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The theoretical continuous model of any process has incontestable advantages
over its empirical “discrete” description based on the “black box™ principle.
This as well can be fully applied to photosynthesis the models of which would be
able to effectively predict not only the “black box’ responses to external effects
but also to calculate its yield as a product of a determined “production process™
with any variations of ‘“‘parameters” included in the model. By the present
time there is an ample information available both on the photosynthetic process
and on regulation parameters (4). However, the scattered and contradictory
character of this information urgently necessitates its generalizing analysis
and formalization and ideally, also its adequate numerical evaluation using
abstract mathematical apparatus. So, the object of this paper is to build such
photosynthesis model which would include the most important parameters
sufficiently postulated by the empirical practice.

Key words: photosynthesis; parametetric model; air temperature; air humid-
ity ; photosynthetically active radiation; soil water potential.

INTRODUCTION

Any biological system or process can be presented by a certain set of physically
measured values reflecting both external conditions—temperature, concentration,
etc., and the object internal properties—metabolism intensity, degree of development
and others. Thus the more we can measure, the better and of higher quality is our
investigation. On the other hand, besides the qualitative set of empirical parameters
it is desirable to have knowledge of the internal mechanism of their interrelations
for a priori forecasting of the object response for their changes. The parametrical
mathematical model would be the best for this purpose. This paper deals with the
development of the nonconventional parametrical model in contrast to Ref. 2, 3, 6.

MATERIAL AND METHODS

To develop the ‘“parametric’” mathematical model of photosynthesis, the
empirical data reported by Bikhele ez al. (1) have been used. As a whole they can
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16 P. P. KUZNETSOV et al.

be presented in the form of the following unknown function:
¢L* :f(‘]¢, tA) ¢S) hA7 SR/SL) (1)

where :
¢1—the photosynthesis in mg of COz dm™2 h™1
Js—the radiation intensity (PAR, photosynthetically active radiation) in
1072 W cm™2
ta—the ambient air temperature in °C
¢s—the soil moisture (water potential) in bars;
ha—the relative air humidity
Sr/SL—the root surface area Sk to leaf area Si, ratio
*—the obtained photosynthesis model as well as empirical data (/) consider
¢1 for quantized time interval (=1 h) per unit area (S=1 dm2). During
the 1 h time interval the plant organism is assumed, on the average, to
finish the process of adaptation to environmental changes (Z, 4, 5, 7).

The analysis of the particular empirical data and plots of photosynthesis versus
any one of the parameters given in Eq. (1) with the remaining parameters constant,
has shown that the most nonlinear is the plot of photosynthesis versus temperature
or the following special function:

$r = f(ta) | @)

The peculiar feature of Eq. (2) (see Fig. 1) is that at the initial moment or during
phase I of the process the photosynthetic intensity ¢ increases with the rise of
temperature while the character of phase II is quite opposite to that of phase I,
with 7, increase ¢ decrease is observed.

Inconsistency of the course of the process in the initial I and final II phases
implies a variety of its interpretations by mathematical methods. We shall dwell
upon the following.

Phase I of photosynthesis as a part of a more general process—biosynthesis—
in the “unlimited nutrition” conditions (in our case—by high temperature) by the
analogy may be expressed in the form of the following differential Malthus re-

lation (6).
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Fig. 1. Typical plot of photosynthesis as a function of temperature.
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dx
=KX 3)

where K is biomass growth rate coefficient.

Romanovsky et al. (6) also reported other models of biosynthesis of ““single-cell
cultures”—Verhulst-Pearl, Volterra and Caperon models. “The basic dependence”
(5) is also Kostitsin—Volterra equation. Each of the models mentioned above
includes specific “‘limiting factors’ which are “dynamics limitation™, “depletion of
nutrients” and “‘self-poisoning by metabolic products”. However, abstracting from
these models which are essentially the modifications and extensions of the Malthus
model, we propose the following differential relation to describe phase II of the
process:

x X
ar T ™
where m is the “damping’ coefficient.
That is, we adopt as a limiting factor of phase II of the process (2) its inverse
dependence on the “argument”, or the relation X/t.
Using the above described as well as the note marked by the asterisk (*) in
Eq. (1), by performing the necessary substitutions—of temperature #, for time ¢ and
of ¢y for abstract functions X in Eqs. (3) and (4)—we can write the following dif-
ferential equation—photosynthesis as a function of temperature—as a whole:

dér,
dra

4)

— Kepr+m- 28 : )
Ia

It is evident that summing algebraically the special dependences (3) and (4) in
the expression (5) we assume that the “transition” phase III of the process (2) is
just the result of the competition between the initial (nonlimited) phase I and the
final (stress) phase II. This assumption is hypothetically supported by the fact that
under the worse conditions, for example, with low soil moisture content (¢s=—38
bars) the dependence (4) naturally dominates leading to considerable reduction of
maximum ¢y max and to the left shift of the optimum ¢y ., towards lower temper-
atures (see Fig. 2).

The equation (5) has the analytical solution. Separation of variables gives:

YL _kdpytm. I (6)
¢L tA
Integration yields:
¢L(IA) :p-eK-fA+m-ln fa (7)

where In p=C is the constant obtained as a result of integration of Eq. (6).

As it has been found later, the equation (7) approximates accurately enough
a family of empirical data (7, see Fig. 2).

The coefficient of correlation between the linearized empirical data 4inz, and
Alngy in the ¢4 range from 0 to +40°C at probability levels of 0.950 to 0.975 is of
the order of 0.981 to 0.991, respectively. Such a high correlation, close to the func-
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Fig. 2. Plot of photosynthesis as a function of temperature comparing empirical a~a—a and
model —— data.

tional one, allows to assume that the proposed hypotheses, Egs. (3)-(5) and Eq. (7)
can be rather close to the “macrofunction’ and to the nature of the process under
study. The minimal dispersion of nonconsidered factors (NF) in the range can
serve as an objective criterion of the latter too. The minimal dispersion differs
slightly from the average “functional” one for the whole family of empirical data
oL=f(ta) from Bikhele et al. (1).

For temperatures above -+40°C (phase IV) the model forecast (7) disagrees
with the experiment. In this case, while for the high soil moisture content condi-
tions (low potential ¢s) the model gives the “excess” of the estimated ¢, for soils
with moisture deficit (¢s=—=8 bars) it yields “‘shortage”.

Extrapolation of the model of Eq. (7) for the extended range of ¢4 from O to
+55°C decreases its adequacy. In this case nonlinearity by Fisher criterion (3) be-
tween the linearized data 4lnt, and dln¢gp greatly rises, the NF dispersion increases
and, what is most important, the forecast quality, or the probability of adequate
forecast, decreases from 0.821 (for ¢ps=—28 bars) to 0.632 (for ¢s=—0.1 bar). The
description of the high-temperature region 1V will obviously require modification
of the model, Eq. (7).

MODEL DEVELOPMENT METHOD

The next stage of the photosynthesis model development is the incorporation
of all the rest parameters into the expression (7). It has been performed in the
following way.

Variations of statistical values of the functional parameters p, k and m of the
approximating model of Eq.(7) are, in their turn, the reflection of variations of
parameters ¢s, ha, Sg/St in each of the particular process (2) experiments. That
is, if the function (7) reads:

¢L :f(ps ka m) (8)
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Fig. 3. Plots of photosynthesis as a function of soil water supply. The relative error of
model data——obtained, as in Fig. 2, from calculation of ¢r, by the output model, Eq. (16) (see
below) is connected with the interpolation errors of the parameters ¢r, 4 and Sr/ST. in appropriate
factorial planes (see below).

the functional parameters p, k and m are as follows:

D, ka m :f(¢55 hA; SR/SL) (9)

Of the priority importance among the parameters affecting the photosynthetic
intensity presented in Eq. (9) is the water supply, or the soil water potential ¢s.
It is adequately illustrated by the set of plots (2) (see Fig. 2) and by the set of em-
pirical data ¢ =f(¢s) given below in Fig. 3.

Nonlinearity of the relation ¢ = f(¢s) in a particular case illustrated in Fig. 3
is also exhibited in a nonlinear fashion in the character of statistical values of the
functional parameters p, k and m of the main “physical’’ model of Eq. (7). There-
fore, the first “derived (input) functions’ from Eq. (7) are as follows:

P; = aptar-Pstaz-Ps?
ki = bo+b1+¢s+Dba-Ps? (10)
m; = cot-c1+ Pstcae Ps?

where i (N) is the number of the curve (the experiment) in Fig. 2.

The expressions (10) are seen to represent the quadratic interpolation poly-
nomials of the values p, k and m in a special factorial plane ¢s.

The next parameter included in the main “physical”’ model of Eq. (7) is air
humidity #,. The empirical data of the special dependence of photosynthesis on
air humidity are given below in Fig. 4.

Taking into account the roughly linear character of the relation ¢y = f(ha) we
have performed linear interpolation of the coefficients ag, a1, -+, c2 of the parabolas
(10), in a particular factorial plane 4, where
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Fig. 4. Plots of photosynthesis versus air humidity ¢r,=f(ha). Model-made data——are
obtained from the output model, Eq. (16).

ap = aoo+aoi-ha (11)
a1 = aro+ai+ha
as = agotas1-ha

bo = boo+bo1+ha

c2 = cg0+co1hy

In its turn, with available empirical data (/) analogous to (2), but for the case
of the well-developed root system, or for the relation Sg/Sp.=2.0, we have performed
similar, however, more “rough” linear interpolation of the coefficients ago, o1, *+-,
co1 of the relations (11) obtained above in the specific factorial plane Sg/Sp where:

@00 = ao00—+ao0o01* Sr/SL (12)
ao1 = ao10+ao11+Sr/SL

...........................

c21 = C210+C211°SR/SL

The essence of the proposed method of interpreting Eq. (9) consists in mathe-
matical terms in successive “‘partial differentiation” of a posteriori empirical (/) and
statistical model-made data p, k and m in n-dimensional factorial space 4, ¢s, Aa,
Sr/SL. Interpretation of the n-dimensional space seems to be impossible. It may
be done, however, using n monofactor plots or by means of the ‘““tests space’ pro-
posed in (2).

The next parameter included in the parametric model of photosynthesis is the
PAR, J;. This parameter was obtained as follows.

It is known from practice that the peculiar feature of photosynthesis is “‘light
saturation”, or the phenomenon when at certain radiating PAR value its further
increase does not lead to the increase of ¢ (I, 4). The plot of the ¢ =f(Jy)
dependence on (/) is shown in Fig. 5.

Proceeding from the photosynthetic ‘“‘saturation” postulate this relation may
be hypothetically expressed as the following differential equation:

BIOTRONICS
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Fig. 5. Plot of photosynthesis as a function of PAR.

1 dgr

po dJy

+éL = do (13)

where  u is the “saturation” coefficient;
¢ is the current photosynthesis value;
$o is the “‘saturation” limit or the maximum, ¢p m.s, under fixed other
environmental conditions.
when ¢ =0 at J;=0, its solution has a form:

$1L(Jg) = po(l—e~#J) (14)

The equation (14), similar to (7), was found to adequately enough approximate
the set of data ¢ =f(J;). The coefficient x which is the basic one in the formula
(14), within three fixed values of ¢s depends weakly on variations of /15, and depends
in a nonlinear fashion, on the variations of ¢)s. Therefore, similar to the functional
parameters p, k and m, for the coefficient x the following quadratic polynomial, or
the factorial representation of x in the plane ¢s and Sgr/St, has been derived:

po=lo+h+Pps+leps? (15)
where lo = doo+do1+Sr/SL; 1 = dio+d11+Sr/SL; Iz = dao+dz1+Sr/StL.

MODEL FINAL SYNTHESIS

The final step in construction of the photosynthesis parametric model is the
synthesis of all derived dependences, Egs. (7) to (15), into one formula. It reads:

S1(ta, ¢s, ha, Sr/SL, Jg) = peek-X+mX(] —e=rJg) (16)

where X=1,-+3 is the air temperature in the range from —2.90° to +-40°C;
p, k, m are the functional parameters determined by the value of ¢g by the
formulas:

P = ao+ai-PstasePs?
k = bo+b1+¢ps-+bae s
m = co+c1+Ps+cae Ps?

VOL. 15 (1986)
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where ¢ is the soil water potential in the range from —0.1 to —15 bars;
ao, a1, *++, c2 are parabolas coefficients determined by the values of A, and
Sr/SL by the formulas:

ao = 0.40742+0.0554 + Sg/Sp.-+(1.53339—0.03696 - Sg/SL)+ 1

@ = —1.147824+-0.40859+ Sg/Sy+(1.86977—0.44388 - Sg/SL)+ /1

as = —0.12261+0.04748 . Sg/S; +(0.21890—0.490 - Sg/St) - /1A

bo = 1.48854—0.01868+ Sg/S+(—0.45906+0.01905+ S /St )+ /ia

by = 0.34095—0.11427- Sg/Sy +(—0.63893-+0.16282+ Sg/S1) - fia

by = 0.02775—0.0110+ Sg/S+(—0.06941+0.01632- Sx/Sy) - ha

co = —0.052756—0.000567 - Sg/Sy +(0.018703—0.000017 + Sg/Sp.) 1
c1 = 0.012978—0.007939+ Sg/Sy -+(0.012247—0.000236+ S /S1) « hia
¢2 = 0.001013—0.000617 - Sg/Sr +(0.001533—0.000042+ Sg/Sy )+ /1

where A, is the relative air humidity in the range from 0.2 to 0.9;

Sr/Sy is the root surface area to leaf area ratio in the range from 0.2 to 2.0
(linear interpolation); u=Ip+1+Ps+Ila-¢ps? is the “saturation” coefficient;
where [o=1.045+0.025.SR/St; [1=—0.4005+0.2078-Sg/St;

[5=0.01075—0.00392- Sr/St.

Jy is the PAR in the range from 0 to 5x 1072 W cm™2.

Thus, the final equation (16) synthesis consisted in the replacement of the photo-
synthesis maximal value ¢o in Eq.(14) with the value ¢p=f(¢4, ¢s, ha, Sr/SL)
derived earlier from Egs. (7) to (12).

CONCLUSION

The obtained model of photosynthesis, first, describes with sufficient accuracy
the empirical data (1), and especially on the basic physical dependence shown in
Eq. (2), secondly, it allows to predict the photosynthetic “yield” at any variations
(within the given limits) of all physical parameters included in it, and thus, without
performing full-scale experiments to show in advance the possible ways of the pro-
cess optimization and of the objective experiment by means of the appropriate
“controls”. The most important among them, as is shown by the empiricism (I, 4)
and the numerical model calculations in Eq. (16), is the air temperature #5. Since
the photosynthesis dependence on temperature has the extremum, by setting the
function derivative from Eq.(16) with respect to ta equal to zero, the optimal
temperature of the process ¢ can always be found for all other stationary or variable
environmental conditions.

Under natural conditions the parameters 7, and J4 are practically noncontrol-
lable. However, using watering (by varying ¢s) or a watering plant (varying /a
and ¢s) we are always able to calculate the photosynthetic “yield” and to verify
numerically the degree of indirect optimization of the process ¢ without access to
“direct control” of natural 75 and J,.

The numerical model experiments with variation of each of the physical param-
eters within the given limits do not give results which disagree with the experiment,
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they are rather consistent with it in most cases. For example, the “intersection of
curves” ¢ =f(ha) in Fig. 4 or the “optimum shift” ¢; towards lower temperatures
when soil moisture “deficit”” occurs (see Fig. 2). Also consistent with the empirical
data is the optimum temperature point, yielding the maximal maximum @1 max max
under all other favourable environmental conditions at +27 to +28°C.

The advantage of the developed parametric model of photosynthesis as against
the traditional regressive and physical ones is obvious, since the model is not only
relatively “simple” and open, or allows to introduce into it new parameters which
are of interest to the investigator (soil, mineral nutrition, etc.), and to correct them
specifically, but also makes it possible to use it in practice as a ““base’ for optimiza-
tion.
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