
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A High-Performance/Low-Power On-Chip Memory-
Path Architecture with Variable Cache-Line Size

Inoue, Koji
Department of Computer Science and Communication Engineering, Kyushu University

Kai, Koji
Institute of Systems & Information Technologies

Murakami, Kazuaki
Department of Computer Science and Communication Engineering, Kyushu University

https://hdl.handle.net/2324/7646

出版情報：IEICE transactions on electronics. E83-C (11), pp.1716-1723, 2000-11-25. 電子情報通
信学会
バージョン：
権利関係：



1

PAPER

A High-Performance/Low-Power On-chip Memory-Path
Architecture with Variable Cache-Line Size

Koji INOUE†, Koji KAI††, Nonmembers, and Kazuaki MURAKAMI†, Member

SUMMARY
This paper proposes an on-chip memory-path architecture

employing the dynamically variable line-size (D-VLS) cache for
high performance and low energy consumption. The D-VLS
cache exploits the high on-chip memory bandwidth attainable
on merged DRAM/logic LSIs by replacing a whole large cache
line in one cycle. At the same time, it attempts to avoid frequent
evictions by decreasing the cache-line size when programs have
poor spatial locality. Activating only on-chip DRAM subarrays
corresponding to a replaced cache-line size produces a significant
energy reduction. In our simulation, it is observed that our pro-
posed on-chip memory-path architecture, which employs a direct-
mapped D-VLS cache, improves the ED (Energy Delay) product
by more than 75 % over a conventional memory-path model.
key words: cache, low power, variable line-size, merged
DRAM/logic LSIs, high bandwidth

1. Introduction

Integrating a main memory (DRAM) and processors
into a single chip, or a merged DRAM/logic LSI, makes
possible to exploit the high on-chip memory bandwidth
provided by widening on-chip bus and on-chip DRAM
array. This approach is well known as a good solution
to break the memory wall problem [6][8]. Although the
high on-chip memory bandwidth improves data transfer
ability, still we will have a performance-gap problem be-
tween recent GHz high-speed processors and low-speed
DRAM. Thus, we believe that it will be needed to em-
ploy high-speed on-chip caches even if the main memory
and the processors are integrated.

For merged DRAM/logic LSIs having cache mem-
ory, we can exploit the high on-chip memory bandwidth
by replacing a whole cache line at a time[2][9][11]. This
approach tends to increase the cache-line size if we at-
tempt to exploit the attainable high bandwidth. A
large cache-line size gives a benefit of prefetching ef-
fect if programs have rich spatial locality. However, it
will bring the following disadvantages with poor spatial
locality:

1. a number of conflict misses will take place due to
frequent evictions,

Manuscript received
†Department of Computer Science and Communication

Engineering, Kyushu University, 6–1 Kasuga-koen, Kasuga,
Fukuoka 816-8580 Japan.

††Institute of Systems & Information Technologies /
KYUSHU, 2-1-22 Momochihama, Sawara-ku, Fukuoka 814-
0001 Japan.

2. as the result, a lot of energy at the on-chip DRAM
(main-memory) will be wasted by a number of
DRAM accesses, and

3. activating the wide on-chip bus and the DRAM
array will also dissipate a lot of energy.

Employing set-associative caches is a well known ap-
proach to avoid the first and second disadvantages, be-
cause it can improve cache-hit rates. Since increasing
the cache associativity makes cache access time longer,
however, it might worsen the memory system perfor-
mance. In addition, still we will have the third disad-
vantage.

In order to resolve all of the disadvantages with-
out cache access time overhead, we have proposed a dy-
namically variable line-size cache (D-VLS cache) archi-
tecture for merged DRAM/logic LSIs [3]. The D-VLS
cache can exploit the high on-chip memory bandwidth
by means of larger cache lines. At the same time, it
can alleviate the negative effects of the larger cache-
line size by partitioning the large cache line into mul-
tiple small cache lines (sublines). Activating only the
DRAM subarray(s) corresponding to the replaced sub-
line(s) makes a significant energy reduction for access-
ing to the main memory. Appropriate cache-line sizes,
or the number of sublines to be involved in cache re-
placements, are determined by special hardware assists
at run time. In the paper [3], we have evaluated only
the performance improvements achieved by the D-VLS
cache, and have compared it with conventional direct-
mapped caches having fixed various cache-line sizes and
a set-associative cache having a small cache-line size.
This paper focuses on the on-chip memory-path archi-
tecture employing the D-VLS cache, and compares it
with conventional set-associative caches having a large
cache-line size. In addition, we evaluate not only per-
formance but also energy consumption for accessing to
the on-chip main-memory.

The rest of this paper is organized as follows. Sec-
tion 2 briefly introduces the concept and organization
of a D-VLS cache. Section 3 presents some simulation
results and discusses the performance/energy efficiency
of the D-VLS cache. Section 4 describes related work.
Section 5 concludes this paper.



2

Main Memory

Cache

0 1 2 3

(c) Replace with a Maxmum Line

128-byte Line

(b) Replace with a Medium Line
Main Memory

Cache

0 1 2 3

64-byte Line

Legend

Main Memory

Cache

0 1 2 3
4

(a) Replace with a Minmum Line

Line
32-byte

data transfer 
occurs

no data transfer 
occurs

Fig. 1 Three Different Cache-Line Sizes on Cache Replace-
ments

2. Dynamically Variable Line-Size Cache

2.1 Concept and Principle

In the D-VLS caches, an SRAM (cache) cell array
and a DRAM (main memory) cell array are divided
into several subarrays. Data transfer for cache replace-
ments is performed between corresponding SRAM and
DRAM subarrays. Figure 1 shows the construction of
a direct-mapped D-VLS cache having three cache-line
sizes.

If programs have rich spatial locality, the D-VLS
cache chooses the largest cache-line size for cache re-
placements, as shown in figure 1 (c), in order to ob-
tain prefetching effects aggressively. In this case, all of
the DRAM subarrays and on-chip buses are activated.
Contrarily, if programs have poor spatial locality, the
cache attempts to reduce unnecessary evictions caused
by the large cache line by partitioning it into multiple
small cache lines (sublines). In this case, only a few
number of sublines are replaced, as shown in figure 1
(a) or (b). Activating the DRAM subarrays and the
on-chip buses corresponding to the replaced sublines
can reduce the energy consumption for accessing to the
main memory.

The construction of a direct-mapped D-VLS cache
having three cache-line sizes, which will be explained
in the next section, is similar to that of a conven-
tional 4-way set-associative cache having the smallest
cache-line size. However, the conventional 4-way set-
associative cache has four locations where a cache line
can be placed, while the direct-mapped D-VLS cache
has only one location. Since the D-VLS cache attempts
to avoid cache conflicts without increasing associativ-

reference-flag

Tag

MUX

Main Memory

D-VLS Cache

 Address Load/Store Data

Tag Index

MUX
Hit / Miss?

Data

32Bytes32Bytes 32Bytes 32Bytes

Processor

Line-Size 
Determinator

(LSD)

current 
line-size

next 
line-size

SA Offset

SA : Subarray

Line-Size
Specifier

(LSS)

Fig. 2 Block Diagram of a Direct-Mapped D-VLS Cache

ity, it can retain first cache-access time (i.e., cache hit
time) of conventional direct-mapped caches [3].

In summary, the D-VLS cache exploits effectively
the high on-chip memory bandwidth according to
the characteristics of memory-reference behavior, and
brings the following effects.

1. Performance improvements by achieving higher
cache-hit rate without cache access time overhead.

2. Energy reduction for main memory accesses by im-
proving cache-hit rate (i.e., decrease of the total
number of main memory accesses).

3. Energy reduction for main memory accesses by
selective on-chip DRAM activation according to
small cache-line sizes to be replaced.

2.2 Organization

The effectiveness of the D-VLS cache depends largely
on that how much the cache can choose adequate cache-
line sizes to the amount of spatial locality in programs.
The D-VLS cache optimizes its cache-line size based on
recently observed memory-reference behavior.

Figure 2 illustrates the block diagram of a direct-
mapped D-VLS cache with four subarrays. In case
that the subarray has 32-byte width, the candidates
of cache-line size are 32 bytes, 64 bytes, and 128 bytes.
The D-VLS cache has the following special hardware
for run-time line size optimization.

• A reference-flag bit per 32-byte cache line :
This flag bit records that whether the corresponding
minimum cache line has been referenced by the proces-
sor, or not, since it was filled into the cache.

• A line-size specifier (LSS) per cache-sector :
This specifies a cache-line size corresponding to the
cache-sector which is formed by SRAM subarray entries



INOUE et al: A HIGH-PERFORMANCE/LOW-POWER ON-CHIP MEMORY-PATH ARCHITECTURE WITH VARIABLE CACHE-LINE SIZE
3

having the same cache-index. The cache replacement is
performed according to the cache-line size specified by
the LSS.

• Line-size determiner (LSD) : On every cache
look-up, the LSD determines the state of the line-size
specifier (LSS) by using the reference-flag bits in the
referenced cache-sector and tag comparison results.

The detail of the D-VLS cache behavior and an
algorithm to optimize the cache-line size have been de-
scribed in [3].

3. Evaluation

In this section, we evaluate performance/energy effi-
ciency of the D-VLS cache. We refer to the conventional
caches and the D-VLS cache as follows †:

• Fix128 : a 16 KB conventional direct-mapped
cache having fixed 128-byte cache lines.

• Fix128W2 : a 16 KB conventional two-way set-
associative cache having fixed 128-byte cache lines.

• Fix128W4 : a 16 KB conventional four-way set-
associative cache having fixed 128-byte cache lines.

• Fix128double : a 32 KB conventional direct-
mapped cache having fixed 128-byte cache lines.

• D-VLS128-32 : a 16 KB direct-mapped dynami-
cally variable line-size cache having 32-byte, 64-
byte, and 128-byte cache lines.

For each cache, we measured cache-miss rates and
cache-replace counts for benchmark programs: three
programs from the SPEC92 benchmark suite with ref-
erence inputs, and seven integer programs with training
inputs and four floating-point programs with test inputs
from the SPEC95 benchmark suite [10]. In our simula-
tion, all programs are compiled by GNU CC with the
“–O2” option, and are executed on an Ultra SPARC
architecture. We have made a trace-driven simulator
for the D-VLS cache. The address traces as input of
the cache simulator have been captured by the QPT[1].

3.1 Simulation Results

Table 1 shows the breakdown of cache-replace
counts of the D-VLS cache having 32-byte, 64-byte,
and 128-byte lines (D-VLS128-32). The last line,
showed as “Ave. of Line Size”, means that the av-
erage cache-line size per cache miss. As cache re-
placements on conventional caches, Fix128, Fix128W2,
Fix128W4, Fix128double, are always performed with
128-byte lines, the average cache-line size is 128 bytes.

†It is assumed that all of set-associative caches employ
write-back policy and LRU algorithm for replacements.

On the other hand, the average cache-line size of the
D-VLS cache depends on the characteristics of memory
reference behavior in programs, because the cache at-
tempts to optimize its cache-line size according to the
amount of spatial locality.

In order to explain the results of the table 1, we
use figure 3 that is the simulation results for cache-
miss rate of the D-VLS128-32, and 16 KB conventional
direct-mapped caches each of which has one of 32 bytes
(Fix32), 64 bytes (Fix64), and 128 bytes (Fix128) fixed
cache-line size. For each benchmark, simulation results
are normalized to the miss rate produced by the con-
ventional cache with the best cache-line size. As shown
in figure 3, the best cache-line size is highly application-
dependent. In a number of benchmarks, however, the
D-VLS cache gives nearly equal or lower miss rates than
the conventional cache with the best cache-line size. For
example, we can see from figure 3 that 026.compress
seems to prefer smaller cache-line size for avoiding fre-
quent evictions. Table 1 shows that the D-VLS cache
attempts to use smaller cache-line size for 026.com-
press, and the average cache-line size is 34.69 bytes.
In contrast, the larger cache-line size gives a significant
improvement on 052.alvinn. In this case, the D-VLS
cache chooses aggressively larger cache-line size in or-
der to exploit the rich spatial locality, as shown in table
1, and the average cache-line size is 90.22 bytes.

Table 2 shows cache-miss rate of all benchmark
programs. For some programs, 052.alvinn, 134.perl,
147.vortex, 101.tomcatv, and 104.hydro2d, the D-VLS
cache can achieve almost all the same or lower miss rate
than the double-size conventional direct-mapped cache
(Fix128double). However, increasing associativity pro-
duces much better results. In average, the cache-miss
rate improvement produced by the conventional four-
way set-associative cache (Fix128W4) is about 68 %,
while that produced by the D-VLS cache is 28 %, from
the conventional direct-mapped cache having 128-byte
lines (Fix128).

3.2 Performance

3.2.1 Performance Model

Cache-miss rate is one of the most popular metric of
cache performance. As increasing cache access time
gives great impact to total execution time, however, we
use average memory access time (AMAT ) as perfor-
mance metric. AMAT is an average latency required
by the memory system to serve a memory reference
from the processor, and can be expressed as follows:

AMAT = HT + (MR × MP )

= HT + MR × 2 × (DRAMstup +
LS

Bandwidth
)

• AMAT：Average Memory Access Time [ns]



4

Table 1 Replace Counts with each Cache-Line Size of the D-VLS Cache

Line Size 026.compress 072.sc 052.alvinn 099.go 124.m88ksim 126.gcc 130.li

32 bytes 3,164,502 1,038,520 11,546,415 6,445,160 317,746 10,092,540 1,190,072

64 bytes 243,979 492,007 1,465,880 1,724,674 53,858 3,463,487 426,488
128 bytes 14,498 352,181 18,806,730 389,746 68,353 1,468,861 189,570

Ave. of Line Size 34.69 B 58.32 B 90.22 B 42.82 B 50.83 B 48.76 B 49.63 B

Line Size 132.ijpeg 134.perl 147.vortex 101.tomcatv 102.swim 103.su2cor 104.hydro2d

32 bytes 3,530,649 7,987,886 19,805,372 23,539,313 32,465,163 15,340,954 3,784,227
64 bytes 1,179,064 5,250,134 3,593,130 2,608,352 4,163,613 6,701,837 860,802

128 bytes 1,246,695 3,849,457 1,416,595 2,650,269 884,142 3,315,895 6,175,600

Ave. of Line Size 58.43 B 63.46 B 42.11 B 43.73 B 37.81 B 53.01 B 89.34 B

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

2.031 1.546 1.891 2.931 1.638

052.alvinn
101.tomcatv

102.swim
103.su2cor

104.hydro2d

N
o

rm
al

iz
ed

 M
is

s 
R

at
e

Floating-Point Benchmarks

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

N
o

rm
al

iz
ed

 M
is

s 
R

at
e

Integer Benchmarks

026.compress
072.sc

099.go
124.m88ksim

126.gcc
130.li

132.ijpeg
134.perl

147.vortex

1.792 1.775 1.633

D-VLS128-32
FIX128
FIX64
FIX32

Fig. 3 Cache Miss Rate of Direct-Mapped Caches

• HT：cache Hit Time [ns]

• MR：cache Miss Rate

• MP：cache Miss Penalty [ns]

• DRAMstup : DRAM start-up time [ns]

• LS : cache Line-Size [byte]

• Bandwidth : memory Bandwidth between the cache and
DRAM

Here, since merged DRAM/logic LSIs can provide
the high on-chip memory bandwidth, the MP becomes

Table 2 Cache Miss Rate with Large Cache-Line Size

Benchmark Fix128 Fix128 Fix128 Fix128 D-VLS
W2 W4 double 128-32

026.compress 0.1871 0.1755 0.1711 0.1634 0.1724

072.sc 0.0371 0.0285 0.0263 0.0276 0.0465

052.alvinn 0.0224 0.0087 0.0080 0.0175 0.0166
099.go 0.1024 0.0695 0.0302 0.0541 0.0638

124.m88ksim 0.0202 0.0045 0.0028 0.0068 0.0153
126.gcc 0.0611 0.0344 0.0254 0.0349 0.0526

130.li 0.0341 0.0203 0.0182 0.0226 0.0358
132.ijpeg 0.0244 0.0048 0.0036 0.0068 0.0175

134.perl 0.0542 0.0230 0.0105 0.0295 0.0286
147.vortex 0.0505 0.0292 0.0195 0.0307 0.0374

101.tomcatv 0.0633 0.0182 0.0062 0.0546 0.0578
102.swim 0.2612 0.3007 0.3137 0.1016 0.1419

103.su2cor 0.2600 0.0840 0.0242 0.2396 0.0758
104.hydro2d 0.0481 0.0217 0.0179 0.0259 0.0295

Ave. of
normalized 1.000 0.479 0.315 0.583 0.715
miss rate
to Fix128

to a constant time regardless of cache-line sizes. In this
evaluation, we assume that the DRAMstup and the

LS
Bandwidth are 50 ns and 10 ns, respectively. In addi-
tion, it is also assumed that all contents of the replaced
cache line are dirty. In other words, two DRAM ac-
cesses with a cache-line size, one for write-back and
one for fill, will take place on each cache miss.

3.2.2 Average Memory Access Time

In order to find cache-hit time of the conven-
tional caches, we have used the CACTI model† [13].
The CACTI estimates the cache-access time with a de-
tail analysis of several components, for example, sense
amplifiers, output drivers, and so on. Based on the
CACTI, we assumed that the cache-hit time of Fix128,
Fix128W2, Fix128W4, and Fix128double are 3.510 ns,
6.695 ns, 8.421 ns, and 4.115 ns, respectively.

A direct-mapped D-VLS cache does not have any

†In this simulation, we have assumed that the process
rule parameter, address width, and output-data width are
0.5 um, 30 bits, and 32 bits, respectively.



INOUE et al: A HIGH-PERFORMANCE/LOW-POWER ON-CHIP MEMORY-PATH ARCHITECTURE WITH VARIABLE CACHE-LINE SIZE
5

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

052.alvinn

N
o

rm
al

iz
ed

 M
is

s 
R

at
e

026.compress
072.sc 099.go

124.m88ksim
126.gcc

130.li
132.ijpeg

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

N
o

rm
al

iz
ed

 M
is

s 
R

at
e

Benchmark Programs

101.tomcatv
102.swim

103.su2cor
104.hydro2d

134.perl
147.vortex

Average

Fix128double
Fix128W4
Fix128W2
Fix128

D-VLS128-32

Fig. 4 Normalized Average Memory Access Time

cache-hit time overhead from a conventional direct-
mapped cache, because the hardware components to
optimize the cache-line size do not appear on cache
critical paths [3]. Thus, in this evaluation, we have
assumed that the cache-hit time of the direct-mapped
D-VLS cache (D-VLS128-32) is the same as that of the
conventional direct-mapped cache with 128-byte lines
(Fix128).

Figure 4 depicts the average memory access time
for benchmark programs. All results are based on the
cache-miss rates reported in the section 3.1 and the
cache-hit time from the CACTI. All results are nor-
malized to Fix128. Though increasing cache associativ-
ity (Fix128W2, Fix128W4) makes great improvement
of cache-miss rate, as showed in earlier, their average
memory access time are longer than that of the direct-
mapped cache (Fix128) due to long cache-hit time. The
D-VLS cache has no cache-hit time overhead, so that
its miss-rate improvement appears on the average mem-
ory access time directly. In average, the D-VLS cache
produces about 20 % performance improvement from
the direct-mapped conventional cache (Fix128). This
improvement is almost all the same as that achieved
by the double-size conventional cache having 128-byte
lines (Fix128double).

3.3 Energy Consumption for Accessing The On-chip
Main Memory

3.3.1 Energy Model

We believe that the energy consumption at the on-chip
main memory depends largely on that how much the
on-chip DRAM and the on-chip bus are activated. In
order to simplify this evaluation, we assume that the
on-chip DRAM does not consume any energy while it is
inactivated. This means that we do not consider the en-
ergy consumption for DRAM refresh. Thus, for on-chip
memory-path architectures with a conventional cache,
the energy consumption depends only on total number
of main memory accesses. In other words, only cache-
miss rates affect the energy consumption for main mem-
ory accesses. Since the D-VLS cache activates only the
DRAM subarrays corresponding to replaced sublines,
the energy consumption for accessing to the on-chip
main memory depends not only on cache-miss rates but
also on cache-line sizes (i.e., the number of sublines to
be involved in cache replacements). Accordingly, the
energy consumption at the on-chip main memory (E)
can be expressed as follow:

E =
∑

N

RepCount(n)× Esubarray × n/32bytes,

N = {n|n = 32bytes, 64bytes, 128bytes}.

Here, n is the cache-line size. Esubarray is the
energy consumption for two main memory accesses,
one for write-back and one for fill, to a 32-byte width
DRAM subarray. RepCount(n) means the total num-
ber of replace counts with cache-line size n. For the
conventional caches having 128-byte fixed lines, Fix128,
Fix128W2, Fix128W4, and Fix128double, there is no
energy consumption with 32-byte and 64-byte lines
(RepCount(32bytes) = 0, and RepCount(64bytes) =
0).

3.3.2 Energy Consumption

Figure 5 depicts the energy consumption for access-
ing to the on-chip main-memory. All results are normal-
ized to the conventional direct-mapped cache having
128-byte lines (Fix128). As explained earlier, the en-
ergy consumption for conventional caches depends only
on cache-miss rates. In average, the conventional four-
way set-associative cache (Fix128W4), which produces
the best cache-miss rate, reduces the energy consump-
tion about 68 % from Fix128. Although the cache-miss
rates of D-VLS cache are much higher than those of
Fix128W4, the cache also produces a significant ad-
vantage of energy consumption. By improving cache-
miss rates, the cache reduces the total number of main
memory accesses by about 28 %. In addition, about 57



6

0.00

0.20

0.40

0.60

0.80

1.00

1.20

052.alvinn

N
o

rm
al

iz
ed

 E
n

er
g

y 
C

o
n

su
m

p
ti

o
n

 (
E

)

Benchmark Programs

026.compress
072.sc 099.go

124.m88ksim
126.gcc

130.li
132.ijpeg

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Benchmark Programs

101.tomcatv
102.swim

103.su2cor
104.hydro2d

134.perl
147.vortex

Average

N
o

rm
al

iz
ed

 E
n

er
g

y 
C

o
n

su
m

p
ti

o
n

 (
E

) Fix128double
Fix128W4
Fix128W2
Fix128

D-VLS128-32

Fig. 5 Normalized Energy Consumption at On-chip DRAM
and bus

% energy reduction for activating the on-chip bus and
DRAM can be achieved by means of the variable cache-
line size (i.e., selective on-chip DRAM activation). The
total energy reduction is about 70 %.

3.4 Energy-Delay Product

In order to evaluate both of performance and en-
ergy improvements achieved by the D-VLS cache at
the same time, we compare the energy-delay products
of the proposed cache (D-VLS128-32) and the con-
ventional caches (Fix128, Fix128W2, Fix128W4, and
Fix128double). Figure 6 shows the calculation results.
Again, all results are normalized to Fix128.

We can see from figure 6 that the most effective
one of the conventional caches is the four-way set-
associative cache (Fix128W4). However, the advantage
of low energy consumption achieved by lower cache-miss
rate is negated by the slower cache access on Fix128W4.
Contrarily, the performance improvement given by the
first cache access on the 32 KB conventional direct-
mapped cache (Fix128double) is negated by the higher

0.00

0.20

0.40

0.60

0.80

1.00

1.20

052.alvinn

N
o

rm
al

iz
ed

 E
D

 P
ro

d
u

ct
 (

E
 *

 A
M

A
T

)

Benchmark Programs

026.compress
072.sc 099.go

124.m88ksim
126.gcc

130.li
132.ijpeg

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

Benchmark Programs

101.tomcatv
102.swim

103.su2cor
104.hydro2d

134.perl
147.vortex

Average

N
o

rm
al

iz
ed

 E
D

 P
ro

d
u

ct
 (

E
 *

 A
M

A
T

)

Fix128double
Fix128W4
Fix128W2
Fix128

D-VLS128-32

Fig. 6 Normalized ED Product (E × AMAT )

energy consumption caused by the higher cache-miss
rate and dealing with the 128-byte large-lines. Since
the D-VLS cache can avoid the frequent evictions with-
out access-time overhead, it does not have this kind
of negations. In average, the D-VLS cache produces
more than 75 % improvement of performance/energy
efficiency from Fix128.

4. Related Work

Saulsbury et al.[9] and Wilson et al.[11] discussed cache
architectures having large cache-line size (512 bytes)
with high on-chip memory bandwidth. They tried to
avoid frequent cache conflicts, occurred by the large
cache lines, by increasing cache associativity. As the
D-VLS cache resolves the conflict problem using vari-
able cache-line size, first access of direct mapped cache
can be maintained.

The cache architectures having run-time line-size
optimization mechanisms were proposed in [4] [5]
[12]. They focused on only performance improvement
achieved by the variable cache-line size. While our
goal is to bring out the potential ability of merged



INOUE et al: A HIGH-PERFORMANCE/LOW-POWER ON-CHIP MEMORY-PATH ARCHITECTURE WITH VARIABLE CACHE-LINE SIZE
7

DRAM/logic LSIs by solving the larger cache-line-size
disadvantages from both of performance and energy
point of view.

Ohsawa et al. [7] proposed some methods to re-
duce energy consumption of on-chip DRAM. They tried
to reduce energy consumption for DRAM refresh by
optimizing the DRAM refresh count. Against their
study, our interest is to make energy reduction at the
widen on-chip bus and DRAM by avoiding unnecessary
DRAM accesses for cache replacements.

5. Conclusions

In this paper, we have evaluated both of the perfor-
mance and energy consumption of an on-chip memory-
path architecture employing the dynamically variable
line-size (D-VLS) cache.

In our simulation, it is observed that a direct-
mapped D-VLS cache having 32-byte, 64-byte, and 128-
byte lines (D-VLS128-32) improves the average mem-
ory access time by about 20 %, compared with a
conventional direct-mapped cache with 128-byte lines
(Fix128). This improvement is almost all the same
as that achieved by a conventional double-size direct-
mapped cache with 128-byte lines (Fix128double). In
addition, the D-VLS cache can reduce about 70 % en-
ergy consumption for accessing to the on-chip main-
memory by reducing the total number of DRAM ac-
cesses and activating only DRAM subarrays corre-
sponding to optimized cache-line sizes. Finally, the
D-VLS cache improves the ED (Energy Delay) prod-
uct by more than 75 % from the Fix128. This im-
provement is about 10 % better than that of a conven-
tional four-way set-associative cache having 128-byte
lines (Fix128W4) which produces the best result of the
conventional caches.

This paper has not considered the energy consump-
tion for cache accesses. Moreover, we have assumed
that there is no energy consumption at the on-chip
DRAM while it is inactivated. In fact, some energy
should be dissipated for DRAM refresh operations. Ac-
cordingly, it is our future work to evaluate the total
energy consumption of whole on-chip memory-system.

Acknowledgments

We thank Hiroto Yasuura who gave us advice on lab-
oratory seminar. We also thank Mizuho Iwaihara
Kyushu Univ. and PPRAM project team. This re-
search was supportd in part by the Grant-in-Aid for
Scientific Research (A) contracts 09358005, 11308011,
and 12358002.

References

[1] Hill, M. D., Larus, J. R., Lebeck, A. R., Talluri, M., and

Wood, D. A., “WARTS: Wisconsin Architectural Research
Tool Set,” http://www.cs.wisc.edu/ l̃arus/warts.html, Uni-

versity of Wisconsin - Madison.
[2] Inoue, K., Koji, K., and Murakami, K., “High Band-

width, Variable Line-Size Cache Architecture for Merged
DRAM/Logic LSIs,” IEICE Transactions on Electronics,

Vol.E81-C, No.9, pp.1438–1447, Sep. 1998.
[3] Inoue, K., Koji, K., and Murakami, K., “Dynamically Vari-

able Line-Size Cache Architecture for Merged DRAM/Logic

LSIs,” IEICE Transactions on Electronics, Vol.E83-D,
No.5, pp.1048–1057, May 2000.

[4] Johnson, T. L., Merten, M. C, and Hwu, W. W., “Run-

time Spatial Locality Detection and Optimization,” Proc.
of the 30th Annual International Symposium on Microar-
chitecture, pp.57–64, Dec. 1997.

[5] Kumar, S. and Wilkerson, C., “Exploiting Spatial Local-
ity in Data Caches using Spatial Footprints,” Proc. of the
25th Annual International Symposium on Computer Archi-

tecture, pp.357–368, June 1998.
[6] Murakami, K., Shirakawa, S., and Miyajima, H., “Parallel

Processing RAM Chip with 256Mb DRAM and Quad Pro-

cessors,” 1997 ISSCC Digest of Technical Papers, pp.228–
229, Feb 1997.

[7] Ohsawa, T., Kai, K., and Murakami, K., “Optimizing the

DRAM Refresh Count for Merged DRAM/Logic LSIs,”
Proc. of 1998 International Symposium on Low Power Elec-
tronics and Design, pp.82–87, Aug. 1998.

[8] Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Kee-
ton, K., Kozyrakis, C., Thomas, R., and Yelick, K., “Intel-
ligent RAM (IRAM): Chips that remember and compute,”

1997 ISSCC Digest of Technical Papers, pp.224–225, Feb
1997.

[9] Saulsbury, A., Pong, F., and Nowatzyk, A., “Missing the

Memory Wall: The Case for Processor/Memory Integra-
tion,” Proc. of the 23rd Annual International Symposium
on Computer Architecture, pp.90–101, May 1996.

[10] SPEC (Standard Performance Evaluation
Corporation), URL: http://www.specbench.org/osg/cpu92,
http://www.specbench.org/osg/cpu95.

[11] Wilson, K. M. and Olukotun, K., “Designing High Band-
width On-Chip Caches,” Proc. of the 24th Annual Interna-
tional Symposium on Computer Architecture, pp.121–132,

June 1997.
[12] Vleet, P. V., Anderson, E., Brown, L., Baer, J., L., and Kar-

lin, A., “Pursuing the Performance Potential of Dynamic

Cache Line Sizes,” Proc. of 1999 IEEE International Con-
ference on Computer Design : VLSI in Computer & Pro-
cessors, pp.528–537, Oct. 1999.

[13] Wilton, S. J. E. and Jouppi, N. P., “CACTI:An Enhanced
Cache Access and Cycle Time Model,” IEEE Journal of
Solid-State Circuits, vol.31, no.5, pp.677–688, May 1996.

Koji Inoue was born in Fukuoka,

Japan in 1971. He received the B.E. and
M.E. degrees in computer science from
Kyushu Institute of Technology, Japan

in 1994 and 1996, respectively. He en-
tered Yokogawa Electric Corporation in

1996. In 1999, he joined Halo LSI De-
sign & Technology, Inc., NY, as a cir-
cuit designer. Currently he is a Ph.D. de-

gree in Department of Computer Science
and Communication Engineering, Grad-



8

uate School of Information Science and Electrical Engineering,
Kyushu University. His research interests processor and cache

architectures. He is a member of IPSJ.

Koji Kai received the B.E. and M.E.

degrees in computer science from Kyushu
University, Fukuoka, Japan, in 1989 and
1991, respectively. He has belonged to

Matsushita Electric Industrial, Co., Ltd.
since 1991. From 1966 to 2000, he was
working for Institute of Systems & Infor-

mation Technologies/KYUSHU as a re-
searcher. He is presently engaged in the
development of a system LSI at Mat-

sushita’s Information Technology System
LSI Development Center, Fukuoka, Japan. His research interests
include processor architectures, design methods of VLSI systems

and hardware/software co-design. He is a member of Information
Processing Society of Japan and IEEE Computer Society.

Kazuaki Murakami was born in

Kumamoto, Japan in 1960. He received
the B.E., M.E., and Ph.D. degrees in com-
puter science and engineering from Ky-

oto University, Japan in 1982, 1984, and
1994, respectively. From 1984 to 1987, he
worked for the Fujitsu Limited, where he

was a Computer Architect of the main-
frame computers. In 1987, he joined the

Department of Information Systems of
Kyushu University, Japan, and then was

an Associate Professor of the Department. Since 1996, he was an

Associate Professor of the Department of Computer Science and
Communication Engineering. He is currently a Professor of the
Department of Information Science. His original research area

was ILP (instruction-level parallel) processors, and in 1987, he
proposed one of the first superscalar architectures. His current
research focuses on the area of designing and exploiting new com-

puter systems based on advanced VLSI and parallel-processing
technologies. In 1994, he started PPRAM (Parallel Processing
Random Access Memory) project and is now leading the de-

sign and implementation of PPRAM chips. He is also work-
ing on another research project, called SmartCore, which aims
at developing an application-domain-specific, user-customizable

logic/processor core. He is a member of the ACM, the IEEE,
the IEEE Computer Society, the IPSJ (Information Processing
Society of Japan), and the JSIAM (Japan Society for Industrial

and Applied Mathematics).


