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Abstract

The progress of both digital signal processing tech-
nology and LSI process technology are key factors in
spreading digital media products in the market. System
LSIs which support the function of video and audio data
compresston are utilized in these systems. This paper
presents a case study on the development of an embed-
ded system LSI for MPEG-2 AAC (MPEG-2 Advanced
Audio Coding) decoder, based on a soft-core processor
and a programming language, called Valen-C. Design
results show that we can achieve cost reduction with-
out losing the performance by optimizing the datapath
width of the soft-core processor.

1 Introduction

In recent years, digital media products which utilize
video and audio compression technology became widely
used in the daily life. DVD (Digital Versatile Disc)
video players, digital VCRs (Video Cassette Recorder),
IRDs (Integrated Receiver Decoders) for digital broad-
casting are examples of these products. The progress of
both digital signal processing technology and LSI pro-
cess technology are key factors in spreading these kind
of products in the market. The MPEG-2 AAC (Ad-
vanced Audio Coding) coding/compression standard,
being capable to compress audio data at a high rate is
used in these products.

In this paper , we describe a design experience of
an embedded system LSI for MPEG-2 AAC decoder.
Our design method is based on a soft-core processor
and Valen-C language[1].

In the initial design phase, the designer designs a
system with a soft-core processor, RAM, ROM and
logic circuits. The application program is written in
Valen-C, in which the designer specifies the word length
of each variable required for accurate computation. Af-
ter verifying the functionality of the initial design, the
system designer can modify several parameters of the
soft-core processor, including the number of registers,
the datapath width and the instruction set. Thus, the
system designer can tune up the soft-core processor
until the system performance satisfies the design con-
straints.

This paper is organized as follows: Section 2
presents the software we used for our target system.
Section 3 presents our proposed design flow. In Section
4, we explain the variable size analysis of the source
program. Section 5 summarizes the compilation of the
program and the design of the soft-core processor. In
section 6, we evaluate the performance of the devel-
opped system. Section 7 concludes our paper.

2 MPEG-2 AAC Decoder

MPEG-2 AAC is a very efficient technology of audio
data compression. It was declared international stan-
dard by MPEG (Moving Picture Experts Group) at
the end of April 1997 as ISO 13818-7. MPEG-2 AAC
basically makes use of the signal masking properties of
the human ear in order to reduce the amount of data.
Doing so, the quantization noise is distributed to fre-
quency bands in such a way that it remains inaudible.

The source program of the MPEG-2 AAC Decoder
we used in our development is based on ARIB stan-
dard for BS digital broadcasting. Tables 1 and 2 show



respectively the specifications and the size of the pro-
gram.

Table 1. Program specifications

MPEG-2 AAC
(ISO/TEC 13818-7)
32KHz, 44.1KHz,
48KHz
5ch+LFE

coding method

sampling frequency

Maximum number
of channel signals
Bit stream format

AAC Audio Data
Transport Stream
Low Complexity

Profile

Table 2. Program list and size

name of the program | number of lines
config.c 381
copro.c 155
data tab.c 516
decdata.c 71
decoder.c 281
huffinit.c 71
huffdecl.c 102
huffdec2.c 675
huffdec3.c 100
hufftables.c 2733
intensity.c 89
portio.c 360
stereo.c 76
tns.c 228
trans.c 1055
window tab.c 1171
all.h 242
interface.h 182
port.h 55
tns.h 32
total 8575

3 Design Method

In order to design the MPEG-2 AAC decoder, we
proposed a new design flow for embedded systems.
Figure 1 shows the design flow of our system design
method. And figure 2 shows the tools used for each
design phase and its corresponding working flow. In

the initial phase of the system design, the target appli-
cation program of the embedded system is written in
Valen-C language, and compiled with the retargetable
Valen-C compiler [2]. In the other hand, we adopted
Bung-DLX as the soft-core processor [3].

Initial system LSI Target system LSI

fogic synthesis user:
ey defined
fayout design processor

System optimazatiol
soft-core .
processor | Change of
data word width
# of registers
instruction set
IMemoty size

MPEG-2.AAC
program

assembly
compiler code

Valen-C
Valen-C.

Figure 1. The design flow of MPEG-2 AAC
decoder

3.1 Valen-C and Retargetable Compiler

Valen-C is an extension of the C language, and it
is used to describe the source program of the embed-
ded system. The control structures in Valen-C, such
as if and while statements, are the same as C. How-
ever, the main feature of Valen-C is the specification
of the required bit length of each variable in the pro-
gram. In Valen-C, a programmer can appoint to each
variable the minimum bit length required for accurate
computation. Thus 1t becomes possible to reduce the
cost of the datapath and the size of the data memory.
This reduction also affects the power consumption in
the datapath and data memory. For instance, if vari-
ables x, y, and z require 12, 20 and 24 bits respectively,
the programmer can write int12x; int20y; int24z; in the
variable declaration.

3.2 Soft-Core processor

In processor design, the designer must determine the
number, the size, and sorts of hardware components,
called design parameters. The datapath width, the
number of registers, the kind of functional units, the
size of memories and the precision of ALUs are exam-
ples of design parameters.

A soft-core processor is a prototype of embedded
processor, which has some design parameters. The de-
signer can change the parameters for each application,
and then obtains a customized processor optimized for
the application. By using soft-core processors, develop-
ment of embedded systems becomes easier and requires
less time and effort.



Source program
(in C) Bung-DLX (in VHDL)

User defined Parameters)

source program
(inVaden-C)

S

~w
Af" *,

KS
Valen € conpiler

ROM Size=?|
RAM Size=?|
Assembly Code

# of execution
cycles=?

]
3
H
Machine Descriptiol i
Files 5
s
i
5

K

P

Design Cenipiier
Sy

e

Logic synthesis

Co-Verification
Evaluation

# of gates=?
Power consumption= ?

M lavayl | AVANTID
v

-

‘\‘

[=bAi

-,
Ra
e
»
0.5y m Standard cell librar Net LIST
.
N
N
N,

.

R Apolie | AvaNTL

Layout Data

Figure 2. The tools used in the design flow

In the design of our embedded system, we adopted
Bung-DLX as the soft-core processor. The main fea-

tures of Bung-DLX are as follows:

e Targeted for controller and low-to-middle class
embedded application.

e Serial nonpipeline architecture.

e Modifiability of an instruction set, datapath/ ad-
dress width and the number of registers.

e Load/store architecture.

e Implemented purely in VHDL of about 7000 lines
RTL code.

The designer can change the design parameters
by only modifying the parameters in the following
VHDL files: bungtypes.vhd, bunginstructions.vhd and
controltypes.vhd.

3.3 Design Flow

Our proposed design flow of MPEG-2 AAC decoder
consists of the following phases:

e Phase 1: The source program, which was originally
written in C, is rewritten in Valen-C language. In
this phase, the bit width of each variable, after
been analysed, is used. for instance, if the variable
a requires at most 14 bits, the programmer can
write intl4a; in the variable declaration.

e Phase 2: The soft-core processor is customized to
different soft-core processors by choosing different
design parameters such as the datapath width and
the address size of the data memory. All those
modifications are made in HDL level.

e Phase 3: The source program of the MPEG-2
AAC decoder is compiled for the customized soft-
core processors. Here we use the Valen-C com-
piler which generates the assembly code from the
source program and the design parameters of the
customized processor. As a result we get differ-
ent embedded systems from different customized
processors and assembly codes. At this point the
designer can estimate the size of both the data
memory and the instructions memory of each sys-
tem.

e Phase 4: We perform an evaluation of the systems
generated in phase 3. That is we check the num-
ber of execution cycles, the size of the memory,
the number of gates and power consumption. And



we evaluate the impact of the design parameters
on the system performance. Thus we can choose
the best embedded system that satisfies the de-
sign constraints among the systems we have made
in the previous phase.

4 Variable Size Analysis

We define the effective size of a variable as the small-
est size which can hold both maximum and minimum
values of that variable. In order to make good use of
Valen-C, the effective size of each variable in the source
program needs to be analyzed. The number and types
of the variables in MPEG-2 AAC decoder are as fol-
lows:

e Int: 352
e Unsigned: 21

e Pointers: 186

Long: 241

Long long: 29
e Short: 73
e Char: 16

In this paper we used two approaches to analyze the
effective size of variables.

4.1 Static Analysis

When the maximum value of an unsigned integer
variable & is npqz, the effective size of z, e(x), is given
as follows[4]:

e(r) = [logs(nmaz + 1)] (1)

For a signed integer  with a maximum value 1,
and a minimum value np;,, e(x) is defined as follows:

e(x) = [log,N]+1 (2)

where

N =

maX(|nmax| + 1a |nmzn|)

Tables 3 and 4 show the static analisys results of
effective size. In table 4, by analyzing the effective size
of arrays, which relatively require more memory, an
important decrease of the data memory in the system
can be expected.

Table 3. Analisys results (1)

effective size

number of variables

1 bit
2 bits
3 bits
4 bits
5 bits
6 bits
7 bits
8 bits
9 bits
10 bits
11 bits
12 bits

55
18
23
18
2

— = W N e O W

Table 4. Analisys results of the arrays

variable type | effective size
window long sin[1024] | long 23 bits
window long ksb[1024] | long 23 bits
window short sin[128] | long 23 bits
window short ksh[128] | long 23 bits
brx table[512] long 32 bits
tns table[2][16] long 32 bits
new bitrev2048[480] | short 10 bits
new bitrev256[56] short 7 bits
| zcos256[64] long 32 bits
| zsin256[64] long 32 bits
1 zc0s2048[512 long 32 bits
1 zsin2048[512] long 32 bits
sfb 48 1024[49] short 11 bits
sfb 48 128[14] short 8 bits
sfb 32 1024[51] short 11 bits
scale g[4] long 23 bits
q table[8192] long 23 bits




4.2 Dynamic Analysis

Static analysis is an efficient method to analyse the
effective size of variables. However, in many cases when
we can not know the assigned value of a variable un-
less we run the program, such as the case of loops,
static analysis becomes insufficient. As a solution to
this problem, we adopted also dynamic analysis in our
case study.

In dynamic analysis, we run the program and mon-
itor the values assigned to each variable. For this rea-
son, we use the function which monitors the variable
in the assignment statement. The factors of the moni-
toring function are the variable and its assigned value.
Figure 3 shows a part of the program used for dynamic
analysis.

short subgroup_inc;

subgroup_inc = 0;
for (j = 0; j < ncells[i]; j++)
{

subgroup_inc += cellsize[j] ;

short subgroup_inc;
subgroup_inc = 0;
for (j = 0; j < ncells[i]; j++)

subgroup_inc += cellsize[j] ;

}

Figure 3. An example of a program used for
dynamic analysis

The monitoring function checks the value assigned
to the variable and verifies the bit width required to
memorize it. After that, it keeps the bit width tem-
porarily in a table. Next, when the monitoring func-
tion checks the same variable with a different assigned
value, it compares the new bit width with the bit width
already memorized in the table, and keeps the bigger
bit width in the table, and so on. Thus, the required
bit width of the variable is analized while running the
program.

Table 5. Types of test stream files

add the monitoring function
in the program

program for

dynamic analysis

compile

test stream dat:
(adts format)

N

running the program

7~

effective size
of the variable

program for

dynamic analysis

output file
(pcm format

Figure 4. The dynamic analysis flow

shows the dynamic analysis flow. We used nine dif-
ferent kinds of test stream data files (adts format) to
analyze the variables dynamically (see table 5).

Table 6. Dynamic analisys results

test file | encoded channel | samp. freq. [KHz]
L4 48k 1 48
L4 44k 1 441
L4 32k 1 32
L5 48k 2 48
L5 44k 2 441
L5 32k 2 32
L6 48k 3 48
L6 44k 3 441
L6 32k 3 32

Table 6 shows the analysis

results, and figure 4

variable type | effective size
tot sfb int 20 bits
base int 18 bits
buff ch int 6 bits
subgroup inc | short 12 bits
cell inc short 7 bits
offset int 10 bits
cb int 9 bits
top int 11 bits
bot int 11 bits
fac trans int 16 bits
1 right q long 32 bits
1 left q long 32 bits

4.3 Analisys Result Verification

In order to verify the correctness of the effective size
analisys explained in sections 4.1 and 4.2, we set a max-
imum value for the bit width of each variable. In other
words, we used the operation AN D in the program so
that the proper lower bits of the variables can be taken



out. As a result, the program was compiled and run-
ning normally. Further more, the resulting output files
(pem format) before and after analyzing the effective
sizes of the variables were identical.

5 Compilation of the Program and De-
sign of the Soft-Core Processor

5.1 Compilation of the Program

After rewriting the MPEG-2 AAC decoder program
in Valen-C, we compiled it with the Valen-C compiler.
Customized Bung-DLX with different even datapath
widths are used as soft-core processors.

When the datapath width changes from 32 bits to
30 bits, the total memory size increases. While the
datapath width decreases from 30 bits to 24 bits, the
total memory size also decrease. However, when the
datapath width changes from 24 bits to 22 bits, the
total memory size increases. This is because 24-bits
variables are assigned to long instead of ¢nt. The com-
pilation results show that Bung-DLX with a datapath
width of 24 bits is the best soft-core processor for our
embedded system. The next section explains the de-
sign of the 24-bits Bung-DLX.

5.2 Design of the Soft-Core Processor

Bung-DLX with a datapath width of 24 bits was
adopted as the soft-core processor for the embedded
system. Table 6 summarizes the design results of the
customized Bung-DLX. Figure 5 shows the layout re-
sult of the designed chip.

Table 7. Design results of Bung-DLX

Design process | CMOS 0.5um three metal layers
and one poly silicon layer

Chip size 4.76mm x 4.76mm = 22.66mm?

Gates 5837

Transistors 129,133

I/0 pins 67

6 System Performance Evaluation

In this section, we evaluate the performance of the
developped embedded system by comparing the perfor-
mance of a 32-bits system with the system developped
with a datapath width of 24 bits. For this evaluation,
we utilized Bung-DLX Simulator, developped with a
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Figure 5. The layout result of the designed
chip

cycle-accurate simulator toolkit for soft-core processors
[5].
6.1 Bung-DLX Simulator

6.1.1 Overview

We developed an instruction level simulator using the
proposed toolkit in [5].

Assembly 3 i>

mnemonics Modifiable
—| Features

Simulator

Processor Simulator

Configuration

Figure 6. Traditional vs. our approach

The innovation we have taken is decoupling pro-
cessor internal disassembler (i.e. instruction decoder)
from the simulation description and taking a sym-
bolic instruction format as the input of simulator as is
shown in figure 6. On consideration, that during archi-
tecture/instruction set exploration phases it is hardly
needed to encode instructions into bitmap. And in-
struction bitmap encoding has no direct effect to sim-
ulator accuracy?.

1Indeed a good instruction format encoding is crucial for
realizing an efficient instruction decoder circuit in hardware
implementations.



The aforementioned approach has yet several ad-
vantages. Firstly a slight simulation speed gain is
obtained, since no controller to encode instruction
bitmaps into internal instruction tokens is needed. Sec-
ondly, any kind of instructions is easily formed includ-
ing those of difficult to express in assemble-disassemble
approach like a variable length instruction, a multi
operand instruction and an instruction with complex
encoding. So the system designer does not need to
bother with instruction encoding which has no direct
relation to architecture explorations.

6.1.2 Imstruction Description

Being aware that instruction removal, addition and
modification might be frequently carried out during
architecture exploration, we keep the description for-
mat of instruction set as simple as possible but yet
easy to extend. The supplied information includes a
mnemonic format, an instruction behavior, an instruc-
tion pipeline cycle count and optionally an instruction
bitmap for RTL generation.

The mnemonic is formed as a list of symbol. The
instruction behavior is expressed using a list of behav-
iors which is then converted to a lambda? construction.
Within behavior list, any valid scheme expression can
be included as far it can be converted into lambda ex-
pression.

The Inst : reg procedure inserts into the controller
lookup table the opcode as key. The table entry is a
lambda expression acquired by converting the behavior
list.

Controller Datapath
ol o
—>» 5 2
(inst op1 op2 0p3...) % 8 )
& g Registers
—>» E = <€ Storages
External Events g c

Figure 7. Bung-DLX simulator architecture

6.1.3 Processor Description and Runtime

In abstract view, Bung-DLX simulator consists of a
controller and a datapath. The controller 1s actually
a lookup hash table keyed with instruction mnemonic

2 Anonymous functions, a concept that is well known in func-
tional programming

or processor external events (interrupt etc) and related
instruction/event behavior at the entry side. The pro-
cessor controller is generated based on registered in-
structions and events. Execution procedure of single
instruction is performed as below.

(let ((lambda (lookup opcode)))
(apply lambda (opl op2 op3 ...)))

Bung-DLX Simulator datapath is populated with
storages only. Signals coming from controller and in-
terconnections among storages in original Bung-DLX
VHDL RTL are precisely emulated by behavior entries
in the table of Bung-DLX simulator controller. Better

simulation speed is one advantage of this approach.

Simulator runtime features such as breakpoints, cy-
cle execution and state monitoring are realized using
statically or dynamically hooked functions to post-
clock execution queue. A function hooking can be per-
formed in the following manner.

(define (monitor-every-1000-cycle)
(if (= 0 (rem cycle 1000))
(disp:intrn reg-file mdr cycle)))
(post-clock-hook monitor-every-1000-cycle)

6.2 Evaluation Results

Table 7 shows a comparison between a 32-bits sys-
tem and the 24-bit system we have developped. We
calculated the number of gates and the total cell area
with Design Compiler (Synopsys). The RAM size and
number of words were calculated by Bung-DLX sim-
ulator and we used the resulting assembly code after
compiling the program with Valen-C compiler. We also
used the power model of the cell library to calculate the
power consumption of the processor as the sum of the
cell internal power and the net switching power.

Table 8. 32-bits system vs. 24-bits system

Evaluation items 32-bits | 24-bits || difference
# of gates 7989 5837 -26.9 %
Cell area (mm?) 3.438 2.492 -27.5 %
RAM size (kByte) | 157.300 | 124.170 | -21.0 %
7t of words 39325 41390 +5.2 %
Power (mW) 68.115 | 61.281 -10.0 %

An important cost reduction of the total cell area (-
26.9%) and data memory size (21%) was achieved. The
power consumption in the datapath and the control
path also reduced by 10%. However the number of
words increased by 5.2%. In total, we can conclude that
the design cost after narrowing the datapath width has
improved without sacrificing the system performance.



7 Conclusion

We have presented a design experience of an embed-
ded system LSI for MPEG-2 AAC decoder based on a
soft-core processor. Firstly, We compiled the software
program with Valen-C compiler and then tuned up the
soft-core processor for lower design cost. Design results
show that we can achieve cost reduction by changing
the datapath width.
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