on the base processor, correspondingly. By

executing hot portions on an accelerator performance

improvement is obtained through exploiting potential

parallelism and reducing the latency of critical paths and the

number of intermediate results read/written to the register

file. The accelerator can be implemented as a

reconfigurable hardware with fine or coarse granularity or

as a custom hardware (such as Application Specific

Instruction-set Processors or Extensible Processors) [6]. The

integration of accelerator and the processor can be tightly

 [3] [4] [7] [13] or loosely coupled [6] [10]. This paper focuses

especially on tightly coupled reconfigurable accelerator. In

the lattar one, data is read and written directly to and from

the processor’s register file, making the accelerator an

additional functional unit in the processor pipeline

eliminating data transferring overead.

The Control DFG (CDFG) is a DFG containing control

instructions (e.g. branch instruction). For a branch

instruction, two succeeding paths can be considered. If the

branch is taken (branch result is true), a sequence starting

from branch target address called taken path is executed.

Otherwise, not-taken path including a sequence of

instructions starting from the next address to the branch is

executed. In CDFG generation process one can only follow

the frequently executed (hot) directions of branches. For

each branch, one of its taken or not-taken paths or both of

them might be hot. We suggest adding hot directions of

branches into the CDFG without being limited to selecting

just one or all of the directions. This can hide branch

misprediction penalty.

Some applications of Mibench [11] are used for the

analysis to explore motivations for extending DFGs over

control instructions and generating CDFGs to be executed

on an accelerator. As mentioned formerly, DFGs are

extracted from the frequently executed portions of

application and a control instruction (e.g. branch

instruction) may terminate DFG generation process.

Therefore, control instructions located in a short distance

result in generation of small size DFGs (SSDFG). In fact,

SSDFGs are not suitable for improving performance in

application execution and have to be run on the base

processor. Authors showed in [8] that the small length

DFGs (including less than or equal to five instructions) offer

no more speedup. In Figure 1, a piece of a main loop of

adpcm(enc) is shown. adpcm(enc) is an application

program containing a loop which consumes 98% of total

execution time. The critical portion of application contains

12 branch instructions. According the location of branch

instructions, four DFGs can be extracted from the piece of

loop that has been shown in Fig 1. In this figure, three out of

four DFGs are SSDFGs. These SSDFGs do not gain more

speedup and have to be run on the base processor.

This kind of analysis was accomplished for 17

applications of Mibench [11]. Figure 2 shows the overall

percentage of frequently executed (hot) portion of each

application. In addition, this figure shows the fraction of

applications that could not be accelerated because of

SSDFGs. For some applications like fft, fft(inv) and sha

which includes few branch instructions, supporting

conditional execution no considerable speedup is

achievable, because the small portion of generated DFGs

are removed due to SSDFGs. Extending DFGs to contain

more than one branch instruction and generating the CDFGs

vs. DFGs is one solution to amortize the number of

generated SSDFGs. According to the result of a branch

instruction, one of the instructions sequence located in taken

or not-taken paths of the associated branch or both of them

might be executed. Covering both directions can aid the

generation of larger CDFGs, hence more parallelism, as

well as eliminating branch misprediction penalties.

Figure 1. Control DFG of hot portion of adpcmc(enc)

0

10

20

30

40

50

60

70

80

90

100

ad
pc
m
(e
nc
)

ad
pc
m
(d
ec
)

bi
tc
ou
nt
s

bl
ow
fis
h

bl
ow
fis
h
(d
ec
)

ba
si
cm
at
h

cj
pe
g

cr
c

di
jk
st
ra

dj
pe
g ff

t

ff
t (
in
v)

la
m
e

pa
tr
ic
ia

sh
a

st
ri
ng
se
ar
ch

su
sa
n

%

Percentage of hot portions Percentage of eliminated hot portions due to SSDFGs

Figure 2. Fraction of hot portions and eliminated hot

portions in some applications of Mibench [11]

2 Basic Requirements for Conditional

Execution Support in Hardware

For conditional execution support, the accelerator

integrating to the base processor should be equipped by the

capability of branch instruction execution. The target

accelerator is assumed to be a coarse grained reconfigurable

hardware which is a matrix of functional units (FUs) with

specified connections. CDFG nodes are the base processor

instructions, since our concentration is on binary level of the

applications. Therefore, each FU like the processor’s ALUs

can execute instruction level operations.

In a DFG, the nodes (instructions) receive their input

from a single source whereas, in the CDFG, nodes can have

multiple sources with respect to the different paths

generated by branches. The correct source is selected at run

time according to the results of branches. Figure 3 shows a

piece of adpcm(enc)’s critical portion, a part of its

corresponding DFG (Figure 3.a) and the CFG comprising

only control flow of instructions (Figure 3.b). In Figure 3.a,

each node of DFG corresponds to one instruction in the

code. Inside circles, instruction number and instruction itself

has been depicted. Each instruction has at most two sources

and one destination. According to the results of branch

instructions various values for an instruction source could

be obtained. For example, 13
th
 instruction (13:subu)

receives its first source (register R3) from 3
rd
 (3:subu) and

7
th
 (7:subu) instructions. Its output may be routed to

instructions (16:slt) and (19:subu) or (22:slt) depending on

the result of branch instruction (17:bne). As another

example, instruction (22:slt) may receive its first source

(R3) through the instructions (3:subu), (7:subu) or (19:subu)

depending on the result of branch instructions (4:bgez),

(6:beq), (11:bne) and (17:bne). Also, it receives the second

source (R9) from (21:sra). Consequently, the nodes that

generate output data of a CDFG are altered according to the

results of branches as well. Therefore, the accelerator

should have some facilities to generate valid output data.

(a)

(b)

Figure 3. A piece of adpcm(enc) code, a part of its

corresponding DFG and (a) its control flow graph (b)

In the general architecture with conditional execution

features, following characteristics are found:

a) An FU in the accelerator can receive its inputs

directly from accelerator primary inputs or from output

of the other FUs.

b) According to the condition of branch instructions,

output of each node can be directed to the other nodes

from different paths. For example, in Figure 3.b, output

of instruction (13:subu) can be routed to nodes (16:slt),

(19:subu) and (22:slt). It means instruction (19:subu)

receives the value of R3 (output of instruction 13) if

branch instruction (17:bne) is not-taken, otherwise R3 is

obtained by instruction (22:slt). Therefore, there may be

several outputs for a CDFG and some of them may be

valid as accelerator’s final outputs.

According to aforementioned properties, the accelerator

architecture must have these following inevitable

requirements:

a) Capability of selective receiving of inputs from both

accelerator primary inputs and output of other

instructions (FUs) for each node.

b) Possibility of selecting the valid outputs from several

outputs generated by accelerator according to conditions

made by branch instructions.

c) Accelerator should be equipped by control path

besides to data path which provides the correct selection

of inputs and outputs for each FU and entire accelerator.

3 Algorithms for CDFG Temporal

Partitioning

 Extending DFGs to cover hot directions of branch

instructions indeed, results in large CDFGs which may not

satisfy the accelerator resource constraints. In other words,

CDFG extracted from various applications have different

sizes and some times the whole CDFG can not be mapped

on the accelerator due to the resource limitations of the

accelerator (e.g. number of inputs, outputs, logics and

specifically routing resource constraints). Using temporal

partitioning algorithms which consider the accelerator

constraints is a solution to this issue. Temporal partitioning

can be stated as partitioning a DFG/CDFG into a number of

partitions such that each partition can fit into the target

hardware and also, dependencies among the graph nodes are

not violated [1] [5]. A temporal partitioning algorithm can

consider the accelerator architectural specifications to

generate executable DFGs on the accelerator. As the

authors’ knowledge there are few algorithms for CDFG

partitioning, though a lot of works have been done around

the DFG temporal partitioning [1] [5]. In [1] a temporal

portioning algorithm has been presented that partitions a

CDFG considering target hardware with non-homogenous

architecture. This algorithm considers all states of the

control instructions in application to convert corresponding

CDFG to a number of DFGs. Then it minimizes the number

of states to reduce the number of generated DFGs. For each

DFG a temporal partitioning algorithm is used for

partitioning. One of the important disadvantages of this

algorithm is that the large number of DFGs may be obtained

during CDFG to DFG conversion. In addition, an exact

knowledge to different states in application is required to

reduce the number of DFGs.

Here, an algorithm is introduced for CDFG temporal

partitioning. The main goal is generating the minimum

number of partitions to reduce the reconfiguration overhead

time as well as configuration memory size. The proposed

algorithm which is refferd as not-taken path traversing

temporal partitioning algorithm (NTPT) adds instructions

from not-taken path of a control instruction to a partition

until violating the target hardware architectural constraints

(e.g. number of logic resources, inputs and outputs) or

reaching to a terminator control instruction. Terminator

instruction is an exit point for a CDFG and changes

execution direction including procedure or function call

instructions and also backward branch and return (to prevent

making cycles in CDFG). Generating a new partition is

started with branch instructions which at least one of their

taken or not-taken instructions has not been located in the

current partition. Figure 4 exemplifies how this algorithm

works for a piece of a CDFG. If the first partition generation

stops in instruction 14 due to resource limitation of the

accelerator, then, second partition is started from instruction

11. Because, for branch instructions located in nodes 4 and

6, both taken and not-taken paths has been inserted in the

first partition, but for instruction 11, only its not-taken path

are located in the first partition. Therefore, it is used as an

initial instruction of the next partition.

Figure 4. Applying NTPT algorithm on a sample CDFG

4 Extending an Accelerator of a

Reconfigurable Processor

AMBER is a reconfigurable processor [12] targeted for

embedded systems. It has been developed by integrating a

base processor with two other main components [12]. The

base processor is a general RISC processor and the other

two components are: sequencer and a coarse grain

reconfigurable functional unit (RFU). Figure 5.a illustrates

the integration of different components in AMBER.

Register File

ID/EXE Reg

RFU

Configuration

Memory

ALUs

MUX Sequencer
Sequencer

Table

EXE/MEM Reg

GPP Augmented HW
(a)

(b)

Figure 5. Main components in AMBER (a) RFU

architecture (b)

The base processor is a 4-issue in-order RISC

processor supporting MIPS instruction set. The sequencer

mainly determines the microcode execution sequence by

selecting between the RFU and the processor functional unit.

The RFU (Figure 5.b) is based on array of 16 functional

units (FUs) with 8 input and 6 output ports. It is used in

parallel with other processor’s ALUs. RFU reads (write)

from (to) register file. In the RFU, the output of each FU in

a row can be used by all FUs in the subsequent row.

Performance enhancement is achievable by executing hot

portions on RFU and remaining portions on the base

processor. More details on AMBER can be found in [12].

AMBER’s RFU can not support conditional execution,

therefore; we propose an extended version of RFU through

applying the basic requirements mentioned in Section 2 to

support conditional execution.

First, we propose conditional data selection muxes for

controlling selectors of muxes used for FU inputs and

outputs of the RFU. Figure 6 (top portion) shows a RFU

(with 5 FUs) without conditional execution facilities. On the

other hand, the hardware has been modified as shown in

bottom part of Figure 6 to support conditional data

execution. In the proposed architecture, the selector signals

of muxes used for choosing data for FU inputs (the Data-

Selection-Mux), along with the CRFU output and exit point

(not shown in the figure) are controlled by other muxes (the

Selector-Mux). The inputs of Selector-Mux (one-bit width)

originate from the FUs (which execute branches) of the

upper rows and the configuration memory in order to

control the selector signals conditionally, as well as

unconditionally. The selectors of Selector-Mux are

controlled by configuration bits. It should be noted the

outputs of FUs are only applied to the Selector-Muxes in the

lower-level rows, not in the same or upper rows. A similar

structure is used for selecting the valid output data of the

CRFU. For more details refer to [9].

Figure 6. Modifying RFU architecture

For example, suppose a CDFG containing nodes

(instructions) (3:subu), (6:beq), (7:subu) and (13:subu)

(Figure 3) is to be mapped on the CRFU. The first source of

instruction 13 (R3) uses the output of instruction 3 when

instruction 6 is taken otherwise uses the output of

instruction 7. Instructions 3, 7, 6, and 13 are mapped to

FU1, FU2, FU3, and FU5, respectively, using the mapping

algorithm presented in [8]. In this architecture, the selection

bits for input muxes of FU4 and FU5 are controlled by

configuration bits. Assuming that outputs of FU1, FU2,

FU3, and the immediate value have been assigned to inputs

1, 2, 3, and 0 of the Data Selection Mux in the second input

of FU5. The selector signals of Selector-Mux i.e. Sel1 and

Sel0 are configured to be driven by Not Branch result from

FU3 and Branch result from FU3, respectively, using

configuration bits. When FU3 (instruction 6) is taken, Sel1

is 0 and Sel0 is 1, therefore the output of FU1 (instruction 3)

is selected. When FU3 is not-taken Sel1 is 1 and Sel0 is 0,

therefore the output of FU2 (instruction 7) is selected.

5 Experimental Results

The CRFU was developed and synthesized using Synopsys

tools [15] and Hitachi 0.18µm. Its area is 2.1 mm
2
. NTPT

temporal partitioning algorithm was used to generate

mappable CDFGs for executing on the CRFU. The CRFU

has variable delay for CDFG execution. This idea has been

proposed in [12]. The delay of CRFU for CDFGs with

various depths (critical path lengths) from 1 to 5 (maximum

supportable depth) are 2.2ns, 4.2ns, 6.1ns, 7.9ns and 9.8ns,

respectively. The required number of clock cycles for

executing each CDFG is determined according to the depth

of CDFG and base processor clock frequency. We evaluated

the effectiveness of CDFGs versus DFGs in the aspects of

speedup and total energy reduction. The average number of

instructions included in DFGs is 5.43 instructions and for

CDFGs is 8.32 instructions. Therefore, extending DFG and

covering control instructions results in larger data flow

graphs for acceleration, hence promising more speedup.

 Figure 7 shows the speedups obtained based on CDFG and

DFG compared to the base processor for a number of

applications. According to Figure 7, using CDFG achieves

remarkable speedup compared to DFGs as expected.

Speedup Comparison

1
1.2
1.4
1.6
1.8
2

2.2
2.4
2.6
2.8
3

ad
pc
m
 (e
nc
)

ad
pc
m
 (d
ec
)

bl
ow
fis
h
(e
nc
)

bl
ow
fis
h
(d
ec
)

cr
c

di
jk
st
ra

A
ve
ra
ge

S
p
e
e
d
u
p

DFG

CDFG

Figure 7. Speedup comparison of DFG vs. CDFG

Other comparison was done based on the effect of

employing CDFG versus DFG in total energy reduction. In

our measurement, the configuration memory is assumed to

keep up to 100 CDFG configurations. Therefore, the size of

the configuration memory is 80x100 bytes SRAM with a

640-bit width data bus and in one clock cycle the

configuration can be loaded to the CRFU. Verilog-XL from

Cadence, Power Compiler from Synopsys and 0.18µm

technology cell library from Hitachi were exploited to

measure the power of CRFU. The power consumption of the

CRFU for 100,000 different test vectors is 246.335mW. The

configuration memory was modeled using CACTI [16] in

0.18µm. The area is 0.77mm
2
 and the energy for each access

is 0.198nJ. Also, Wattch [2] which is based on Simplescalar

 [14] was used for energy estimation of the base processor.

The Wattch was targeted for 0.18µm as well. Figure 8

shows the total energy reduction for the AMBER using

CDFG compared to the DFG for the clock frequency of

300MHz. This figure concludes that using CDFG brings

about noticeable reduction in total energy compared to DFG.

Energy Saving

0
10
20
30
40
50
60
70
80

ad
pc
m
(e
nc
)

ad
pc
m
(d
ec
)

bl
ow
fis
h(
en
c)

bl
ow
fis
h(
de
c) cr

c

di
jk
st
ra

A
ve
ra
ge

T
o
ta
l
E
n
e
rg
y
 R
e
d
u
c
ti
o
n
 (
%
)

 C
D
F
G
 v
s
 D
F
G

DFG

CDFG

Figure 8. Comparison of energy reduction

6 Conclusion

In this paper, the main motivations for handling branch

instruction in DFGs and extending DFGs to CDFGs were

highlighted. In addition, basic requirements for developing

an accelerator with conditional execution support were

pointed out. NTPT is a temporal partitioning algorithm

which was introduced for generating mappable CDFG.

Mappable CDFGs satisfy the accelerator hardware

constraints and can be executed on accelerator. To show the

effectiveness of supporting conditional execution in

hardware, we applied our proposals to the accelerator of an

extensible processor called AMBER. RFU was a matrix of

functional units which was extended (CRFU) to support the

conditional execution. Experimental results show the

noticeable effectiveness of covering branch instructions and

using CDFGs versus DFGs in acheiving higher speedup.

Also, total energy degrades by 43% by using CDFGs.

Acknowledgment

This research was supported in part by Core Research

for Evolutional Science and Technology (CREST) of Japan

Science and Technology Corporation (JST) and Grant-in-

Aid for Encouragement of Young Scientists (A), 17680005.

References

[1] M. Auguin, L. Bianco, L. Capella and E. Gresset,

”Partitioning conditional data flow graphs for embedded system

design”, Proc. of ASAP’00, pp. 339-348, 2000.

[2] D. Brooks, “Wattch: a framework for architectural-level

power analysis and optimizations”, In Proc. ISCA, 2000.

[3] J.E. Carrillo and P. Chow, ”The effect of reconfigurable units

in superscalar processors”, Proc. of the ACM/SIGDA FPGA, pp.

141-150, 2001.

[4] N. Clark, M. Kudlur, H. Park, S. Mahlke and K. Flautner,

“Application-specific processing on a general-purpose core via

transparent instruction set customization”, In Proc. of the 37th

Annual International Symp. on Microarchitecture, pp. 30-40,

2004.

[5] M. Karthikeya, P. Gajjala and D. Bhatia, “Temporal

partitioning and scheduling data flow graphs for reconfigurable

computers”, IEEE Transactions on Computers, Vol. 48, No. 6,

pp. 579-590, 1999.

[6] R. Kastner, A. Kaplan, M. Sarrafzadeh, Synthesis techniques

and optimizations for reconfigurable systems, Kluwer-Academic

Publishers (2004).

[7] A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo and

R.A. Guerrieri, “VLIW processor with reconfigurable instruction

set for embedded applications”, IEEE Journal of Solid-State

Circuits, Vol. 38, No. 11, pp. 1876–1886, 2003.

[8] F. Mehdipour, H. Noori, M. Saheb Zamani, K. Inoue, and K.

Murakami, “Custom instruction generation using temporal

partitioning techniques for a reconfigurable functional unit”, Proc.

of EUC’06, pp. 249-260, 2006.

[9] F. Mehdipour, H. Noori, M. Saheb Zamani, K. Inoue and K.

Murakami, “Improving Performance and Energy Saving in a

Reconfigurable Processor via Accelerating Control Data Flow

Graphs”, IEICE Transaction on Information and Systems, to be

appeared, 2007.

[10] B. Mei, S. Vernalde, D. Verkest and R. Lauwereins, ”Design

methodology for a tightly coupled VLIW/Reconfigurable matrix

architecture”, DATE’04, pp. 1224-1129, 2004.

[11] Mibench, www.eecs.umich.edu/mibench.

[12] H. Noori, F. Mehdipour, K. Murakami, K. Inoue, and M.

Saheb Zamani, “A reconfigurable functional unit for an adaptive

dynamic extensible processor”, Proc. of FPL’06, pp. 781-784,

2006.

[13] R. Razdan and M.D. Smith, “A high-performance

microarchitecture with hardware-programmable functional units”,

MICRO-27, 1994.

[14] Simplescalar, www.simplescalar.com

[15] Synopsys Inc. http://www.synopsys.com/roducts/logic/

design_compiler.html.

[16] D. Tarjan, S. Thoziyoor, N.P. Jouppi, “Cacti 4.0, HP

Laboratories”, Technical Report, 2006.

