
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Indirect Tag Search Mechanism for Instruction
Window Energy Reduction

Watanabe, Shingo
Kyushu Institute of Technology

Chiyonobu, Akihiro
Fujitsu Laboratories

Sato, Toshinori
System LSI Research Center, Kyushu University

https://hdl.handle.net/2324/8314

出版情報：7th International Conference on Computer and Information Technology, pp.841-846,
2007-10-19
バージョン：
権利関係：

Indirect Tag Search Mechanism for Instruction Window Energy Reduction

Shingo Watanabe
Kyushu Institute of Technology

s-watanabe@klab.ai.kyutech.ac.jp

Akihiro Chiyonobu
Fujitsu Laboratories

chiyonobu@jp.fujitsu.com

Toshinori Sato
Kyushu University

toshinori.sato@computer.org

Abstract
Instruction window is a key component which extracts

Instruction Level Parallelism (ILP) in modern out-of-order
microprocessors. In order to exploit ILP for improving
processor performance, instruction window size should be
increased. However, it is difficult to increase the size, since
instruction window is implemented by CAM whose power and
delay are much large. This paper introduces a low power and
scalable instruction window that replaces CAM with RAM. In
this window, instructions are explicitly woken up. Evaluation
results show that the proposed instruction window decreases
performance by only 1.9% on average. Furthermore, dynamic
energy is reduced by 67% on average and static power is
reduced by 14%.

1. Introduction

Modern microprocessors consume large power. The large
power consumption implies that the system has to tolerate
high current peaks and to deliver high and fast changing
amounts of current. It also results in much heat generation,
which requires efficient cooling. These factors lead to the
increase in the system costs. On the other hand, smaller
devices increases power density. The temperature of high
activity circuit area is higher than other areas. The higher
temperature might break the processor itself.

Until recently, microprocessors have obtained high
performance by exploiting Instruction Level Parallelism (ILP).
ILP is extracted in instruction window, which is a complex
circuit. Since it has become a major power hungry component,
it is difficult to increase the window size. Considering the
above situations, the current trend is toward multicore
processors, which attain high performance by utilizing Thread
Level Parallelism (TLP). There is also a trend revisiting in-
order execution instead of out-of-order execution. However,
Amdahl’s law tells us that the execution time of a parallelized
program is dominated by a serial execution in the program,
where a plenty of parallelism can not be found. In other words,
much TLP can not be found there. Thus, both TLP and ILP
are required to improve processor performance.

Instruction window is a key component which extracts ILP
and is generally implemented using CAM logic.
Unfortunately, CAM consumes large power. Therefore, large
but still low power instruction window is required. This paper
proposes such a scalable low power instruction window,
where CAM is replaced by RAM. Evaluation results show
that the proposed instruction window diminishes performance
by only 1.9% on average, while its dynamic energy
consumption is reduced by 67% on average and its static
power is reduced by 14%.

The remainder of this paper is organized as follows:
Section 2 describes the proposed instruction window. Section

3 explains the evaluation environment. Section 4 presents
evaluation results. Section 5 summarizes related works. Lastly
Section 6 concludes.

2. Indirect Tag Search instruction window

This section describes the proposed instruction window,
which is coined Indirect Tag Search (ITS) instruction window.
In the ITS instruction window, every issued instruction
searches its dependent instructions through the wakeup list,
which keeps data dependence information.
2.1. Wakeup list

The wakeup list is a linear list which connects every
instruction with its dependent instructions. In the traditional
CAM-based instruction window, when every instruction is
finished, its destination tag is broadcasted against all
instructions in the window. Each instruction in the instruction
window entry compares the broadcasted tag with its source
tags. If there is a match, the dependent instruction is ready to
execute. The aim of the broadcast is to build data dependence
information between instructions only with their register tags.
In contrast, the proposed scheme builds the data dependence
information in a different manner. All instructions which are
dependent upon an instruction are connected by the wakeup
list, as shown in Figure 1(a). When the producer instruction is
finished, all instructions in the list are explicitly woken up one
by one.

i0 i2i1 i3

producer consumer consumer
i0 i2i1 i3

producer consumer consumer

(a) (b)
Figure 1: (a) Wakeup list, (b) Data flow graph

Although the data flow graph shown in Figure 1(b) also

describes the same data dependence explained in Figure 1(a),
keeping the graph in the instruction window requires high
hardware cost, because each instruction might have many
consumer instructions, each of which requires a pointer
connecting it with the consumer instruction. Considering
above, the date flow graph explained in Figure 1(a) is kept in
the ITS instruction window instead of the one explained in
Figure 1(b).
2.2. ITS instruction window

Figure 2 shows the ITS instruction window. Each entry in
the ITS instruction window consists of the conventional fields
that save op-code and tags, and the additional fields that save
the wakeup lists explained in the previous section. The
additional fields maintain node pointers that construct the list
as shown in Figure 2. Every node and every node pointer
present a node and an arc in the data flow graph, respectively.

i0

i1

i2

i3

node6

node8

null

node8

0
1

3

6

8

node pointerstagop,dtag
Existing fields Extended fields

Tail Node Table

ITS instruction window

producer

node numbers

consumer

register
number

Figure 2: ITS instruction window

For every instruction dispatched into the ITS instruction

window, its associated node is appended to the tail of its
corresponding wakeup list in the dispatched order. In order to
identify which entry has the tail node, tail node pointers are
saved in a dedicated table which is called Tail Node Table
(TNT). The TNT saves the tail node pointers of all wakeup
lists, each of which corresponds to a producer instruction. The
tail node pointer is associated with the producer's logical
destination register number. Therefore, every dispatched
instruction obtains its corresponding tail node pointers by
referring the TNT using its logical source register numbers.

The TNT can be implemented by extending the map table,
which is implemented in modern microprocessors for register
renaming. When every instruction refers the map table, it
obtains the tail node pointers for its source operands and then
it writes its destination register number into the TNT field in
the map table.

The wakeup lists are constructed when every instruction is
dispatched into the ITS instruction window. First, an entry is
allocated in the instruction window for every dispatched
instruction, and a node pointer associated with the instruction
is determined. Second, the tail node pointer of the
instruction’s every source operand is obtained from the TNT
using the logical source register numbers. In other words,
pairs of producer and consumer instructions are found. The
dispatched instruction is the consumer. Third, the consumer
instruction’s node pointer is written to the extended fields in
the ITS instruction window entries, which keep the producer
instructions. Now, the dispatched instruction is appended to
its corresponding wakeup list. Last, since the tail node is
changed by appending the dispatched instruction, the TNT is
updated as described above. Note that third and fourth steps
can be done in parallel.

Since most instructions have two operands, an instruction
can belong to two wakeup lists. In addition, most instructions
behave as a producer as well as a consumer, every ITS
instruction window entry requires three fields to save the
pointers.
2.3. Branch missprediction handling

When a branch missprediction occurs, a special
missprediction handling is required since the wakeup list
might be corrupted. In modern microprocessors, every branch
missprediction flushes pipeline, and thus the wrong path
instructions in the instruction window are squashed. In the
case of the ITS instruction window, this squash breaks the
wakeup lists. The TNT is also corrupted since some tail
pointers kept in the TNT are removed from the ITS instruction

window. Using Figure 2, a troublesome example is shown. In
this figure, instructions i0 and i3 are the oldest and the
youngest, respectively, and instructions i2 and i3 are
dependent upon instruction i0. Here, it is assumed that i1 is a
branch instruction and misspredicted. Instructions i2 and i3
are squashed, and hence the node 8 is no longer a tail pointer.
In addition, the node 1 might link instructions independent of
instruction i0. Such a node that links independent instructions
is called a violation node.

In order to restore the TNT, checkpointing is utilized.
Since the TNT is a part of the map table as explained above,
the checkpointing is easy to implement. The TNT is replicated
whenever branch instructions appear. When a branch
instruction is misspredicted, the TNT is restored using the
checkpoint. This solves the corruption problem in the TNT.

However, unfortunately, checkpointing can not be used to
restore the wakeup lists kept in the ITS instruction window.
Since instruction windows are generally very costly in
hardware budget, it is not easy to make checkpoints of the ITS
instruction window. An alternative solution is to restore
individual violation nodes in the window. This searches for
violation nodes in all entries, and is very time consuming in
the case of sequential search or requires large hardware cost in
the case of parallel search. Hence, unfortunately, it can not be
used. The adopted solution is to keep the wakeup lists
corrupted. Instead of restoring the wakeup list, its validity is
checked every wakeup. When every instruction is woken up,
it is checked whether the instruction is really woken up or not.
The source tag of a consumer instruction must be identical to
the destination tag of its producer instruction. Hence, the tags
are compared every wakeup, and only when they match, the
consumer is woken up. This does not require tag broadcast.
2.4. Wakeup mechanism

Figure 3 shows the wakeup mechanism of the ITS
instruction window. It consists of the following components; a
wakeup queue, a comparator, and a wakeup logic. The
wakeup queue saves the node pointers and their associated
destination tags of issued instructions. The comparator is used
to detect violation nodes as explained above. The wakeup
logic controls the access to the instruction window.

wakeup queue
wakeup logic

comparator

ITS instruction
window

destination tag
node pointer

source tag

wakeup

next pointer

Figure 3: Wakeup mechanism

When a producer instruction is issued, its node pointers

and their corresponding destination tags are inserted into the
wakeup queue. After that, wakeup is processed outside the
pipeline. Wakeup is handled as follows. First, the wakeup
logic and the comparator obtain a node pointer and its
associated destination tag, respectively, from the wakeup
queue. Second, the wakeup logic accesses the ITS window
entry indexed by the node pointer. Third, the wakeup logic
and the comparator obtain node pointers to consumer
instructions and their associated source tags, respectively,

from the accessed entry. The source tags are compared with
the destination tag. Forth, only for instructions whose source
tag is identical to the destination tag, the source operand is
marked as ready. When all operands are ready, the consumer
instruction is woken up. This process continues until all or the
predefined number of node pointers is processed.

Note that the wakeup mechanism shown in Figure 3 is
necessary for every wakeup list. In order to process multiple
wakeup lists simultaneously, multiple wakeup mechanisms
are required.

3. Evaluation methodology

This section describes the evaluation methodology.
3.1. Processor simulator

SimpleScalar tool set [2] is used to evaluate processor
performance and to analyze how instruction windows are
accessed. The ITS instruction window including its wakeup
mechanisms and the TNT are implemented in the simulator.
Table 1 shows the configurations of processor evaluated in
this paper. The configurations of the ITS instruction window
are as follows. There are four wakeup mechanisms, each of
which wakes only one instruction up per cycle. Hence, at most
four instructions are woken up per cycle. Note that the ITS
instruction window is modeled in much detail, while the
original SimpleScalar simulator utilizes the Register Update
Unit for instruction scheduling, which combines the
instruction window and the reorder buffer as one component.

Table 1: Processor configurations
Instruction set PISA
Issue width 4 instructions
Commit width 4 instructions
Branch prediction Hybrid of bimodal and gshare
RUU size 128 entries
LSQ size 64 entries
L1 I cache 64 KB
L1 D cache 64 KB
L2 cache 2 MB

Spec2000 benchmark suit and MediaBench [9] are used

for evaluation. For Spec2000 simulations, the ref input sets
are used and 100 million committed instructions are executed
after the forwarding the first 500 million instructions. For
MediaBench simulations, the default input files provided from
UCLA are used, and each program is executed until
completion without any forwarding.
3.2. Power estimation

HSPICE is used to estimate power consumed by the
instruction windows. Transistor-level circuit designs on RAM
and CAM are conducted based on the designs described in [5].
They are important elements in the instruction windows.
Figure 4 shows a 1 bit SRAM cell designed in this study, and
Figure 5 shows an SRAM array. The SRAM array and sense
amplifiers are designed and evaluated in much detail, while
the address decoder and the timing controller are out of
considerations. The CAM logic is implemented by extending
the RAM. It has four tag comparators in each line. The CAM
requires the additional 4 ports for tag comparison. Figure 6
shows the CAM cell. The upper half is the cell and the lower

half is the tag comparator. While Figure 6 shows only one
port per cell, the additional port connected to the next cell's
comparators are required. Table 2 shows the configurations of
the conventional CAM-based and the ITS instruction windows.

bitline:read<0:3>

bitline:write<0:3>

w
or

dl
in

e:
re

ad
<0

:3
>

w
or

dl
in

e:
w

rit
e<

0:
3>

Figure 4: SRAM cell

1bit SRAM cell

bitline[0]<0:3>bitline[0]<0:3> bitline[n]<0:3>bitline[n]<0:3>

precharge circuit

sense
amp<0:3>

write
amp<0:3>

out[0]<0:3> in[0]<0:3>

sense
amp<0:3>

write
amp<0:3>

out[n]<0:3> in[n]<0:3>

write enable

pchg enable

1bit SRAM cell

1bit SRAM cell

1bit SRAM cell

precharge circuit

read enable

Figure 5: RAM array

bitline:read

wordline:read

wordline:write

matchline

bitline:write

pchg

bitline:broadcast

broadcast

Figure 6: CAM cell

The power consumed by the CAM and the RAM is

estimated by HSPICE for the 65nm technology. CMOS
transistor and interconnect technology parameters used in the
estimation are from Berkeley Predictive Technology Model
[3,15]. Table 3 shows the detailed parameters used in this

study. Note that transistor sizes shown in the table are for
those used in a cell.

Note that power consumed by the TNT is not considered in
this estimation. The TNT has the same number of entries with
the number of the logical registers, because it is attached to
the map table. The size of each TNT entry is 9 bits; 7 bits for
keeping the node pointer, 1 bit for indicating validity, and 1
bit for explaining which source operand is in the
corresponding wakeup list. Moreover, multiple TNTs are
necessary for checkpointing.

Table 2: Instruction window configurations
CAM-based instruction window
op-code, 4 read and 4 write ports
destination tag 23 bit width
 (op-code 16 bit, tag 7 bit)
source tag, 4 read and 4 write ports
(Implemented as CAM) 4 broadcast ports
 14 bit width (7 bit x2)
ITS instruction window
op-code, 4 read and 4 write ports
destination tag 23 bit width
 (op-code 16 bit, tag 7 bit)
source tag 8 read and 4 write ports
(Implemented as RAM) 14 bit width (7 bit x2)
extended fields 4 read and 4 write ports
(node pointer) 27 bit width (9 bit x3)

Table 3: CMOS and interconnect parameters

Process technology 65 nm
Supply voltage 1.1 V
Transistor size nMOS L: 65 nm, W: 0.1 um
 pMOS L: 65 nm, W: 0.2 um
Interconnect width 0.1 um
Interconnect pitch 0.1 um

4. Results

This section discusses how performance is affected and
how power consumption is reduced.
4.1. Processor performance

Instruction wakeup is generally delayed in the ITS
instruction window in comparison with in the conventional
CAM-based window. One of the reasons of the delay is that a
wakeup mechanism in the ITS window corresponds with a
wakeup list and thus wakes only one instruction up per cycle.
Thus, for example, wakeup of instructions on the bottom of
the wakeup list is late. The other reason is that the violation
nodes waste wakeup bandwidth. Every violation node
occupies one wakeup mechanism, which is not efficiently
used since the wakeup is discarded after detecting a mismatch.

The wakeup delay degrades processor performance. Figure
7 presents performance of the processor utilizing the ITS
window. Instructions per cycle (IPC) is used as a metric and
the IPC result of each program is normalized by that of the
processor utilizing the conventional CAM-based window. Y-
axis shows the normalized performance and X-axis lists
benchmark names. It is observed that the IPC loss is 1.9% on
average. Even in the worst case of mcf, the IPC loss is only
6.3%. The results indicate that replacing the conventional

CAM-based instruction window with the ITS one does not
have any serious impact on processor performance. It is well
known that most producer instructions have only a few
consumers [4,8]. Hence, the wakeup delay rarely occurs and
thus does not have any severe impact on processor
performance.

Figure 8 shows the percentage of wakeup lists that have
violation nodes. It is only 2% on average. While adpcmD,
adpcmE and mpegE have more violation nodes than other
programs, their performance degradation is not considerably
large as shown in Figure 7. The results indicate that the
mechanism for handling branch misspredictions described
above is a good choice in the point of the trade-off between
hardware complexity and performance impact.

Figure 7: Processor performance

(%)

Figure 8: Percentage of violating wakeup lists

4.2. Power consumption

This section presents power consumption results. First,
circuit-level power estimation is shown. Both static and
dynamic power consumption is considered. Next, dynamic
energy consumption considering program execution is shown.
4.2.1. Circuit-level static power consumption

Figure 9 shows static power consumption of the instruction
windows. In the figure, op-code, dtag, stag, and pointer mean
power consumed by the operation code, destination tag,
source tag, and node pointer fields in the instruction window
entries, respectively. Note that the source tag fields in the
conventional instruction window are implemented as CAM
logic. The other fields both in the CAM-based window and in
the ITS window are implemented as RAM.

An interesting result is that the source tags in the CAM-
based window consume more static power than those in the
ITS window. A reason is that the number of transistors in the

CAM is larger than that in the RAM since the CAM has four
comparators in each entry.

St
at

ic
 p

ow
er

Figure 9: Static power of instruction window

While the node pointer fields in the ITS window consumes

the additional power that is unnecessary in the CAM-based
window, the total power consumption is 14% smaller in the
ITS window than in the CAM-based window. This is due to
the power consumed by the source tag field explained above.
4.2.2. Circuit-level dynamic power consumption

The dynamic power consumption shown in Figure 10 is
divided into four parts; dispatch, wakeup, issue, and append.
Dynamic power is consumed when every instruction is
dispatched, woken up, and issued. The additional power is
consumed in the ITS window when the instruction is
appended into a wakeup list constructed in the node pointer
fields. Only ITS window consumes power for constructing the
wakeup lists.

append

D
yn

am
ic

 p
ow

er

Figure 10: Dynamic power of access operations

First, it is observed that power consumption on dispatch in

the ITS window is 2.7 times larger than in the CAM-based
window. This is because a null pointer must be written to
node pointer fields in the case of the ITS window. Second, in
contrast, power consumption of wakeup is 99 times larger in
the CAM-based window than in the ITS window. This is
mainly due to the broadcast power. Third, there is not
significant difference in the issue power between the CAM-
based and the ITS windows. In total, every instruction
consumes more power in the CAM-based window than in the
ITS window through dispatch to issue.

4.2.3. Energy consumption
Energy consumption is estimated by the instruction

window activities observed during the SimpleScalar
simulations. The numbers of operations, which are dispatch,
wakeup, issue, and append, are counted. Energy consumption
is calculated by multiplying the power shown in Figure 10 by
the numbers. Figure 11 shows the energy breakdown of
operations in the CAM-based window. The results show that
the wakeup energy is major in the energy consumed by the
CAM-based instruction window. The wakeup energy occupies
88% of the total energy on average.

Figure 11: Energy of CAM-based window

Figure 12 shows the energy breakdown of operations in the

ITS window. The total energy is normalized by that of the
CAM-based window. In the results, it is observed that the
wakeup energy is significantly decreased because the ITS
window eliminates tag broadcasts and comparisons.
Comparing Figure 12 with Figure 11, it can be seen that the
dispatch energy is about two times increased. Only ITS
window consumes the append energy, which occupies 10% of
the total energy of the ITS instruction window on average.
However, it is negligible when it is compared with the total
energy of the CAM-based window. The total energy
consumed by the ITS window is 67% smaller than that
consumed by the CAM-based window on average. In the case
of adpcmE, where energy reduction is smallest, 56% power
reduction is achieved.

Figure 12: Energy of ITS window

5. Related works

There are a lot of studies that attempt to reduce power
consumption of instruction windows. Abella et al. [1] provide
a good survey of these techniques.

The works most related to the present paper are [8,10,12],
which track dependencies among instructions and explicitly
link producer and consumer instructions. In these mechanisms,
a RAM structure replaces CAM logic with the use of a table
to track dependencies. In other words, the associative
broadcast is replaced with indexing to wake only one
instruction up. They exploit the observation that most
instructions have only one consumer [4,8], and a simplest
implementation keeps only one consumer for every producer.

Onder et al. [10] propose source operand to source operand
forwarding (SSF) to extend the links between a producer and
its consumers. When every instruction is executed, it sends its
source operands to their next use as well as its result. The
differences between the SSF and the wakeup list proposed in
the present paper are as follows. First, in the wakeup list, each
consumer instruction explicitly makes the link on demand,
while in the SSF, the relay instruction eagerly makes the links.
Second, the ITS window completely eliminates CAM logic,
while Onder’s scheduler requires a small associative central
structure called the Match Unit. Furthermore, Onder et al. do
not consider power consumption.

Sato et al. [12] extend the table that track dependences,
which they call the Dataflow Management Table (DMT), to
keep up-to-three consumers for every producer. In order to
deal with the case of more consumers, they introduce a
scoreboarding mechanism, where instructions continuously
monitor the register files for operand availability. The ITS
window does not require such an expensive approach as
scoreboarding. Sato et al. have not evaluated power efficiency,
while they only mention that RAMs are lower in power
dissipation than CAMs.

Huang et al. [8] introduce the Broadcast Bit in the
instruction window to work together with a conventional
CAM logic. Only when a producer instruction has more than
one consumer, a tag broadcast is allowed to wake the
consumers up. While it is limited in rare cases, associative
search is still required. In contrast, the ITS window
completely remove associative search. Huang et al. evaluate
power efficiency based on the number of tag comparisons. In
contrast, in the present paper, the detailed circuit design is
conducted to estimate power consumption. Furthermore,
leakage power is also considered in the present paper.

Researchers have been still interested in instruction
windows design, especially in the low power domain [7,11,13,
14]. This is because embedded processors as well as general
purpose processors utilize out-of-order execution, where the
instruction window is the key structure. Hsiao et al. [7]
propose two optimizations for power reduction. One is the
selective match, which reduces the number of useless tag
matches. The other is the wakeup range limitation, which
splits tag broadcasting buses into several segments. Sasaki et
al. [11] group multiple instructions as an atomic issue unit in
order to reduce the required number of ports and the size of
the instruction window. Sharkey et al. [13] propose Tag
Memoization and Tagline Folding, both of which decrease the
broadcasted tag bit width, resulting in power reduction in the
wakeup tag broadcast. Vivekanandham et al. [14] propose the
Scalable Low power Issue Queue (SLIQ), which combines the
direct tag indexing [8,10,12] and the pipelined issue queue [6].

6. Conclusion
Modern processors have the conflicting requirements of

large instruction window and its power reduction. This paper
proposed a low power instruction window, which was named
Indirect Tag Search (ITS) instruction window. Since CAM,
which is required for broadcast and comparison operations,
consumes large power, CAM is replaced by RAM that
consumes lower power. The ITS instruction window
constructs the wakeup lists, which is used to explicitly wake
instructions up. Evaluation results show that the ITS
instruction window decreases processor performance by only
1.9% on average. In contrast, dynamic energy consumption is
reduced by 67% on average, and static power consumption is
reduced by 14%.

Acknowledgements

This work was partially supported by Grants-in-Aid for
Scientific Research #16300019 and #176549 from Japan
Society for the Promotion of Science, and is partially
supported by the CREST program of Japan Science and
Technology Agency.

References
[1] J. Abella et al., “Power- and complexity-aware issue queue

designs,” IEEE Micro, 23(5), 2003.
[2] D. Burger et al., “The SimpleScalar tool set, version 2.0,”

ACM Computer Architecture News, 25(3), 1997.
[3] Y. Cao et al., “New paradigm of predictive MOSFET and

interconnect modeling for early circuit design,” Custom
Integrated Circuits Conference, 2000.

[4] J.- L. Cruz et al., “Multiple-banked register file architectures,”
Int. Symp. on Computer Architecture, 2000.

[5] M. Goshima, “Research on high-speed instruction scheduling
logic for out-of-order ILP processors,” Ph.D. Dissertation,
Kyoto University, 2004 (in Japanese).

[6] M. S. Hrishikesh et al., “The optimal logic depth per pipeline
stage is 6 to 8 FO4 inverter delays,” Int. Symp. on Computer
Architecture, 2002.

[7] K.- S. Hsiao and C.- H. Chen, “Wake-up logic optimizations
through selective match and wakeup range limitation,” IEEE
Trans. VLSI Systems, 14(10), 2006.

[8] M. Huang et al., “Energy-efficient hybrid wakeup logic,” Int.
Symp. on Low Power Electronics and Design, 2002.

[9] C. Lee et al., “MediaBench: A Tool for Evaluating and
Synthesizing Multimedia and Communications Systems,” Int.
Symp. on Microarchitecture, 1997.

[10] S. Onder and R. Gupta, “Superscalar execution with dynamic
data forwarding,” Int. Conf. on Parallel Architectures and
Compilation Techniques, 1998.

[11] H. Sasaki et al., “Energy-efficient dynamic instruction
scheduling logic through instruction grouping,” Int. Symp. on
Low Power Electronics and Design, 2006

[12] T. Sato, Y. Nakamura, and I. Arita, “Revisiting direct tag
search algorithm on superscalar processors,” Workshop on
Complexity Effective Design, 2001.

[13] J. J. Sharkey et al., “Power-efficient wakeup tag broadcast,” Int.
Conf. on Computer Design, 2005.

[14] R. Vivekanandham, B. Amrutur, and R. Govindarajan, “A
scalable low power issue queue for large instruction window
processors,” Int. Conf. on Supercomputing, 2006.

[15] W. Zhao and Y. Cao, “New generation of Predictive
Technology Model for sub-45nm design exploration,” Int.
Symp. on Quality Electronic Design, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

