九州大学学術情報リポジトリ Kyushu University Institutional Repository

ベアチップ冷却用平板型ヒートスプレッダーに関す る研究:チップ最高温度に及ぼす熱源およびチップ サイズの影響

富村, 寿夫 九州大学機能物質科学研究所

https://doi.org/10.15017/7939

出版情報:九州大学機能物質科学研究所報告.15(1), pp.73-77,2001.九州大学機能物質科学研究所 バージョン: 権利関係:

ベアチップ冷却用平板型ヒートスプレッダーに関する研究 (チップ最高温度に及ぼす熱源およびチップサイズの影響)

富村寿夫

Study on Plate Type Heat Spreader for Bare Chip Cooling (Effects of Heat Source and Chip Sizes on Maximum Chip Temperature)

Toshio TOMIMURA

Numerical simulations are conducted on heat transfer in a plate type heat spreader for bare chip cooling. The simulation is concerned with a steady state two-dimensional heat conduction problem for a four- and a two-layer circular plates system, which correspond to the simplified models for the [chip]-[thermal interface material A]-[heat spreader]-[thermal interface material B] system, and the [chip]-[thermal interface material] system without a heat spreader for comparison. From a series of numerical calculations, the effects of heat source and chip sizes on the maximum chip temperature T_{max} are clarified, and a simple correlation equation to predict T_{max} is proposed on the basis of the equivalent heat source radius r_{ea} .

1. 緒 言

電子機器に搭載された高発熱素子の冷却方法として、 マルチフィンタイプ熱伝導体^{(1),(2)}、プレート型ヒートパ イプ⁽³⁾、矩形ヒートスプレッダー^{(4),(5)}、CVD ダイヤモン ドヒートスプレッダー⁽⁶⁾などが提案されている。本研究 では、モジュール上のベアチップの冷却手段として、高 熱伝導率のヒートスプレッダー板を用いた場合について、 二次元の円筒モデルに基づく数値解析を行った。

これまでに、[ベアチップ] - [熱的介在物質]から成る 二層モデルおよび[ベアチップ] - [熱的介在物質 A] - [ヒ ートスプレッダー] - [熱的介在物質 B]から成る四層モデ ルを用いた一連の解析結果から、ヒートスプレッダーが 本来の機能を果たすために必要な条件とそのメカニズム を明らかにするとともに、ヒートスプレッダーの厚さに はチップ最高温度 *T_{max}* を極小化する最適値が存在するこ とを示した⁽¹⁾⁽⁸⁾。また,具体的な例について、ヒートス プレッダーの最適厚さが得られるための条件を示し⁽¹⁾、

受理日 2001 年 6 月 7 日 本論文を名誉教授 西村幸雄先生に献呈する. さらに、チップ最高温度 T_{max} は熱源半径 r_s 並びにチップ 半径 r_cの増大とともに単調に低下することを例示した⁽⁸⁾。

本報では、チップ最高温度 T_{max} に及ぼす熱源半径 r_s 並 びにチップ半径 r_c の影響をより詳細に検討するために、 r_c を 3.4、6.8、11.3 mm (6、12、20mm^D矩形断面チップ に対応)、 r_s を 1.7 mm ~ r_c の範囲で変化させた一連の 数値解析結果について報告する。さらに、それらの結果 に基づき等価熱源半径 r_{eq} を導入し、チップ最高温度 T_{max} の簡易予測式を提案し検討した結果についても報告する。

記号

h	:厚さ	[m]
Κ	:熱コンダクタンス	[W/K]
Q	:発熱量	[w]
r	:半径、半径方向座標、Figs.1,2	[m]
Т	:温度	[°C]
z	:軸方向座標、Figs.1,2	[m]
ギリシャ文字		
Δr	:半径方向座標キザミ、Fig.2	[m]
Δz	:軸方向座標キザミ、Fig.2	[m]
λ	:熱伝導率	[W/mK]
下付き添字		
	1. 1. 2. 2. 5	

a :ヒートシンク

第15巻 第1号(2001)

с	:チップ	
Ε	:格子点(i, j)、(i+1, j)間、Fig.2	
eq	:等価	
f	: コンパウンド(熱的介在物質)	
hsp	:ヒートスプレッダー	
i	:半径方向格子点、Fig.2	
j	:軸方向格子点、Fig.2	
max	:最大值	
N	:格子点(<i>i, j</i>)、(<i>i, j</i> +1)間、Fig.2	
n	:指数、式(9)	
p	:高熱伝導物質(熱的介在物質)	
S	:格子点(<i>i, j</i>)、(<i>i, j-</i> 1)間、Fig.2	
S	:熱源	
W	:格子点(<i>i, j</i>)、(<i>i-</i> 1, <i>j</i>)間、Fig.2	
2	: ヒートスプレッダーが無い場合(二層モデル)	
4	: ヒートスプレッダーが有る場合(四層モデル)	
上付き添字		
k	:反復回数	
*	:交点	

2. 数 値 解 析

ここでは矩形断面チップを等価な円形断面チップで置 き換え、三次元問題を二次元化し解析の簡略化を行った。 この簡略化によるチップ最高温度に及ぼす影響は現われ ないことを予め確認している。

物理モデルと座標系の例を Figs. 1(a), (b)に示す。Fig.1 (a)の二層モデルは、半径 r_s の底面部領域が局所的に Q_s で発熱する半径 r_c 、厚さ h_c 、熱伝導率 λ_c のベアチップを、 熱的介在物質として厚さ h_f 、熱伝導率 λ_f のコンパウンド 層を介して温度 T_a のヒートシンクに接続し冷却した場合 を示す。一方、Fig.1(b)の四層モデルは、チップ最高温度 T_{max} の低減をはかるためにチップとコンパウンド層の間 に厚さ h_{hsp} 、熱伝導率 λ_{hsp} のヒートスプレッダー板を挿入 し、ヒートスプレッダーとチップ間の熱的介在物質とし て厚さ h_p 、熱伝導率 \ddot{e}_p の高熱伝導体層(例えばハンダ付

Fig.1 Examples of physical model and coordinate system

けなどの金属接合)を用いた場合の例を示す。なお、いずれの系も周囲は断熱されているとした。

解析には二次元円筒座標系で表されたネットワーク法 を適用した。Fig.2を参照すると、各層内での離散化され た格子点(*i*, *j*)の温度 *T*_i, は次式で与えられる。

$$T_{i,j} = \frac{K_E T_{i+1,j} + K_W T_{i-1,j} + K_N T_{i,j+1} + K_S T_{i,j-1}}{K_E + K_W + K_N + K_S}$$
(1)

ここで、 K_E 、 K_W 、 K_N および K_S は熱コンダクタンスであり、次式で表される。

$$K_E = \lambda_E \frac{2\pi r_i \Delta z_j}{(\Delta r_i + \Delta r_{i+1})/2}, \quad K_W = \lambda_W \frac{2\pi r_{i-1} \Delta z_j}{(\Delta r_{i-1} + \Delta r_i)/2} \quad (2)$$
$$K_N = \lambda_N \frac{2\pi r_{i-1} \Delta r_i}{(\Delta z_j + \Delta z_{j+1})/2}, \quad K_S = \lambda_S \frac{2\pi r_{i-1} \Delta r_i}{(\Delta z_{j-1} + \Delta z_j)/2}$$

境界条件に関しては、Fig.1(a)を例として示すと、次式で与えられる。

$$r = 0, 0 < z < h_c + h_f : \partial T/\partial r = 0$$

$$r = r_c, 0 < z < h_c + h_f : \partial T/\partial r = 0$$

$$0 \le r < r_s, z = 0 : -\lambda_c \partial T/\partial z = Q_s/\pi r_s^2$$
(3)

$$r_s \le r \le r_c, z = 0 : \partial T/\partial z = 0$$

$$0 \le r \le r_c, z = h_c + h_f : T = T_a$$

半径(r)方向と軸(z)方向の分割数は、条件に応じて、そ れぞれ、20~134、15~63 分割とした。また、収束判定 条件として、次式を与えた。

$$\left| T_{i,j}^{k} - T_{i,j}^{k-1} \right|_{\max} / T_{0,0}^{k} \le 2.0 \times 10^{-7}$$
⁽⁴⁾

ここで、*k* は反復回数、*max* は最大値、*T^k*_{0,0} は座標原点に おける温度すなわちチップ最高温度 *T_{max}*を表す。その結 果、本解析範囲における系のエネルギーバランスは 3%以 内であった。

Fig.2 Network for two-dimensional heat conduction

3. 数値解析結果および考察

ヒートスプレッダーの機能 3.1

ヒートスプレッダーが本来の機能を果たすために必要 な条件とそのメカニズムに関しては既報⁽⁸⁾で詳述したの で、ここではその概要を示す。

Fig.3 に、半径 r_c =11.3mm、厚さ h_c =0.6mm、熱伝導率 λ_c = 150W/mK のベアチップに関し、半径 r_s=3.4mm の底面部 領域が O=35W で局所的に発熱する場合の冷却例を示す。

このようなチップを、Case-1 に示すように厚さ h,=0.03 mm、熱伝導率熱伝導率 λ_n=100W/mK の高熱伝導体層を

介して温度 T_a=30℃のヒートシンクに接続し冷却すると、 チップの最高温度は非常に低く抑えられ、Tmax=34.1℃と なる。しかし、実際には、機器の組立て性やチップ交換 などの補修性の問題から、例えば Case-6 に示すように、 ゼル状のコンパウンド(厚さ h_f=0.1mm、熱伝導率 λ_f=3 W/mK)などを介してヒートシンクとの接続がとられるが、 この場合、コンパウンド層が大きな熱抵抗となり、Tmax は 55.7℃にまで上昇してしまっている。

この問題に対処するため、厚さ h_{hsp} =3mm、熱伝導率 λ_{hsp} =400W/mK のヒートスプレッダー板をコンパウンド層上 に載せ高熱伝導体層を介してヒートシンクに接続した例 が Case-4 である。ここで、ヒートスプレッダーはヒート シンクと一体化しており、機器の分解、組立てはコンパ ウンド層が受け持つ。この場合の系内の温度分布を Fig.4 に示す。期待に反し熱源上部の系内温度分布は高いまま であり、ヒートスプレッダーは単に熱抵抗としてしか機 能していない。このため、Tmaxは更に高くなり、58.1℃に 上昇している。

しかし、同じチップ、コンパウンド、ヒートスプレッ ダーおよび高熱伝導体の組合せに対し、Case-3 に示すよ うにコンパウンドと高熱伝導体の位置を入れ替えてヒー

Fig.3 Examples bare chip cooling

トシンクに接続すると、Tmaxは43.1℃に低下する。Case-4 の場合と比較して最高温度 Tmarは 15℃も低下し、ヒート スプレッダー本来の機能が得られている。これは、Fig.5 に示すように、チップとヒートスプレッダーの間に挟ま れた高熱伝導体層による半径方向への熱移動が良好に行 われた結果、熱源直上部の温度が低下し平坦化するとと もに熱源外周部が熱の拡散領域として有効に働いたこと による。

以上の結果から、局所的に発熱するベアチップの冷却 手段として高熱伝導率のヒートスプレッダー板を使用す る場合、チップとヒートスプレッダー間およびヒートス プレッダーとヒートシンク間の熱的介在物質の組合せが 重要であり、その組合せを誤るとヒートスプレッダーは 逆に熱抵抗として作用する。

3. 2 熱源半径 r とチップ半径 r の影響

Fig.6 に、Fig.3 に示した Case-3 の系でチップを冷却し た場合について、チップ最高温度 Tmax に及ぼす熱源半径 rsとチッブ半径 rcの影響を示す。ここで、各記号(●、

Fig.4 Radial temperature distribution in cooling system with plate type heat spreader (Case-4)

九州大学機能物質科学研究所報告

第15巻 第1号(2001)

○)、(▲、△)、(\blacksquare 、 \Box)はチップ半径 r_c が 3.4、6.8、 11.3mm(6、12、20mm[□]矩形断面チップに対応)の場合 の数値シミュレーション結果であり、黒塗りと白抜き、 各記号を連ねる実線と破線は、それぞれ、ヒートスプレ ッダーが有る場合(四層モデル)と無い場合(二層モデ ル)を表す。また、一点鎖線と二点鎖線は、 $r_c=r_s$ の場合、 すなわち系が完全に一次元の場合のヒートスプレッダー が有る場合と無い場合の結果であり、次式で与えられる。

$$T_{\max} = T_a + \left(\frac{h_c}{\lambda_c} + \frac{h_p}{\lambda_p} + \frac{h_{hsp}}{\lambda_{hsp}} + \frac{h_f}{\lambda_f}\right) \frac{Q_s}{\pi r_s^2}$$
(5)

ヒートスプレッダーが無い場合(二層モデル)

ヒートスプレッダーが有る場合(四層モデル)

$$T_{\max} = T_a + \left(\frac{h_c}{\lambda_c} + \frac{h_f}{\lambda_f}\right) \frac{Q_s}{\pi r_s^2}$$
(6)

いずれのチップ半径 r_c においても、熱源半径 r_s が一次 元の場合の $r_s=r_c$ から実線と破線が交差する点の半径 r*に 減少するまでは、ヒートスプレッダーが有る系の方が T_{max} が高くなっている。すなわち、 $r_s=r*\sim r_c$ の範囲では、 ヒートスプレッダーは単に熱抵抗として作用しているに 過ぎない。これに対し、 $r_s<r*$ の範囲においてはヒートス プレッダー本来の機能が得られ、ヒートスプレッダーが 無い場合と比べ T_{max} は低くなり、その差は熱源半径 r_s の 減少とともに増大している。

3.3 等価熱源半径によるチップ最高温度の予測

Figs.7、8に、それぞれ、ヒートスプレッダーが有る場合と無い場合について、式(5)、(6)に基づき次式で定義した等価熱源半径 *r_{eq}と熱源半径 r_sおよびチップ半径 r_cの関係を示す。*

ヒートスプレッダーが有る場合(四層モデル)

$$r_{eq,4} = \sqrt{\left(\frac{h_c}{\lambda_c} + \frac{h_p}{\lambda_p} + \frac{h_{hsp}}{\lambda_{hsp}} + \frac{h_f}{\lambda_f}\right) \frac{Q_s}{\pi(T_{\max,4} - T_a)}}$$
(7)

$$r_{eq,2} = \sqrt{\left(\frac{h_c}{\lambda_c} + \frac{h_f}{\lambda_f}\right) \frac{Q_s}{\pi (T_{\max,2} - T_a)}}$$
(8)

Fig.6 Effects of r_s and r_c on T_{max}

九州大学機能物質科学研究所報告

ここで、 $T_{max,4}$ および $T_{max,2}$ には、それぞれ、二次元円筒 座標系の四層および二層モデルで得られた数値解析結果 を代入する。各記号の意味は Fig.6 の場合と同じである。 また、実線、破線および一点鎖線は、各チップ半径 r_c お ける数値シミュレーション結果を、次式のベキ乗関数

$$\frac{r_{eq}}{r_c} = \left(\frac{r_s}{r_c}\right)^n \tag{9}$$

で最小自乗近似した結果である。指数 n は、各チップ半 径 r_c=3.4、6.8、11.3mm に対し、ヒートスプレッダーが有 る場合と無い場合について、それぞれ、n=1/4.6、1/2.7、 1/2.0 および n=1/2.3、1/1.4、1/1.2 となる。

Figs.9、10は、ヒートスプレッダーが有る場合と無い場 合について、式(9)を式(7)、(8)に代入し逆に $T_{max,4}$ および $T_{max,2}$ を求めることにより、等価熱源半径 r_{eq} の式(9)によ る近似の妥当性を T_{max} と r_s のグラフ上で確認した結果で ある。ここで、各記号の意味はFig.6の場合と同じであり、 実線、破線および一点鎖線は、各チップ半径 r_c における 式(9)に基づく T_{max} の近似結果である。いずれの場合も、 チップ半径 r_c が 9.8、11.3mmにおいて、熱源半径 r_s が小 さい領域で近似精度が若干低下するが、それ以外の領域 ではほぼ良好な結果が得られている。

Fig.7 Relation between $r_{eq, 4}$ and r_s (With plate type heat spreader)

Fig.8 Relation between $r_{eq, 2}$ and r_s (Without plate type heat spreader)

第15巻 第1号(2001)

Fig.9 Relation between $T_{max, 4 \text{ and }} r_s$ (With plate type heat spreader)

4.結 言

局所的に発熱するベアチップの冷却手段として高熱伝 導率のヒートスプレッダー板を用いた場合の効果につい て、二次元円筒座標系による四層および二層モデルに基 づく数値解析を行った。チップ半径 r_c を 3.4、6.8、11.3 mm (6、12、20mm[□]矩形断面チップに対応)、熱源半径 r_s を 1.7 mm ~ r_c の範囲で変えた一連の解析結果から、チ ップ最高温度 T_{max} に及ぼす熱源半径 r_s 並びにチップ半径 r_c の影響を定量的に明らかにした。また、それらの結果 に基づき、一次元系モデルで与えられる T_{max} に関する関 係式(5)、(6)を利用した等価熱源半径 r_{eq} (式(7)、(8))を 導入し、熱源半径 r_s とチップ半径 r_c との間の相関式(9)を 提案した。そして、 r_c =3.4、6.8、11.3 mm、 r_s =1.7 mm ~ r_c の範囲において、相関式(9)によるチップ最高温度 T_{max} の 簡易予測がほぼ妥当な精度で可能であることを示した。

- (1) 芦分 範行、大黒 崇弘、河村圭三、頭士 鎮夫、日本機械学会論文集(B編)、58-547(1992), 865.
- (2) 芦分 範行、大黒 崇弘、河村 圭三、頭士 鎮夫、日本機械学会論文集(B編)、58-547(1992),871.
- (3) Take, K. and Webb, R. L., Proc. of the PACIFIC RIM/ ASME International Intersociety Electronic & Photonic Packaging Conf. InterPACK '99, 2(1999), 2113.
- (4) Welch, J. W., Lam, T. T. and Yeung, W. K., *ibid.*, 1(1999), 883.
- (5) Lam, T. T. and Fischer, W. D., *ibid.*, 1(1999), 891.
- (6) Fabis, P. M. and Windischmann, H., ibid., 1(1999), 899.
- (7) 富村 寿夫、安斎 久雄、宇田川 義明、第 38回日本 伝熱シンポジウム講演論文集、1(2001), 143.
- (8) Tomimura, T., Anzai, H. and Udagawa, Y., Proc. of the PACIFIC RIM/ASME International Intersociety Electronic & Photonic Packaging Conf. InterPACK '01, (July, 2001, to be published).