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ComputatiQn and Comparison for Heat and Fluid Flow

Using a QUICK and Other Difference Schemes

Mo YANG*, Wen quan TAO** and Hiroyuki OZOE

Numerical computations were carried out for four sample cases of heat and fluid flow using a

QUICK and other fmite difference schemes. It is found that for a forced convection a QUICK

scheme provides much less grid dependence than other schemes such as a central difference scheme,

an Upwind difference scheme, a power law scheme and a hybrid difference scheme. For natural

convection of low-Prandtl number fluid, a QUICK scheme gave oscillatory convection while the

other schemes did not do for the same numerical conditions.

Introduction

Accurate prediction of complex heat and fluid
flow is a topic of great importance in thermal
science and engineering. However, it is not easy
to make a simulation in detail. General purpose
program with a high order accuracy is still
required to permit the computation within a
shorter time or presently available computing
resources. QUICK (Quadratic Upwind
Interpolation of Convective Kinematics) scheme
has been considered to be one of reliable
difference scheme. This work aims to develop a
general purpose program to solve for two­
dimensional problems of heat and fluid flow using
a SIMPLEll] method with a QUICKl2] scheme for
primitive variables. Sample problems were
solved and compared with previous works.

Nomenclature

a = thermal diffusivity [m2/s]
D = diameter [m]
d = diameter [m]
Dt = dimensionless time step [-]
F = dimensionless time (=ta(RaPr)1/2IlJ2)
g =acceleration constant due to gravity

[m/s2]

H =height [m]
L =length [m]
Lr =re-attachment length [m]
Nu =Nusselt number [-]
Nu =average Nusselt number ona heated

wall [-]
Pr = Prandtl number [-]
Ra = Rayleigh number (=/igJl3L1 Tla 1/)
Re = Reynolds number [-]
r = coordinate [m]
S = generalized source term
T = temperature [K]
L1 T =temperature difference (=Th-Tc) [K]
t =time [s]
U =dimensionless x-directional velocity

component [-]
u =x-directional velocity component [m/s]
V =dimensionless y-directional velocity

component [-]
v =y-directional velocity component [m/s]
x = coordinate [m]
y = coordinate [m]
/i = volumetric coefficient of expansion

[Kol]
r =generalized diffusion coefficient
1/ =kinematic viscosity [m2/s]
p = density [kg/m3]
q> =general variable

Finite Difference Equation
with QUICK Scheme

In this section presented is a general
difference equation with a QUICK scheme. The
QUICK formulation is written as a summation of
an upwind difference scheme and an additional
source term which is similar to that derived by
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Hayase et aJ.[2] except the treatment for the
boundary control volumes.

The partial differential equations describing
two·dimensional unsteady heat and fluid flow
may be expressed in a general form as follows:

volume in Fig.1 are calculated as folIows:

Fe =(pu)etiy, Fw =(pu)wtiy,

Fn =(PV)n!!iX, Fs =(pv)s!lx,

E..(p4» + .E..(pucf.» + .E..(pvcf» = .E..(r 00» + .E..(r 00» +S (1)ot Ox ay Ox Ox Oy ay

where S may be linearized as S = Se +Sp <1>.

Diffusion conductance D's are defined as,

D = fetiy V = fwtiy V = fnlix V = rs!lx
e (ax)e' W (ax)w' n (~)n' s (~)s'

Fig. I Control volume specification

Fe >0,

(S• ) - Fe [ a
2

. ~. (4 a-.2c)"". a-2c ~.]ad e -- ---Vw + +-- -vp ----vE (ll)
4 c(c-a) c a-c

Fe <0.

S~d in equation (2) is the additional source tenn for

QUICK scheme. When the additional source tenn
S~d=O, equation (2) with (3)-(9) becomes a standard

first order implicit upwind difference scheme as given in
reference (I]. To adopt the QUICK difference scheme for
a non-unifonn staggered grid system, an additional
source tenn is calculated

where

---, b'Yn
I
I

---uE
I
I

----1 0's

W
1
I
L_

y,v ,

L L J
x,u s

104 Qx-w ...- ...

N

General differential equation (1) may be discretized
on the non-uniform staggered grids by integrating it over
the finite volume as shown· in Fig.1 and a general finite
difference equation is obtained:

• Fe [a - 2b. a - 2b. a2
.](Sad)e =- --<1>p +(4---)<I>E +--<1>EE (12)

4 b a-b b(b-a)

( • Fw [ _c2
• e-2d. c-2d .]Sad)w =- --<1>ww -(4---)<t>w -_.-<1>p (13)

4 d(d-c) c-d d

Fw <0,

In the above equation,

aE =De + ~- Fe , Oil
aw =VII' +I Fw , 0IJ
aN =Dn +1- Fn , 01]

as = Ds +I Fs ' 01]

b =Sc!lxAy + a~<1>~

ap = aE + aw + aN + as - Sp!!iXAy

o pj.IixAy
ap =

tit

(3)

(4)

(5)

(6)

(7)

(8)

(9)

• Fw [e - 2a. e - 2a. c2
• ](Sad)w =- --<I>W -(4+-.-)<1>p ---<1>E (14)

4 e-a a (a-e)a

(S• ) - Fn [ a
2 ~. (4· a-2c)"". a-2c~.]ad n -- ---vs + +-- ....p ----VN (15)

4 eec-a) c a-c

Fn <0,

• Fn [a-2b. a--2b. a 2
.](Sad)n =- --cf)p +(4---)<I>N +--cf)NN (16)

4 b a-b b(b-a)

• Fs [ - c2
• e - 2d • c - 2d .](Sad),f =- --<1>ss -(4---)<1>s ---<1>p (17)

4 d(d -c) c-d d

where <I>~ and p~ are those at time t, and ([>p, ([>E, ([>

W, ([>N, (/)s, etc. are those at time t+ Lit. Symbol

~A,BI] represents greater one of A and B. Flow rates

Fe' Fw , Fn and Fs through four faces of the control

(S• ) - F'.,. [c"'-2a~. (4+ c-2a)~. c2~. ]ad s -- ---vS - -- .... p ----vN(18)
4 c-a a (a-c)a
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where et> ·'s represent the current values of et>'s in an
iterative calculation process. Coefficients 0, h, c and d
are grid differences. For Eqs. (11)-(14), these are

. defined in Fig. 2 (a), and for Eqs. (15)-(18) in Fig. 2 (b).

x

x=o
(a)

4> ss et? s 4> p 4> N 4> NN

[ dC3~b .1 y

y=O
(b)

Fig. 2 Definition of0, h, c and d (d<c<O<a<b)

A special attention has to be paid for the boundary
control volumes. The method to deal with boundary
control volumes in this paper is different from Hayase's
one [21. A left-hand boundary control volume is taken
for example to explain how to deal with a boundary
control volume in this paper. When the flow rate
through the face of this left-hand boundary control
volume Fw<O, (S;d)w in Eq. (10) is still calculated by

Eq. (14). But, when this flow rate FW>O, (S;d)w here

should be set at 0, which is equivalent to an upwind
difference scheme herein.

Computed examples

Sample computations were performed for
different problems of laminar flow as follows:
(a) Flow in a square cavity with a moving lid.
(b) Axial symmetric flow in a straight tube with a

sudden- expansion of a tube diameter.
(c) Natural convection in a square cavity.
(d) Natural convection in a horizontal layer heated from

below.

Flow in a Square Cavity with a Moving Lid
The physical situation considered is shown in Fig.3

where the lid of the cavity slides with a constant velocity
Ulop above the cavity and other three sides are fixed.
The length of cavity edge is H. The fluid flow is
presumed to be a two-dimensional laminar flow with
constant physical properties.

Numerical computations were carried out for
Re=104(Re=UlopHIv). The dimensionless x-directional
velocity component U (=U/U10p) and the dimensionless y­
directional velocity component V (=vIU1op) are shown in
Fig. 4 for Re= 104

• This graph is quite similar to

The Reports of Institute of Advanced Material Study, Kyushu University

-3-

u=Utop
-..

U=O U=O
V=O V=O

H y,v

X,U

U=V=O

1-4 H
t-I

Fig. 3 Flow in a square cavity with a moving lid
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>
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Fig. 4 Centerline velocity profiles for flow in a
square cavity with a moving lid (Re=104

,

Q and P represent QUICK and power law
difference scheme, respectively)

>

Fig. 5 A graph re-plotted from Fig. 3(c) in reference (2)

(C, Q, H represent central, QUICK and hybrid
difference scheme, r~spectively)
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T bl 1 Th d· . Ia e e ImenSlOn ess re-attachment length Lld
Scheme Grid Re=50 Re=lOO Re=150 Re=200

I'unifonn) Ud=lO Ud=18 Ud=26 Ud=36
QUICK 25Xl6 2.3324 4.5624 6.8048 9.0594

200X 10(J 2.3538 4.5772 6.8133 9.0509
UDS 25X 16 2.1899 4.2518 6.3367 8.4332

200 X 100 2.3329 4.5195 6.7399 8.9528
HDSl4J 25X 16 2.15 4.20 6.26 8.34
QUICK[4] 25X 16 2.20 4.32 6.45 8.60
ExperimentPJ 2.2 .........2.4 4.3"-4.6 6.5 .........6.8 8.8.........9.2

Xp

Xw

QUICK [4] and HDS [4] (hybrid difference scheme) were
obtained by Pollard and Siu [4] by a QUICK scheme and a
hybrid difference scheme. Experiment. [5] was obtained
by Macagno and Hung [5]. It should be noted that
Macagno and Hung (5] presented the results in a graph.
In Table 1, the data are presented with ranges, which
were read from Fig.IO of Reference [5]. The QUICK
scheme listed in Table 1 appears to be the most reliable
among various schemes, because the computed results
with 25 X 16 grids are very close to the ones obtained
with finer grid, 200 X 100.

Fig. 7 Scheme for calculation ofre-attachment length

In Table I, the present computational results with a
QUICK scheme agree well with the experimental results.
However, the QUICK scheme by Pollard and Siu gives
smaller results(5%) than the present ones with QUICK.
One possible reason is that an interpolation method to
calculate the re-attachment length may be different each
other (Pollard and Siu (4] didn't describe their scheme).
In the·. present report, the re-attachment length was
calculated by the following way. Let Wand P in Fig. 7
be inner nodes adjacent to the pipe wall, and the x­
directional velocity Uw<0 at point Wand UrO at point
P. The re-attachment length was calculated by the
linear interpolation as follows.

Natural Convection in a Square Cavity
The physical situation, shown in Fig. 8, is a two­

dimensional square cavity with a vertical wall
isothermally heated, and an opposing wall isothermally
cooled at a lower temperature, and horizontal top and

----~ X

Fig.3(c) of Reference [2], where presented are the
centerline velocity profiles obtained by Hayase et al. [2J

and Ghia et al.(3] using a QUICK and a central difference
scheme with uniform grids of20 X 20, 80 X 80 and 257 X

257. The profile obtained by Ghia et al. using a central
difference scheme with 257. X 257 grids may be
considered as the most reliable result for comparison. It
is shown in Figs. 4 and 5 that the present computational
results agree with those by Hayase et al. [2]. We can
note from Figs.4 and 5 that the QUICK scheme appears
to be more reliable than other schemes. For example
the profile obtained by a QUICK scheme with 20 X 20
grids is closer to the standard profile than any other
schemes. The profile obtained by a QUICK scheme
with 80 X 80 grids is almost identical to those by the
central difference scheme by Ghia with 257 X 257 grids.

Fig. 6 Axial symmetric Flow in a Straight Tube with
Sudden- Expansion of a Tube Diameter

Axial Symmetric Flow in a Straight Thbe with
Sudden-Expansion of a Thbe Diameter

Fig. 6 shows a schematic of the flow in a straight
pipe with sudden-expansion of a tube diameter. Fluid
with an average velocity Uoat the inlet with a diameter d
enters a straight pipe with a diameter D. The diameter
ratio (diD) is fixed at 0.5. ·As seen from the diagram,
the flow is assumed symmetric in terms of the axis ofa
tube and fully developed at the further downstream.
The length of calculation domain in the stream-wise
direction was taken as four times the re-attachment length.
For example Vd was fixed at 10 for the case of Re=50
(Re=Uod/ v), which was found to be of sufficient length
such that the exit boundary conditions had almost no
effect upon the re-attachment distance.

The boundary conditions are as follows:
(a) At the inlet, velocity profile is parabolic.
(b) At the outlet, au/ax = 0, V = O.

(c) At the wall boundary, U = 0, V = O.

(d) At the symmetric axis, au /Or =0, V =0 .

The dimensionless re-attachment length L,Id
determined by various difference schemes are shown in
Table 1, where QUICK and UDS (upwind difference
scheme) are obtained by the present work by a QUICK
scheme and an upwind difference scheme, respectively.

The Reports of Institute ofAdvanced Material Study, Kyushu University Vol. 12, No. I, 1998

-4-



*Q=by a QUICK scheme, P=by a power law scheme

5040
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I'

20 30

Dimensionless TIme

Fig. 9 Transient responses of the average Nusselt
number ofnatural convection in a square cavity

(Ra=5 X lOS, Pr=0.025, 55 X 55 non-unifonn grids)

~ =:::r=v__x-=,~u ~_!__EJ::~-o
o T =T" U = V = 0 A=4

L

T=Tc u=v=o

Fig. 10 Natural convection in a horizontal layer
heated from below

and the maximum y-directional dimensionless velocity
component V (=vH/a) at a horizontal center-line. From
Tables 2 and 3 the numerical solutions obtained using a
QUICK &cheme are similar with those using a power law
scheme.

The transient response of the average Nusselt
number at Pr=0.025 and Ra=5x10s is shown in Fig.9.
The average Nusselt mumber computed using a power
law scheme gives a constant value after dimensionless
time F=20. On the other hand the one obtained using a
QUICK scheme is oscillatory. Natural convection of.
the low-Prandtl number fluid has been known to be
oscillatory and the above·solution by a power law scheme
may not be correct. Thus we can conclude that the
QUICK scheme is better than the power law scheme at
least for solving the convection of low-Prandtl number
fluid. This agrees with the results by Tagawa and Ozoe
[6J who used a Utopia scheme.

Natural Convection in a Horizontal Layer Heated
from Below

The schematic. is shown in Fig. I0 for the present
system. This has been called as a Rayleigh-Benard type
natural convection. The layer is heated from below at
Thand cooled from above at Tc (Th>TJ. Both flow and
temperature were assumed to be symmetric in tenns of
the vertical boundaries. The aspect ratio A (horizontal
length L/height H) of the domain is set to 4.

T=Tc

U=V=O

g

x,u

Table 2 Computational results for natural convection
4

Table 3 Computational results for natural convection
6in a square cavity at Ra=IO and Pr=0.7

lBench Grid 20x20 40x40 80x80
lmark(7J 0 p 0 p Q p

Nu 8.903 10.297 10.495 9.411 9.410 8.973 8.970

Numax 18.562 19.323 19.979 20.430 20.662 18.683 18.693

(YID)max 0.045 0.025 0.025 0.038 0.038 0.031 0.031

NUmi" 1.002 0.833 0.832 0.922 1.06J 0.965 1.006

(YID)mill 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Umox 64.940 68.828 ~8.633 ~7.357 06.930 ~5.639 ~5.493

(YID)max 0.850 0.875 0.875 0.863 0.863 0.856 0.856

Vmax 221.29 240.13 ~38.24 1224.68 ~23.13 1218.26 1218.09

I/XID)mnr 0.040 0.025 0.025 0.038 0.038 0.031 0.031

in a square cavity at Ra=IO and Pr=0.7
lBench Grid 20X20 40x40 80X80
mark(7) 0 p Q p Q p

Nu 2.238 2.301 2.299 2.259 2.258 2.248 2.247

Numax 3.527 3.720 3.726 3.579 3.580 3.541 3.542

(YID)mar 0.143 0.125 0.125 0.138 0.138 0.144 0.144

NUmi" 0.586 0.576 0.586 0.583 0.586 0.585 0.585

(yID)min 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Umax 16.178 16.260 16.134 16.160 16.129 16.183 16.152

(YID)mnr 0.823 0.825 0.825 0.813 0.813 0.819 0.819

Vmax 19.643 19.632 19.525 19.624 19.598 19.626 19.602

WD)mnr 0.119 0.125 0.125 0.113 0.113 0.119 0.119

bottom boundaries are thennally insulated.

aT =0 u=v=Oay ,

H T =Th y,v

U=v=O

aT =0 U=v=Oay ,
I ~ H .. )

Fig. 8 Natural convection in a square cavity

Sample computations were carried out for Pr=0.7
and 0.025. The computational details, including non­
unifonn grids, are equal to those by Tagawa and Ozoe[6J
except the numerical method and dimensionless
equations.

The average Nusselt numbers and pertinent
computed details at Pr=O.7 are listed in Table 2 for
Ra=104 and in Table 3 for Ra=106

• In these tables, Q
and P represent the results obtained using a QUICK
scheme and a power law scheme, respectively. Umax and
Vmax represent the maximum x-directional dimensionless
velocity component U (=uH/a) at a vertical center-line
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QUICK scheme. The computations were carried
out for four typical problems using various
difference schemes and the results obtained are
compared with those in available literatures.
The conclusions are as follows:

(1) A QUICK scheme gives similar result
with other difference schemes for the
steady laminar natural convection.

(2) A Quick scheme gives. the result in much
less grid dependence than those such as
a central difference scheme, an upwind
difference scheme, a power law scheme
and a hybrid difference scheme for the
forced convection problems.

(3) A QUICK scheme appears to be suitable
to study the oscillatory convection like
that of the low-Prandtl number fluid.
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Fig. 11 Transient responses of the average Nusselt
number of Natural convection in a layer
heated from below (Ra=5 X 103

, Pr=O.OI,
200 X 50 uniform grids)

The computations were carried out for Ra=5 X 103

and Pr=O.O 1 using a QUICK scheme and a power law
scheme with uniform grids 200 (x-direction) X 50 (y­
direction). The transient responses of the average
Nusselt number are shown in Fig. 11, in which Q and P
represent results by a QUICK scheme and a power law
scheme, respectively. For the same case, the
computations were performed by Ozoe and Hara [8] with
201 X 51 grids. The average Nusselt number obtained
using a power law scheme agrees with that by Ozoe and
Hara using a central difference scheme at about Nu =1.27 •

Their calculation gave oscillatory result at Ra=6000 or
more. The present result with a QUICK scheme gives
an oscillatory value around Nu =1.68 at Ra=5000.
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Ozoe and Hara[8] reported that the average Nusselt
number differs extensively depending on the number of
roll cells. Number of roll-cells also depends on the
magnitude of the grids. Thus, these discrepancies may be
clarified with much more detailed computations in future.
In any case, a QUICK scheme would provide more
reasonable results for the dynamic convection system like
a low-Prandtl number convection.

Conclusion

This report presents a number of systems
computed with a' SIMPLE algorithm with a
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