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1 Problem

On-chip caches have been playing an important role
in achieving high performance processors. In particu-
lar, much higher performance is required for instruction
caches because one or more instructions have to be is-
sued on every clock cycle. In other words, from energy
point of view, the instruction cache consumes a lot of
energy. Therefore, it is strongly required to reduce the
energy consumption for instruction-cache accesses.

In direct-mapped instruction caches, tag comparison
and data read are performed in parallel. Thus, the total
energy consumed for a cache access has two factors: the
energy for the tag comparison and that for the data
read.

Cache subbanking is one of approaches to reduc-
ing the data-access energy: the data-memory array is
partitioned into several subbanks, and only the sub-
bank which includes the desired data is activated [1].
We have calculated the energy consumption for a 16
KB direct-mapped cache based on Kamble’s model [1].
Note that the energy for I/O drivers and address de-
coder is not included in this calculation. As a result, it
has been observed that increasing the number of sub-
banks reduces a lot of energy for the data memory.
Since the tag-access energy is maintained, however, the
effect of the tag comparison becomes a significant fac-
tor on the total energy consumption. In fact, where
the subbank width is the same as the processor-word
width, the energy consumed for the tag-memory ac-
cesses occupies about 30 % and almost half of total en-
ergy in 32-bit and 64-bit microprocessors, respectively.

2 Solution

There are many loops in programs, so that some in-
struction blocks will be executed in many times. We
call a run-time instruction block “a dynamic basic-
block”. The dynamic basic-block consists of one or
more successive basic blocks. The top of the dynamic
basic-block is addressed by a branch-target address,

and the end of it is addressed by a taken-branch or
jump address.

We consider where a dynamic basic-block is exe-
cuted in many times during program execution. On
the first execution of the dynamic basic-block, the tag
comparison for all instructions has to be performed.
However, on the second execution, if no cache miss has
occurred since the first execution, it is guaranteed that
the dynamic basic-block resides in the cache. At that
time, we can determine that the indexed cache entry
corresponds to the requested address without perform-
ing the tag comparison. We refer to the cache which at-
tempts to omit the tag comparison by exploiting the ex-
ecution history as history-based tag-comparison cache.
When a dynamic basic-block is executed, the history-
based tag-comparison cache attempts to avoid unnec-
essary tag comparisons by detecting the following con-
ditions: 1) the dynamic basic-block has been executed,
and 2) no cache miss has occurred since the previous
execution of the dynamic basic-block.

To detect the conditions, execution footprints are
recorded in a BTB (Branch Target Buffer). The foot-
print indicates whether the corresponding dynamic
basic-block resides in the cache. If a dynamic basic-
block left the footprint at the previous execution, then
the tag comparisons for current execution can be omit-
ted. All footprints are erased when a cache miss takes
place, because a dynamic basic-block (or a part of the
dynamic basic-block) might be evicted from the cache.
In addition, the execution footprints are erased on a
BTB replacement. Figure 1 depicts an organization of
the extended BTB. The following flags are added to
each BTB entry:

e RCT (Residing in Cache on Taken) 1-bit flag per
entry : This is an execution footprint for a dy-
namic basic-block, the top of which is addressed
by the corresponding target address. This flag is
set to 1 when the corresponding branch is taken,
and is reset to 0 whenever a cache miss or a BTB
replacement occurs.
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e RCN (Residing in Cache on Not-taken) 1-bit flag
per entry : This is an execution footprint for fall-
though instructions. This flag is set to 1 when the
corresponding branch is not-taken, and is reset to
0 whenever a cache miss or a BTB replacement
occurs.

In addition, a flag to enable the tag comparison in the
cache is required:

e TCO (Tag-Comparison Omit) 1-bit flag : This flag
indicates whether the tag comparison can be omit-
ted. If this flag is 1, the tag comparison is not
performed. On every BTB hit, the correspond-
ing execution footprints (i.e., the RCT flag or the
RCN flag) is stored to the TCO. Which execution
footprint has to be selected depends on the branch-
prediction result (the RCT flag on taken, and the
RCN flag on not-taken). The TCO flag is reset
to 0 whenever a cache miss or a BTB replacement
occurs.

Since the TCO is not on cache critical-paths, there is
no cache-access-time overhead in the history-based tag-
comparison cache.

3 Evaluations

We have measured the total count of tag com-
parison required for program execution. The SPEC
CPU benchmark programs are executed using the Sim-
pleScalar simulator [3]. We have modified the simulator
to implement the history-based tag-comparison cache.
In this simulation, the following configuration is as-
sumed: cache size is 32 K bytes, cache-line size is 32
bytes, the number of direct-mapped BPT entry is 2048,
the number of BTB set is 512, the BTB associativity
is 4, the RAS size is 8.

Benchmark H C-TC ‘ IL-TC ‘ H-TC ‘ HIL-TC ‘
099.go 1.000 0.3203 0.7604 0.2378
124.m88ksim 1.000 0.3302 0.4217 0.1361
129.compress 1.000 0.3528 0.1751 0.0706
126.gcc 1.000 0.3343 0.6810 0.2278
130.11 1.000 0.3515 0.4500 0.1684
132.ijpeg 1.000 0.2992 0.1062 0.0311
134.perl 1.000 0.3436 0.6643 0.2249
147 .vortex 1.000 0.3213 0.8838 0.2837
102.swim 1.000 0.2957 0.0623 0.0278
107.mgrid 1.000 0.2600 0.0008 0.0002
110.applu 1.000 0.2657 0.0252 0.0070
125.turb3d 1.000 0.2813 0.0849 0.0266
141.apsi 1.000 0.2801 0.1050 0.0307

Table 1 shows the simulation results. All results
for each program are normalized to the conventional
tag-comparison cache (C-TC), in which the tag com-
parison is performed on every access. The interline tag-
comparison cache (IL-TC), which is another approach
to omitting the tag comparison [2], performs the tag
comparison only when two successive instructions re-
side in the same cache line (the tag comparison for
the later instruction is omitted). The combination of
the IL-TC and our history-based tag-comparison cache
(H-TC) is also evaluated, which is denoted as HIL-TC
(history-based interline tag-comparison cache).

Since there are many incremental accesses in al-
most all programs, IL-TC works well for all programs.
While the effectiveness of the realistic history-based
tag-comparison cache (H-TC) is application depen-
dent, because the cache exploits iterative execution in
programs. H-TC produces better results than IL-TC
for two integer programs, 129.compress and 132.ijpeg,
and for all floating-point programs. In particular, the
cache reduces almost equal to or more than 90 % tag
comparisons for the floating-point programs, 102.swim,
107.mgrid, 110.applu, 125.turb3d, 141.apsi. In addi-
tion, it can be seen from the simulation results that
the combination of our history-based approach and the
interline approach makes a significant reduction for the
tag comparison.
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