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Numerical Analyses for Two-Phase Flow in a Vertical Cylinder

Sunao KUSU*, Kenya KUWAGI* and Hiroyuki OZOE

Two-dimensional computational model for two-phase flow in a vertical cylindrical tank was

derived andcomputed successfully. The height ofa cylinder is 8 cm and the diameter ofa cylinder

is 16 cm. Air was injected through a glass filter located at a bottom center of a water tank.

Computational mo~l is based on a dispersed mo~l after Kataoka and Tomiyama Effect of

computational grid sizes and the boundary condition at a top surface of water are studied

Computed results are compared with flow visualized experimentalresults and confrrmed that the

rigid surface condition is better than free slip condition.

Introduction

The two-phase flow consisting of gas and liquid is
commonly encountered in many industrial processes
and its transport phenomena is quite important to be
clarified for a ~sign of related chemical plant such as
bubble columns, gas/licpid contact processes and
two-phase flow in a duct. However, two-phase flow
consists of various levels of mixing of gas and liquid
Two extreme cases are either that gas is a continuous
phase or that liquid is a continuous phase. In between
these two extreme cases, many different levels of
dispersed states exist for both gas and liquid phases.
Because of these complicated states, the establishment
of mathematical model equations for two-phase flow is
quite behind to that for single phase flow problems.
In the present report, we treat the system which
consists ofwater as a continuous phase and air bubbles
as a dispersed phase. There are many mathematical
models proposed even for this simple flow system but
we employ the dispersed flow mo~l in this report as
follows.

Nomenclature

= drag coefficient
= lift force coefficient
=d/ro
= diameter of a bubble
= acceleration coefficient due to gravity
= height of liquid surface
=p/Po
= pressure
== reference pressure

[-]
[-]

[-]

[m]
[m/s2

]
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[-]
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Q = injected gas flow rate [m3/s]
R =r/ro [-]

r = radial coordinate [m]
ro = reference length [m]

re = radius of gas injection hole [m]

rOllt = radius of a tank [m]
Re = Reynolds number of a gas bubble [-]

t = time [sec]
to = reference time [sec]
U =u/uo [-]
u = radial velocity [m/s]

Uo = reference velocity [m/s]
V =v/uo [-]

v = vertical velocity [m/s]
v, = slip velocity (= Vg-v,) [m/s]
W =w/uo [-]

w = inlet velocity of gas [m/s]
Z =z/ro [-]

z = vertical coodinate [m]

ag = void fraction (gas hold-up) [-]

J1 = viscosity [Pa· s]
v = kinematic viscosity [m2/s]
p = density [kg/m3

]

p* = Pt/ Pg [-]

Subscripts
g = gas phase
k = gas phase(k = g) or liquid phase(k = I)

1 = liquid phase
r = r-component

Model System

The system considered is shown in Fig. 1. It is a
vertical cylinder whose height is 8 cm and its diameter
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In the present work, the dispersed morei was
employed since the dispersed bubbles are not affected by
the pressure gradient of separate gas bubbles and this
model appears to be mostly sound from physical point
of view.

Following assumptions were adopted.
1. There is no phase change between gas and liquid.
2. Densities are constant for both gas and liquid.
3. Flow is axially symmetric two-dimensional in a

vertical cylinder.
4. Both gas and liquid are at equal temperature.
5. There is no collision or break-up of bubbles.

The mathematical model equations are as follows in
dimensionless variables.

Equation of continuity

Fig. 1 Schematics of the system of two-phase flow in
a vertical water tank. Shaded area is modeled.

Momentum equation for liquid in the radial
direction

Momentum equation for liquid in the vertical
direction

Momentum equation for gas in the radial
direction

rout

u

o rer

Fig. 2 A vertical side view of the modeled area with
coordinates and velocity components.

is 16 cm with a gas inlet hole of2 cm diameter. Water
is filled up of this cylinder and air is injected though a
glass filter of 2 cm diameter inlet at a bottom center.
Figure 2 shows a vertical side view ofthis cylinder with
a coordinate system and schematics of the bubble
dispersed region in the center.

Morel equations for two-phase flow are either a
one-pressure morel (equal pressure both for gas and
liquid) or a two-pressure morel (different pressure for
gas and liquid). The one-pressure morel has been
known to be mathematically unstablel} and gives
multiple solutions for a single initial condition.
However, such refects are also known to be stabilized
by viscous forces or virtual mass forces2

). Two
pressure morel is mathematically souncf) and the
dispersed morel does not have the pressure gradient
term4).

h~J--------:1
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Momentum equation for liquid in the vertical
direction

In the above equations following values or
equations were adopted. Following Drew and Lahey5),

lift force for a single spherical gas bubble was
presumed.

CL = 1/2

Following Stokes and Schiller Naumann6
) ,

For gas

Ug =0 at Z=O, R=O, Rom
dUg

at Z=H-=0
dZ

V =0 at Z=O, R= Rc - Rolltg

~=W at Z=O, R=O - Rc

d~
at R = 0, Rout-=0

dR
d~

at Z=H-=0
dZ

For void fraction of gas

a g=0 at Z=O (R = Rc - Rout)

a g=ain at Z=O (R=O - RJ
dag

at R=O, Rollt-==0
(JR

(Jag
at Z=H--=0

iJZ

where Re is based on a bubble. The above equations

are based on the following dimensionless variables.

R =rlro, Z ='liro, Db =dIro, Ut == uelUo, Vt == viuo,

Ug== uiuo, Vg = vg!uo, W =w/Uo, 't =tlto, P = p/po,

p* =p/pg, ro=(v /Ig) 113, Uo=(gV,)1I3, to =(v192)1/3,

Po =Pt(gv t)2/3.

{

24/Re

CD = 24 (1+O.15Reo.68
')

Re

at Re:::;; 2,

at Re>2,

Above simultaneous partial differential equations
were approximated by HSMAC finite difference
equations and numerically solved with first orrer
upwind scheme for inertial tenns, otherwise second
orrer central difference scheme. The computational
region was divided by a staggered grid system as shown
in Fig. 4 (a) 24x24 and (b) 96x80 in radial and axial
directions.

oU,
-=0 V,=Oaz '
aUg aVg aa.g
-=0 -=0 -=0
iJZ ' az ' az

Initial conditions are as follows.

Ut=Vt=O

Ug =Vg =0
ag =0
a,=O

Boundary conditions are as follows and these are
listed in Fig. 3.
For liquid,

U,=O

av,=O
aR
Ug=O

aVg =0
oR
oag-=0oR R=Rc

U,=o

V,=O

Vg =0

aVg-=0aR
ang--=0oR

Ut =0 at R=O, Rollt ' Z=O

dUt =0 at Z=H
iJZ
l't == 0 at R =Row' Z =0, H

d\'e = 0 at R=O
dR
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Ut = 0 , V1 =0 , Ug =0

Fig. 3 Summary of the boundary conditions adopted for
the right hand side of a vertical cylinder.
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Computed Results

Computations were canied out for following
conditions. Diameter of bubbles was assumped to be
uniform and 1 mm, i. e., d= 1[mm]. Inlet gas flow
rate was assumed to be Q = [100 ml/min] with the
oonsity Pg = 1.161 [kg/m3

]. Physical properties of
water are as follows.

(b)

(c)

(a)

Fig. 6 Computed result with grid numbers of 96X80.

(a) Liquid velocity vectors
(b) Contours for stream function
(c) Computed profile of void fraction
(d) Visualized vortex with aluminum powderdispersed

[kg/m3
]

[Pa's]

[m 2/s]

(b)

Pt =998.2

J.lt =1.002xl0-3

Vt = lxl0-6

(a)

Fig. 4 Grid allocations.
(a) 24x24, (b) 96x80

(a) (b) (a) (b)

(c) (d)

Fig. 5 Computed result with grid numbers of 24x24.
(a) Liquid velocity vectors
(b) Contours for stream function
(c) Computed profile of void fraction
(d) Visualized vortex with aluminum powder dispersed

(c) (d)
Fig. 7 Computed result with grid numbers of 96x80
with rigid boundary on the top surface of water layer.

(a) Liquid velocity vectors
(b) Contours for stream function
(c) Computed profile of void fraction
(d) Visualized vortex with aluminum powder dispersed
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Figure 5 shows converged result with 24x24 grids
for right halfregion of a cylinder. Figure 5 (a) shows
velocity vectors of liquid with the maximum value of
9.99. There is a strong ascending flow due to the
buoyancy for bubbles along the axis of a cylin~r(left

hand side ofpicture (a) ). Figure 5 (b) shows contour
maps ofstream function to represent steady state streak
line with the value between -9.1SxI05 to 1.74xl05

•

There is a strong circulation vortex near the top and
right hand si~ of a cylin~r. Figure 5 (c) shows
contour maps of void fraction computed. Bubbles are
dense near the central bottom area. Figure 5 (d) shows
corresponding flow visualization picture with
aluminum powder dispersed. General flow modes are
in agreement between computed contours of stream
function and the photograph but not enough on the
detailed shape and locations of the vortex.

Figure 6 shows corresponding results with radial
and vertical grid numbers of 96xSO. Magnitu~ and
location of a vortex in Figs. 6 (a) and (b) agree quite

'well with the experimental picture, Fig. 6 (d).
These two results of Figs. 5 and 6 are for free slip

condition on the water surface. Further computation
was carried out for rigid condition on the water surface
as shown in Fig. 7. Even a small vortex on the upper
right hand corner could have been simulated which is
similar to the photograph. This means that the
boundary condition ofrigid wall is better than free slip
condition.

Conclusion

Two-dimensional dispersed flow model in a vertical
cylin~r was ~rived and numerically computed with
both coarse and minute grid sizes. The results with
minute grid sizes and with the rigid top surface for water
gave quite reasonable solutions for the.size and location
of a vortex in water in comparison with the
experimental result.
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