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Abstract - Using an extensible processor in which data 

flow graphs (DFGs) are generated from frequently executed 

portions (hot portions) of applications and are executed 

after chip-fabrication provides flexibility as well as 

addressing the time-to-market and significant non-

recurring engineering costs issues. In this paper, the effect 

of extending DFGs to control data flow graphs (CDFGs) 

through covering control instructions on the speedup is 

studied. Moreover, basic requirements for an accelerator 

with conditional execution support are presented. A 

temporal partitioning algorithm is introduced to partition 

the large CDFGs to smaller mappable ones under the 

accelerator resource constraints. To demonstrate 

effectiveness of the proposed ideas, they are applied to the 

accelerator of an extensible processor called AMBER 

which utilizes a matrix of functional units to accelerate the 

execution of the DFGs. Experimental results approve the 

considerable effectiveness of covering control instructions 

and using CDFGs versus DFGs in the aspects of 

performance and energy reduction.  

 

Keywords: Reconfigurable accelerator, conditional 

execution, control data flow graph, temporal partitioning, 

reconfigurable processor. 

1 Introduction 

  Using an accelerator for executing critical or hot (most 

frequently executed) portions of applications is an effective 

technique to enhance the performance and energy saving of 

processors in embedded systems. In this technique, data 

flow graphs (DFGs) extracted from critical portions of an 

application are executed on an accelerator and remaining 

portions on the base processor, correspondingly. By 

executing hot portions on an accelerator performance 

improvement is obtained through exploiting potential 

parallelism and reducing the latency of critical paths and the 

number of intermediate results read/written to the register 

file.  The accelerator can be implemented as a 

reconfigurable hardware with fine or coarse granularity or 

as a custom hardware (such as Application Specific 

Instruction-set Processors or Extensible Processors)  [6]. The 

integration of accelerator and the processor can be tightly 

 [3] [4] [7] [13] or loosely coupled  [6] [10]. This paper focuses 

especially on tightly coupled reconfigurable accelerator. In 

the lattar one, data is read and written directly to and from 

the processor’s register file, making the accelerator an 

additional functional unit in the processor pipeline 

eliminating data transferring overead.  

The Control DFG (CDFG) is a DFG containing control 

instructions (e.g. branch instruction).  For a branch 

instruction, two succeeding paths can be considered. If the 

branch is taken (branch result is true), a sequence starting 

from branch target address called taken path is executed. 

Otherwise, not-taken path including a sequence of 

instructions starting from the next address to the branch is 

executed. In CDFG generation process one can only follow 

the frequently executed (hot) directions of branches. For 

each branch, one of its taken or not-taken paths or both of 

them might be hot. We suggest adding hot directions of 

branches into the CDFG without being limited to selecting 

just one or all of the directions. This can hide branch 

misprediction penalty.  

Some applications of Mibench  [11] are used for the 

analysis to explore motivations for extending DFGs over 

control instructions and generating CDFGs to be executed 

on an accelerator. As mentioned formerly, DFGs are 

extracted from the frequently executed portions of 

application and a control instruction (e.g. branch 

instruction) may terminate DFG generation process. 

Therefore, control instructions located in a short distance 

result in generation of small size DFGs (SSDFG). In fact, 

SSDFGs are not suitable for improving performance in 

application execution and have to be run on the base 

processor. Authors showed in  [8] that the small length 

DFGs (including less than or equal to five instructions) offer 

no more speedup. In  Figure 1, a piece of a main loop of 

adpcm(enc) is  shown. adpcm(enc) is an application 

program containing a loop which consumes 98% of total 

execution time. The critical portion of application contains 

12 branch instructions. According the location of branch 

instructions, four DFGs can be extracted from the piece of 

loop that has been shown in Fig 1. In this figure, three out of 

four DFGs are SSDFGs. These SSDFGs do not gain more 

speedup and have to be run on the base processor. 

This kind of analysis was accomplished for 17 

applications of Mibench  [11].  Figure 2 shows the overall 

percentage of frequently executed (hot) portion of each 

application. In addition, this figure shows the fraction of 

applications that could not be accelerated because of 

SSDFGs. For some applications like fft, fft(inv) and sha 



which includes few branch instructions, supporting 

conditional execution no considerable speedup is 

achievable, because the small portion of generated DFGs 

are removed due to SSDFGs. Extending DFGs to contain 

more than one branch instruction and generating the CDFGs 

vs. DFGs is one solution to amortize the number of 

generated SSDFGs. According to the result of a branch 

instruction, one of the instructions sequence located in taken 

or not-taken paths of the associated branch or both of them 

might be executed. Covering both directions can aid the 

generation of larger CDFGs, hence more parallelism, as 

well as eliminating branch misprediction penalties. 

 

Figure 1. Control DFG of hot portion of adpcmc(enc) 
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Figure 2. Fraction of hot portions and eliminated hot 

portions in some applications of Mibench  [11] 

2 Basic Requirements for Conditional 

Execution Support in Hardware 

For conditional execution support, the accelerator 

integrating to the base processor should be equipped by the 

capability of branch instruction execution. The target 

accelerator is assumed to be a coarse grained reconfigurable 

hardware which is a matrix of functional units (FUs) with 

specified connections. CDFG nodes are the base processor 

instructions, since our concentration is on binary level of the 

applications. Therefore, each FU like the processor’s ALUs 

can execute instruction level operations.  

In a DFG, the nodes (instructions) receive their input 

from a single source whereas, in the CDFG, nodes can have 

multiple sources with respect to the different paths 

generated by branches. The correct source is selected at run 

time according to the results of branches.  Figure 3 shows a 

piece of adpcm(enc)’s critical portion, a part of its 

corresponding DFG ( Figure 3.a) and the CFG comprising 

only control flow of instructions ( Figure 3.b). In  Figure 3.a, 

each node of DFG corresponds to one instruction in the 

code. Inside circles, instruction number and instruction itself 

has been depicted. Each instruction has at most two sources 

and one destination. According to the results of branch 

instructions various values for an instruction source could 

be obtained. For example, 13
th
 instruction (13:subu) 

receives its first source (register R3) from 3
rd
 (3:subu) and 

7
th
 (7:subu) instructions.  Its output may be routed to 

instructions (16:slt) and (19:subu) or (22:slt) depending on 

the result of branch instruction (17:bne). As another 

example, instruction (22:slt) may receive its first source 

(R3) through the instructions (3:subu), (7:subu) or (19:subu) 

depending on the result of branch instructions (4:bgez), 

(6:beq), (11:bne) and (17:bne). Also, it receives the second 

source (R9) from (21:sra). Consequently, the nodes that 

generate output data of a CDFG are altered according to the 

results of branches as well. Therefore, the accelerator 

should have some facilities to generate valid output data.  

 

(a) 

 
(b) 

Figure 3. A piece of adpcm(enc) code, a part of its 

corresponding DFG and (a) its control flow graph (b) 

In the general architecture with conditional execution 

features, following characteristics are found: 

a)  An FU in the accelerator can receive its inputs 

directly from accelerator primary inputs or from output 

of the other FUs.  

b) According to the condition of branch instructions, 

output of each node can be directed to the other nodes 

from different paths. For example, in  Figure 3.b, output 

of instruction (13:subu) can be routed to nodes (16:slt), 

(19:subu) and (22:slt). It means instruction (19:subu) 

receives the value of R3 (output of instruction 13) if 

branch instruction (17:bne) is not-taken, otherwise R3 is 

obtained by instruction (22:slt). Therefore, there may be 

several outputs for a CDFG and some of them may be 

valid as accelerator’s final outputs. 



According to aforementioned properties, the accelerator 

architecture must have these following inevitable 

requirements:  

a) Capability of selective receiving of inputs from both 

accelerator primary inputs and output of other 

instructions (FUs) for each node.  

b) Possibility of selecting the valid outputs from several 

outputs generated by accelerator according to conditions 

made by branch instructions.  

c) Accelerator should be equipped by control path 

besides to data path which provides the correct selection 

of inputs and outputs for each FU and entire accelerator.  

3 Algorithms for CDFG Temporal 

Partitioning  

 Extending DFGs to cover hot directions of branch 

instructions indeed, results in large CDFGs which may not 

satisfy the accelerator resource constraints. In other words, 

CDFG extracted from various applications have different 

sizes and some times the whole CDFG can not be mapped 

on the accelerator due to the resource limitations of the 

accelerator (e.g. number of inputs, outputs, logics and 

specifically routing resource constraints). Using temporal 

partitioning algorithms which consider the accelerator 

constraints is a solution to this issue. Temporal partitioning 

can be stated as partitioning a DFG/CDFG into a number of 

partitions such that each partition can fit into the target 

hardware and also, dependencies among the graph nodes are 

not violated  [1] [5]. A temporal partitioning algorithm can 

consider the accelerator architectural specifications to 

generate executable DFGs on the accelerator. As the 

authors’ knowledge there are few algorithms for CDFG 

partitioning, though a lot of works have been done around 

the DFG temporal partitioning  [1] [5]. In  [1] a temporal 

portioning algorithm has been presented that partitions a 

CDFG considering target hardware with non-homogenous 

architecture. This algorithm considers all states of the 

control instructions in application to convert corresponding 

CDFG to a number of DFGs. Then it minimizes the number 

of states to reduce the number of generated DFGs. For each 

DFG a temporal partitioning algorithm is used for 

partitioning. One of the important disadvantages of this 

algorithm is that the large number of DFGs may be obtained 

during CDFG to DFG conversion. In addition, an exact 

knowledge to different states in application is required to 

reduce the number of DFGs.  

Here, an algorithm is introduced for CDFG temporal 

partitioning. The main goal is generating the minimum 

number of partitions to reduce the reconfiguration overhead 

time as well as configuration memory size. The proposed 

algorithm which is refferd as not-taken path traversing 

temporal partitioning algorithm (NTPT) adds instructions 

from not-taken path of a control instruction to a partition 

until violating the target hardware architectural constraints 

(e.g. number of logic resources, inputs and outputs) or 

reaching to a terminator control instruction. Terminator 

instruction is an exit point for a CDFG and changes 

execution direction including procedure or function call 

instructions and also backward branch and return (to prevent 

making cycles in CDFG). Generating a new partition is 

started with branch instructions which at least one of their 

taken or not-taken instructions has not been located in the 

current partition.  Figure 4 exemplifies how this algorithm 

works for a piece of a CDFG. If the first partition generation 

stops in instruction 14 due to resource limitation of the 

accelerator, then, second partition is started from instruction 

11. Because, for branch instructions located in nodes 4 and 

6, both taken and not-taken paths has been inserted in the 

first partition, but for instruction 11, only its not-taken path 

are located in the first partition. Therefore, it is used as an 

initial instruction of the next partition.  

 

Figure 4. Applying NTPT algorithm on a sample CDFG 

4 Extending an Accelerator of a 

Reconfigurable Processor  

AMBER is a reconfigurable processor  [12] targeted for 

embedded systems. It has been developed by integrating a 

base processor with two other main components [12]. The 

base processor is a general RISC processor and the other 

two components are: sequencer and a coarse grain 

reconfigurable functional unit (RFU).  Figure 5.a illustrates 

the integration of different components in AMBER. 
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Figure 5. Main components in AMBER (a) RFU 

architecture (b) 

The base processor is a 4-issue in-order RISC 

processor supporting MIPS instruction set. The sequencer 

mainly determines the microcode execution sequence by 

selecting between the RFU and the processor functional unit. 



The RFU ( Figure 5.b) is based on array of 16 functional 

units (FUs) with 8 input and 6 output ports. It is used in 

parallel with other processor’s ALUs. RFU reads (write) 

from (to) register file. In the RFU, the output of each FU in 

a row can be used by all FUs in the subsequent row. 

Performance enhancement is achievable by executing hot 

portions on RFU and remaining portions on the base 

processor. More details on AMBER can be found in  [12]. 

AMBER’s RFU can not support conditional execution, 

therefore; we propose an extended version of RFU through 

applying the basic requirements mentioned in Section 2 to 

support conditional execution.  

First, we propose conditional data selection muxes for 

controlling selectors of muxes used for FU inputs and 

outputs of the RFU.  Figure 6 (top portion) shows a RFU 

(with 5 FUs) without conditional execution facilities. On the 

other hand, the hardware has been modified as shown in 

bottom part of  Figure 6 to support conditional data 

execution. In the proposed architecture, the selector signals 

of muxes used for choosing data for FU inputs (the Data-

Selection-Mux), along with the CRFU output and exit point 

(not shown in the figure) are controlled by other muxes (the 

Selector-Mux). The inputs of Selector-Mux (one-bit width) 

originate from the FUs (which execute branches) of the 

upper rows and the configuration memory in order to 

control the selector signals conditionally, as well as 

unconditionally. The selectors of Selector-Mux are 

controlled by configuration bits. It should be noted the 

outputs of FUs are only applied to the Selector-Muxes in the 

lower-level rows, not in the same or upper rows. A similar 

structure is used for selecting the valid output data of the 

CRFU. For more details refer to  [9].  

  

Figure 6. Modifying RFU architecture 

For example, suppose a CDFG containing nodes 

(instructions) (3:subu), (6:beq), (7:subu) and (13:subu) 

( Figure 3) is to be mapped on the CRFU. The first source of 

instruction 13 (R3) uses the output of instruction 3 when 

instruction 6 is taken otherwise uses the output of 

instruction 7. Instructions 3, 7, 6, and 13 are mapped to 

FU1, FU2, FU3, and FU5, respectively, using the mapping 

algorithm presented in  [8]. In this architecture, the selection 

bits for input muxes of FU4 and FU5 are controlled by 

configuration bits. Assuming that outputs of FU1, FU2, 

FU3, and the immediate value have been assigned to inputs 

1, 2, 3, and 0 of the Data Selection Mux in the second input 

of FU5. The selector signals of Selector-Mux i.e. Sel1 and 

Sel0 are configured to be driven by Not Branch result from 

FU3 and Branch result from FU3, respectively, using 

configuration bits. When FU3 (instruction 6) is taken, Sel1 

is 0 and Sel0 is 1, therefore the output of FU1 (instruction 3) 

is selected. When FU3 is not-taken Sel1 is 1 and Sel0 is 0, 

therefore the output of FU2 (instruction 7) is selected. 

5 Experimental Results  

The CRFU was developed and synthesized using Synopsys 

tools  [15] and Hitachi 0.18µm. Its area is 2.1 mm
2
. NTPT 

temporal partitioning algorithm was used to generate 

mappable CDFGs for executing on the CRFU. The CRFU 

has variable delay for CDFG execution. This idea has been 

proposed in  [12]. The delay of CRFU for CDFGs with 

various depths (critical path lengths) from 1 to 5 (maximum 

supportable depth) are 2.2ns, 4.2ns, 6.1ns, 7.9ns and 9.8ns, 

respectively. The required number of clock cycles for 

executing each CDFG is determined according to the depth 

of CDFG and base processor clock frequency. We evaluated 

the effectiveness of CDFGs versus DFGs in the aspects of 

speedup and total energy reduction. The average number of 

instructions included in DFGs is 5.43 instructions and for 

CDFGs is 8.32 instructions. Therefore, extending DFG and 

covering control instructions results in larger data flow 

graphs for acceleration, hence promising more speedup. 

 Figure 7 shows the speedups obtained based on CDFG and 

DFG compared to the base processor for a number of  

applications. According to  Figure 7, using CDFG achieves 

remarkable speedup compared to DFGs as expected.  
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Figure 7. Speedup comparison of DFG vs. CDFG 

Other comparison was done based on the effect of 

employing CDFG versus DFG in total energy reduction. In 

our measurement, the configuration memory is assumed to 

keep up to 100 CDFG configurations. Therefore, the size of 

the configuration memory is 80x100 bytes SRAM with a 

640-bit width data bus and in one clock cycle the 

configuration can be loaded to the CRFU. Verilog-XL from 

Cadence, Power Compiler from Synopsys and 0.18µm 

technology cell library from Hitachi were exploited to 

measure the power of CRFU. The power consumption of the 

CRFU for 100,000 different test vectors is 246.335mW. The 

configuration memory was modeled using CACTI  [16] in 



0.18µm. The area is 0.77mm
2
 and the energy for each access 

is 0.198nJ. Also, Wattch  [2] which is based on Simplescalar 

 [14] was used for energy estimation of the base processor. 

The Wattch was targeted for 0.18µm as well.  Figure 8 

shows the total energy reduction for the AMBER using 

CDFG compared to the DFG for the clock frequency of 

300MHz. This figure concludes that using CDFG brings 

about noticeable reduction in total energy compared to DFG. 

 

Energy Saving 
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Figure 8. Comparison of energy reduction  

6 Conclusion 

In this paper, the main motivations for handling branch 

instruction in DFGs and extending DFGs to CDFGs were 

highlighted. In addition, basic requirements for developing 

an accelerator with conditional execution support were 

pointed out. NTPT is a temporal partitioning algorithm 

which was introduced for generating mappable CDFG. 

Mappable CDFGs satisfy the accelerator hardware 

constraints and can be executed on accelerator. To show the 

effectiveness of supporting conditional execution in 

hardware, we applied our proposals to the accelerator of an 

extensible processor called AMBER. RFU was a matrix of 

functional units which was extended (CRFU) to support the 

conditional execution. Experimental results show the 

noticeable effectiveness of covering branch instructions and 

using CDFGs versus DFGs in acheiving higher speedup. 

Also, total energy degrades by 43% by using CDFGs.  
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