Rearrangement of 11-Hydroxy-11-(2-naphthyl)-3,4:8,9-dibenzobicyclo [4.4.1]undeca-3,8-diene-2,2,5,5,7,7,10,10-d_8

Isobe, Shin-ichiro
Graduate School of Engineering Sciences Kyushu University

Thiemann, Thies
Institute of Advanced Material Study Kyushu University

Sawada, Tsuyoshi
Institute of Advanced Material Study Kyushu University

Yonemitsu, Tadashi
Department of Industrial Chemistry Faculty of Engineering Kyushu Sangyo University

https://doi.org/10.15017/7915
Rearrangement of 11-Hydroxy-11-(2-naphthyl)-3,4:8,9-dibenzobicyclo[4.4.1]undeca-3,8-diene-2,2,5,5,7,7,10,10-d₈

Shin-ichiro ISOBE,⁴ Thies THIEMANN, Tsuyoshi SAWADA, Tadashi YONEMITSU,⁵ and Shuntaro MATAKA

The preparation of a novel deuterated [3.3]orthocyclophane-alcohol is described. The rearrangement of the orthocyclophane alcohol leads to a dibenzo-annelated bromomethyldecaline. The deuterium labels provide a good indication of the mechanism that is underlying this reaction.

Introduction

[3.3]Orthocyclophanes with rigid, layered structures show interesting properties due to their closely layered \(\pi \)-systems¹⁻³ and due to their strain within their bridging [4.4.1]undecane subunit. Recently, it has been reported that the treatment of orthocyclophane-alcohols 1 with hydrobromic acid in dioxane, produced rearrangement products, the nature of which is dependent on the aryl substituent on the bridge of 1.

In the rearrangement of 1-naphthyl and 2-methylphenyl-substituted orthocyclophane-alcohols 1e and 1f, a cyclopropane-ring was formed, giving product 4e and 4f. From the study on the rearrangement of deuterated 1-naphthyl[3.3]orthocyclophane-alcohol 5-d₈, it was deduced that the cyclopropane ring is formed via a non-classical cation derived from a tertiary cation, which has a chair-chair conformation due to the bulky substituent.⁶ Phenyl-substituted orthocyclophane-alcohol 1a gave two rearrangement products, 2 and 3a (Scheme 1).

Scheme 1

Scheme 2

Received May 11, 2000

¹ Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasuga-koh-en, Kasuga-shi, Fukuoka 816-8580
² Department of Industrial Chemistry, Faculty of Engineering, Kyushu Sangyo University, Matsukadai, Kashi-I, Higashi-ku, Fukuoka 813-0004

The Reports of Institute of Advanced Material Study, Kyushu University Vol. 14, No. 1, 2000
The two remaining protons on the bridge-head positions in 11-d₄ were ascertained by ¹H- and ¹³C-NMR (Scheme 4). The deuterium contents (>99%) of the intermediates 8-11-d₄ were determined by mass spectroscopy.

Scheme 4

Carbinol 11-d₄ was treated with hydrobromic acid in dioxane at 35 °C for 48h and the rearrangement product 12-d₄ was obtained in 83% yield. The ¹H-NMR spectrum of 12-d₄ shows two singlets at δ 2.89 and 3.93 ppm, respectively, each of an equal intensity. In the ¹³C-NMR spectrum three singlet signals are observed at δ 37.74, 45.89, and 51.88 ppm. By analyzing the ¹H- and ¹³C-signals of the aliphatic region of 12, the two protons of the rearrangement product 12-d₄ can be assigned to that bridge-carbon of the decaline system, which is located on the side opposite to the bromomethyl-unit and the benzylic carbon which carries the bromomethyl group itself.

These findings can be reasonably explained by the proposed mechanism for the rearrangement of 11 to 12.

Experimental

Melting points were measured on a Yanaco micro melting point apparatus and are uncorrected. Infrared spectra were measured with JASCO IR-700 and Nippon Densi JIR-AQ20M machines. ¹H- and ¹³C-NMR spectra were recorded with a JEOL EX-270 spectrometer. The chemical shifts are relative to TMS (solvent CD₂Cl₂). Mass spectra were measured with a JMS-01-SG-2 spectrometer (EI, 70 eV).
Diester 8-d₈

To a stirred mixture of tetrabutylammonium bromide (8.10 g, 25 mmol), CH₂Cl₂ (16 mL) and 23% aq. NaOH (20 mL) was added dropwise a solution of 1,2-bis(bromomethyl)benzene-d₁₁-d₇-d₈ (2.20 g, 8.0 mmol) and dimethyl acetone-1,3-dicarboxylate (2.50 g, 14 mmol) in CH₂Cl₂ (15 mL). The resulting two-phase system was stirred for 24 h at rt. Thereafter the phases were separated, the organic phase was washed with water (2 x 50 mL) and dried over anhydrous Na₂SO₄. After concentration of the solution in vacuo, the residue was taken up in methanol to give 8-d₈ (7.26 g, 87%) as colorless prisms, mp 182-184 °C (Found M⁺ 386.1964. C₂₃H₁₄D₈O requires M, 386.1969); νmax (KBr)/cm⁻¹ 2956, 1795, 1674, 1450, 1278, 1230, 747; m/z (EI) 386 (M).

Dicarboxylic acid 9-d₈

To a solution of 8-d₈ (1.57 g, 4.1 mmol) in ethanol (80 mL) was added KOH (5.70 g, 10 mmol) and the resulting slurry was refluxed for 3 h. After the mixture was cooled, it was poured into water (250 mL). The solution was acidified with 35 wt% aq. HCl (10 mL) and was kept at rt for 14 h. The precipitate formed was filtered to give 9-d₈ (1.30 g, 90%) as a colorless solid, mp 330 °C (decomp); (Found M⁺ 358.1655. C₂₁H₁₀D₈O requires M, 358.1669); νmax (KBr)/cm⁻¹ 3600, 3031, 1740, 1442, 1217, 771; m/z (EI) 358 (M).

Ketone 10-d₈

Dicarboxylic acid 9-d₈ (1.20 g, 3.35 mmol) was heated in vacuo (0.2-0.4 torr) at 320°C until the gas evolution ceased. After the reaction mixture was cooled, it was dissolved in CH₂Cl₂ (20 mL). Insoluble material was filtered off. The filtrate was concentrated in vacuo and submitted to a column chromatography on silica gel (chloroform) to give 10-d₈ (700 mg, 78%) as a colorless solid, mp 132-133 °C (Found M⁺ 270.1859. C₁₉H₁₀D₈O requires M, 270.1860); νmax (KBr)/cm⁻¹ 3041, 1733, 1434, 1219, 771; m/z (EI) 270 (M⁺).

Carbinol 11-d₈

Ketone 10-d₈ (0.30 g, 1.1 mmol) in dry THF (5 mL) was added dropwise within 1 h to the Grignard reagent, prepared from 2-bromonaphthalene (0.43 g, 2.1 mmol) and Mg (0.14 g, 5.2 mmol) in THF (5 mL). The mixture was heated under reflux for 15 h. After cooling, a 17 wt% aq. NH₄Cl solution (30 mL) was added. The phases were separated, the aqueous phase was extracted with ether (2 x 50 mL) and the combined phases were dried over anhydrous MgSO₄. After evaporation in vacuo, the crude material was subjected to column chromatography on silica gel (t oluene) to yield 11-d₈ (0.37 g, 83%) as a colorless solid, mp 241-243 °C (Found M⁺ 398.2487. C₂₉H₁₇D₈O requires M, 398.2486); νmax (KBr)/cm⁻¹ 3546, 3056, 1493, 1181 and 760; 1H NMR (270 MHz, CDCl₃) δ = 1.72 (1H, s), 3.34 (2H, s), 6.44 - 6.88 (7H, m), 7.44 - 7.48 (2H, m), 7.79 - 7.84 (5H, m), 8.00 (1H, s); ¹³C NMR (67.8 MHz) δ = 39.42, 79.19, 124.09, 125.35, 125.82, 126.07, 126.22, 127.34, 128.35, 129.76, 130.42, 132.25, 133.12, 138.97, 139.84, 143.16; m/z (EI) 398 (M⁺).

Rearangement of 11-d₈

To 11-d₈ (0.20 g, 0.51 mmol) in dioxane (21 mL) was added dropwise 47% aq. HBr (50 mL) and the reaction mixture was stirred for 48 h at rt. Then, the phases were separated. The organic phase was washed with water (50 mL) and dried over anhydrous Na₂SO₄. After concentration of the solution in vacuo, the resulting residue was recrystallized from benzene to give 12-d₈ (0.19 g, 83%) as a colorless solid, mp 180-186 °C (decomp); (Found M⁺ 460.1643. C₂₉H₁₇D₈[⁷⁹Br] requires M, 460.1642); νmax (KBr)/cm⁻¹ 2926, 1488, 1451, 1120, 1036 and 751; ¹H NMR (270 MHz, CDCl₃) δ = 2.89 (1H, s), 3.93 (1H, s), 6.63 - 7.87 (15H, m); ¹³C NMR (67.8 MHz, CDCl₃) δ = 37.74,
45.89, 51.88, 124.85, 125.64, 126.23, 126.29, 126.41,
126.45, 126.56, 126.68, 126.86, 127.10, 127.51, 127.67,
127.96, 128.32, 128.55, 128.93, 129.25, 129.36, 129.47,
129.86, 130.31, 132.52, 133.55, 134.70, 135.18, 136.39,
136.48, 142.55; m/z (EI) 460 ([{}^{79}\text{Br}]M') and 462
([{}^{81}\text{Br}]M').

References
1) S. Mataka, K. Takahashi, T. Hirota, K. Takuma, H.
2) S. Mataka, K. Takahashi, T. Mimura, T. Hirota, K.
Takuma, H. Kobayashi, M. Tashiro, K. Imada, and M.
3) S. Mataka, Y. Mitoma, T. Sawada, and M. Tashiro,
4) S. Mataka, Y. Mitoma, T. Thiemann, T. Sawada, M.
Taniguchi, M. Kobuchi, and M. Tashiro, Tetrahedron
5) (a) S. Mataka, K. Shigaki, T. Sawada, Y. Mitoma, M.
Taniguchi, T. Thiemann, K. Ohga, and N. Egashira,
Angew. Chem. 1998, 110, 2626 - 2628; Angew. Chem.
Int. Ed. Engl. 1998, 37, 2532-2534. (b) M. Taniguchi,
S. Mataka, T. Thiemann, T. Sawada, K. Mimura, and Y.
S. Mataka, J. Ma, T. Thiemann, J. M. Rudzinski, H.
Tsuzuki, T. Sawada, and M. Tashiro, Tetrahedron 1997,
53, 885-902.
1, 1999, 2102-2107.
7) M. Brock, H. Hintze, and A. Heesing, Chem. Ber.,
1986, 119, 3718.