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Maximum Altitude

An Invariant Imbedding

Seiichi Iwamoto

Abstract

In this paper we solve a continuous non-optimization dynamic programming
problem: Maximum Altitude problem. The problem has been originated by R.
Bellman. We consider three maximum altitude problems. A complete solution
through an invariant imbedding is derived. Each problem accompanies a few typical
examples.

1 Introduction

R. Bellman has originated dynamic programming [1] and applied it to a huge scientific
and engineering areas [5]. He claims that invariant imbedding is a non-optimization dy
namic programming [6]. In this paper we consider a typical invariant imbedding problem:
Maximum Altitude problem, raised by Bellman [3] (see also [12, 13]). We give a complete
solution and derive some related results.

In Section 2, we discuss a famous problem in physics - the upward throw against the
gravity -through an invariant imbedding. We derive a pair of differential equations (de's)
for maximum altitude and for maximum time. These are functions of initial velocity. Our
derivation is based on the mean value theorem.

In Section 3, we consider the maximum altitude of material point governed by a
nonhomogeneous second-order de. We illustrates the linear system and a quadratic one
with typical examples.

In Section 4, we consider a general nonhomogeneous second-order de. We derive
a pair of partial differential equations (pde's) for maximum altitude and for maximum
time. These are functions of both initial position and initial velocity. We classify the
second-order linear system into three typical cases. Each case accompanies an illustrative
example.

2 Upward Throw

In this section we consider the maximum altitude when a Mass Point (MP) is upward
thrown against the gravity 9 (= 9.8m/sec2 ).
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2.1 Against Gravity

Let h(v) be the maximum altitude when MP is upward thrown with an initial velocity v C~

0) and t(v) be the time MP attains the maximum altitude. Then the maximum altitude
function h : [0,00) -+ [0,00) and the maximum-altitude time function t : [0,00) -+ [0,00)
satisfy the following differential equations (de's).

Theorem 2.1

h(O) = 0

t(O) = O.

v
(i)' h'(v) ,

g

(ii)' t' (v ) . ~ ,
g

Proof A rigorous proof based upon an invariant imbedding is given in proof of
Lemma 2.1.

Thus we have the solution

v2

(i) h(v) = - 0 ::; v < 00
2g
v

(ii) t (v) = - 0 ::; v < 00.
g

(1)

(2)

For further analysis, we describe the trajectory of Mass Point (MP) by differential
equations. Let x(t) be the position (altitude or ground height) of MP at time t. Then we
have

Q(v): x = -g, x(O) = v, x(O) = 0

That is,

x(t) = v - gt, x (0) = 0

or

We note that Q(v) denotes that MP is upward thrown against the gravity with an initial
velocity v at time O. The initial position 0 is implied and omitted in Q(v).

Lemma 2.1 (1) It holds that for any small ~ > 0

(i) h(v)

(ii) t(v)

x(~) + h(x(~))

~ + t(x(~)).

(3)

(4)

(2) Further, Eqs. (3) and (4) imply (1) and (2), respectively.
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Maximum Altitude
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h(v - gl1)
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Figure 1: "Maximum Altitude"

Proof of Lemma 2.1 (1) We consider the process x = {x(')}[O,oo) described by

Q(v): x=-g, x(O) = v, x(O) = O.

Let T be a maximizer for

max x(t).
09<00

(In fact, there exists the first and unique maximizer.) Then we have

h(v) = X(T)

Take any small 11 > 0 and define

and t(v) = T.

X(t) := x(t + 11) - x(l1) tE[O,oo).

Then the process X = {X (. )}[0,00) satisfies

Q(x(I1)): X = -g, X(O) = x(I1), X(O) = o.

We have

X(T-I1) = x(T)-x(I1).

Further we see that T - 11 is a maximizer for

max X(t).
O::;t<oo

In fact, assume that some f E (0, (0) yields a value greater than X(T - 11) :

X(f) > X(T-I1).
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This in turn implies that

x(f +~) > X(T),

which contradicts the maximality of X(T). Therefore the assertion is valid. Thus we have

h(i;(~)) = X(T - ~)

Therefore we obtain

and t(i;(~)) = T - ~.

h(v) = x(~) + h(i;(~)),

t(v) = ~ + t(i;(~)).

(2) Let us show that Eq.(3) implies (1). First take any velocity v (> 0) and any
small ~ (> 0). Let us define

hA := h(i;(~)) - h(v).

Then Eq.(3) reads as follows:

Applying the mean value theorem, we have

X(~) = i;((}~)~ (0 < (} < 1)

hA = h'(i;(~~))x(~~)~ (0 < ~ < 1).

Second, substituting these terms and dividing by ~, we have

Finally, letting ~ tend to zero, we have

h'(v)
v

9

Similarly it is shown that (4) implies (2). This completes the proof of Lemma 2.1 .

Theorem 2.2

(iii) h'(v) = vt'(v) 0 ::; c, v < 00

Lemma 2.2 (1) It holds that

(5)

(iii) h(v) - h(i; (~)) (6)

where

tA = t(v) - t(i;(~)).

(2) Further, Eq. (6) together with (7) implies (5).
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Maximum Altitude

Proof of Lemma 2.2 (1) It is easily shown that (iii) is a direct combination of (i) and
- -

(ii) .
- (2) First take any velocity v (> 0) and any small ~ (> 0). Let

hb. = h(v) - h(x(~)).

Then (6) reads

From the mean value theorem, we have

hb. -h'(x(~~))x(~~)~ (0 < ~ < 1)
x (tb.) X(etb.) t b. (0 < e < 1)

tb. - t' (x(rJ~))x(rJ~)~ (0 < rJ < 1)

Second, substituting these terms and dividing by ~ , we have

Finally letting ~ tend to zero and dividing by -g, we have

h' (v) = vt' (v).

This completes the proof of Lemma 2.2.

3 Homogeneous System

We consider a homogeneous system

1-l(v): x = -g - h(x) on [0,00), x(O) = v, x(O) = 0

where
h(v)2::0 O:S;v<oo, h(O) = o. (8)

Let H (v) be the maximum altitude when MP follows the homogeneous system with
an initial velocity v (2:: 0) and T(v) be the time MP attains the maximum altitude.

Then the maximum altitude function H : [0,00) -+ [0, 00) and the maximum-altitude
time function T : [0,00) -+ [0,00) satisfy the following de's.

Theorem 3.1

(i) H'(v)

(ii) T' (v)

v

g+h(v)

1

g+h(v)

O:s; v < 00,

o :s; v < 00,

H(O) = 0

T(O) O.

(9)

(10)
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Lemma 3.1 (1) It holds that for any small ~ > 0

(i) H(v)

(ii) T(v)

x(~) + H(x(~))

~ + T(x(~)).

(11)

(12)

(2) Further, Eqs. (11) and (12) imply (9) and (10), respectively.

Theorem 3.2

(iii) H'(v) = vT'(v) 0 :::; c, v < 00

Lemma 3.2 (1) It holds that for any small ~ > 0

(iii) H(v) - H(x(~)) = X (Tb.)

where

Tb. = T(v) - T(x(~)).

(2) Further, Eq. (14) together with (15) implies (13).

(13)

(14)

(15)

Proof of Lemma 3.2 (1) It is easily shown that (iii) is a direct consequence of (i) and
(ii) .
- (2) First take any velocity v (> 0) and any small ~ (> 0). From the mean value
theorem, we have

(0 < () < 1)

where
Hb. = H(v) - H(x(~)), Tb. = T(v) - T(x(~)).

Again by applying the mean value theorem, we have

Hb. -H'(x(~~))x(~~)~ (0 < ~ < 1)

Tb. = - T' (x ('fJ~))x('fJ~)~ (0 < 'fJ < 1)

Second, substituting these terms and dividing by ~, we have

H'(x(~~))x(~~) = x(()~)T'(x('fJ~))x('fJ~).

Finally letting ~ tend to zero, we have

H'(v)( -g + h(v)) = vT'(v)( -g + h(v)).

Thus we obtain
H'(v) = vT'(v).

This completes the proof of Lemma 3.2.
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Maximum Altitude

3.1 Linear and Quadratic Dynamics

Let us consider the linear case h (v) := bv. Then de's

H(O) = 0

have the solutions

(i) H' (v)

(ii) T' (v)

v

bv + g'

1

bv + g'
T(O) o

(i) H(v) ~ _ JL log bv + 9
b b2 9

O::;v<oo

(ii) T(v) = ~logbv+g
b 9

, respectively. The second-order linear de

O::;v<oo

x = - 9 - b±, ±(0) = v, x (0) = 0

has the solution

x(t) = ~ (v + fi) (1 - e-bt ) - fit
b b b

with
±(t) =(v + ~)e-bt - ~, x(t) = -(bv + g)e-bt .

Let us consider a quadratic case h(v) := ~V2. Then de's

have the solutions

(i) H'(v)

(ii) T' (v)

2v
v2 + 2g'

2

v2 + 2g'

H(O)

T(O)

o

o

1
V2 + 2g

(i) H(v) og 2g 0 ::; v < 00

(ii) T(v) = ~ tan-1
.~ 0 ::; v < 00Vg y2g

, respectively. We consider the second-order nonlinear de

.. 1 .2X= -g - 2X' ±(O) = v, x(O) = O.
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Letting
y(t) := x(t),

we have

. 1 2 ( )Y = -g - 2Y ' Y 0 = v.

This reduces

Integrating both sides, we get

2dy
y2 + 2g

2 tan-1 -.JLVg vf2g

-dt.

-t+C.

where

Thus we have

Again operating ~t ds for

we get

f2 -1 V
C = V9tan vf2g'

Thus we have

x(t)
cos(Jg/2(C - t))

2 log -----'---'----,--------;==-----=-------'--

cos(Jg/2C)

3.2 Two Examples

Case 1 Let us consider the case h(v) = v. Then de's

(i) H'(v) = _v_, H(O) = 0
g+v

(ii) T'(v) = _1_, T(O) 0
g+v
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Maximum Altitude

have the solutions

g +v
(i) H(v) = v - glog -- 0:::; v < 00

9

(ii) T(v) = log 9 + v 0 :::; v < 00.

9

Then the resulting second-order de

x = -g - x, x(O) = v, x(O) = 0

has the solution

x(t) = (v + g)(l - e-t
) - gt

with
x(t) = (v + g)e-t - g, x(t) = -(v + g)e-t .

Case 2 Let us take h(v) := gv. Then de's

(i) H'(v) = 9(1: v)' H(O) - 0

(ii) T'(v) = 9(1 ~ v)' T(O) = 0

have the solutions

O:::;v<oo

(i) H(v)

(ii) T(v) =

, respectively. The corresponding de

v -log(l + v)

9

log(l + v)

9

O:::;v<oo

has the solution

x = -g - gx, x(O) = v, x(O) = 0

x(t) 1 +v gt)--(1- e- -t
9

with
x(t) = (1 + v) e- gt - 1, x(t) = - 9 (1 + v) e- gt .
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4 Inhomogeneous System

We consider an inhomogeneous system ([9])

I1-l(c,v): x=h(x,x) on [0,00), x(O)=v, x(O)=c

where
h(c, v) :::; -g 0:::; c, v < 00, h(O,O) = -g. (16)

We assume that the inhomogeneous system x = {x(t)}rO,CXl) attains a unique maximum
value.

Let H (c, v) be the maximum altitude in relative-altitude when MP follows this in
homogeneous system with an initial velocity v (2: 0) at an initial position c (2: 0)
and T(c, v) be the time it attains the maximum altitude. Then the maximum relative
altitude function H : [0,00)2 ---+ [0,00) and the maximum relative-altitude time function
T: [0,00)2 ---+ [0,00) satisfy the following partial differential equations (pde's).

Theorem 4.1

(i) vHc + h(c, v)Hv - -v o:::; c, v < 00

H(c, 0) = 0 o:::; c < 00,

(ii) vTc + h(c, v)Tv - -1 0:::; c,v < 00

T(c, 0) = 0 o:::; c < 00.

Lemma 4.1 (1) It holds that for any small ~ > 0

(17)

(18)

(i) H(c, v)

(ii) T(c, v)

x(~) - c + H(x(~), x(~))

~ + T(x(~), x(~)).

(19)

(20)

(2) Further, Eqs. (19) and (20) imply (17) and (iB), respectively.

Proof (1) We consider the process x - {x(·)}[O,CXl) described by

I1-l{c, v): x = h(x, x), x(O) = v, x(O) = c.

Let T be a maximizer for

max [x(t) - c].
09<CXl

Then we have

H(c,v) = x(T) - c

Take any small ~ > 0 and define

and T(c, v) T.

X(t) := x(t+~) tE[O,oo).
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Maximum Altitude

Then the process X = {X (. )}[0,00) satisfies

I1-l(x(~), X(~)): X = h(X, X), X(O) = x(~), X(O) = x(~).

We have

X(T -~) = x(T)

Further we see that T - ~ is a maximizer for

c + H(c, v).

max [X(t) - X(O)].
09<00

In fact, assume that some T E (0,00) yields a value greater than X(T - ~) - X(O) :

X(T) - X(O) > X(T -~) - X(O).

This in turn implies that

x(T + ~) - c > x(T) - c,

which contradicts the maximality of x(T) - c. Therefore the assertion is valid. Thus we
have

H(x(~), x(~)) = X(T -~) - X(O)

Therefore we obtain

and T(x(~),x(~)) = T -~.

H(c,v)
T(c, v)

x(~) - c + H(x(~), x(~)),

~ + T(x(~), x(~)).

(2) Let us show that Eq.(19) implies (17). First take any velocity v(> 0), any position
c (> 0) and any small ~ (> 0). Let us define

HLl := H(x(~),i;(~)) - H(c, v).

Then Eq.(19) reads as follows:

HLl = -[x(~) - c].

Applying the mean value theorem, we have

where

x(~) - c

Hf:1

i;((1~)~ (0 < (1 < 1)

[Hci;(~~) + Hvx(~~)]~ (0 < ~ < 1)
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Second, substituting these terms and dividing by ~, we have

Finally, letting ~ tend to zero, we have

vHe+ h(c, v)Hv = -v.

Similarly it is shown that (20) implies (18). This completes the proof of Lemma 4.1.

Theorem 4.2

(iii) vHe+ h(c, v)Hv = v(vTe+ h(c, v)Tv) 0 :::; c, v < 00 (21)

Lemma 4.2 (1) It holds that

(iii) H(c, v) - H(x(~), x(~)) = x(Tll ) - C V small ~ > 0 (22)

where

Tll = T(c, v) - T(x(~), x(~)). (23)

(2) Further, Eq. (22) together with (23) implies (21).

Proofof Lemma 4.2 (1) It is easily shown that (iii) is a direct consequence of (i) and
(ii). --
- (2) First take any velocity v (> 0), any position c (> 0) and any small ~ (> 0).
Letting

Hll := H(x(~),x(~)) - H(c, v)

Tll := T(x(~),x(~)) - T(c, v),

we have from the mean value theorem

(0 < () < 1).

Again by applying the mean value theorem, we get

Hll [Hex(~~)+ Hvx(~~)]~ (0 < ~ < 1)
Tll = [Tex(1]~) + Tvx(1]~)]~ (0 < 1] < 1)

where

He = He(x(~~), x(~~)),

Te = Te(x(1]~), x(1]~)),

Hv = Hv(x(~~), x(~~))

Tv = Tv(x(1]~), x(1]~)).

Second, substituting these terms and dividing by ~, we have

Finally, letting ~ tend to zero, we have

vHe+ h(c, v)Hv = v(vTe+ h(c, v)Tv)'

This completes the proof of Lemma 4.2.
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Maximum Altitude

4.1 Linear Dynamics

Let us consider the linear system h(x, x) := -ax-bx- g. Then the characteristic equation
is quadratic:

A2+ aA + b = O.

According as the duplicity of solution we consider the following three cases:
Case I: Two different negative solutions: 0 > a > 13.
Case If: A common negative solution: 0 > a = 13.
Case Ill: Complex solutions with a negative real part: Al = a+if3, A2 = a - if3; a < O.

4.1.1 Different Negative Solutions

Case I We have the factorization

A2+ aA + b (A - a)(A - 13)
A2 - (a + f3)A + af3,

where

-a-va2 -4b
13 =

2

a + 13 = - a, af3 = b;

-a + va2 - 4b
2

a =

Then pde's

(i) vHc-(g+bc+av)Hv = -v, H(c, 0) =0

(ii) vTc - (g + bc + av)Tv = - 1, T(c, 0) = 0

have the solutions

(i) H(c, v)

(ii) T(c, v) =

1 (g + af3c - f3v YJl/(a-/3) (g )
af3 (g + af3c - av)/3/(a-/3) - af3 + c

1 I 9 + af3c - f3v
-- og 0 ::; c, v < 00
a - 13 9 + af3c - av

o ::; c,v < 00

, respectively. In fact, the system

x = - 9 - bx - ax, x (0) = v, x (0) = c

has the solution

-1 ( ) at 1 ( ) /3t 9
x(t) = a(a _ 13) 9 + af3c - av e + f3(a _ 13) !l + af3c - f3v e - af3'

Then we have

x(t)

x(t)

-1 1
a _ 13 (g + af3c - av)eat + a _ 13 (g + af3c - f3v)e/3t

-a 13
a - f3(g + af3c - av)eat + a _ f3(g + af3c - f3v)e/3t .
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4.1.2 Duplicate Negative Solution

Case 11 Then we have the factorization

-\2 + a-\ + b

where

(-\-a)(-\-a)

-\2 _ 2a-\ + a 2 ,

Then pde's

2a -a, b,
-a
2

(i) vHc - (g + be + av)Hv = - v, H(e, 0) = 0

(ii) vTc - (g + be + av)Tv = - 1, T(e, 0) = 0

have the solutions

(i) H(e, v) 9 + a
2
e - av av/(g+a2 c-av) ( 9 )-----e - -+e

a 2 a 2 o~ e,v < 00

(ii) T(e, v)
v

9 + a 2e - av
o~ e,v < 00

, respectively. In Case 11, the system

x = - 9 - bx - ax, x (0) = v, x (0) = e

has the solution

Then we have

x(t) {v - (g + a 2e - av)t}eat

x(t) -{(g + a 2e - 2av) + a(g + a 2e - av)t}eat
.

4.1.3 Complex Solutions with Negative Imaginary Part

Case III Then we have the factorization

where

-\2 + a-\ + b (-\ - -\1)(-\ - -\2)

(-\ - (a + i(3))(-\ - (a - i(3))

-\2 - 2a-\ + a 2+ (32,

V4b - a2

2
(3

-a,

D := a2
- 4b < 0,

-\1-\2 = a 2+ (32 = b.
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Maximum Altitude

Then pde's

(i) vHc - (g + bc + av)Hv = - v, H(c, 0) = 0

(ii) vTc - (g + bc + av)Tv = - 1, T(c, 0) = 0

have the solutions

(i) H(c, v) -b
1

Jbv2 - 2a(bc+ g)v + (bc + g)2 exp ({3a tan-1 (3v
b

)
-av + c+ 9

-(~ + c)
1 -1 (3v

(ii) T(c, v) = -tan
(3 -av + bc + 9

, respectively. In Case Ill, the system

o :::; c, v < 00

x = - 9 - bx - ax, x(0) = v, x (0) = c

has the solution

Then we have

x(t)

X(t)

eat [v cos pt + {'; - ~ (c + ~) } sin pt]

9 . a 2 - {32 ab 9
eat [{ 2av - b(c + b) } cos {3t + { {3 v - 7f (c + b) } sin (3t] .

4.2 Three Examples

Case 3 Let us consider h(x, x) :-,- -g - 2x - 3x. Then pde's

(i) vHc - (g + 2c + 3v)Hv = - v, H(c, 0) = 0

(ii) vTc - (g + 2c + 3v)Tv = - 1, T(c, 0) = 0

have the solutions

(i) H(c, v) = (g + 2c + V)2 - (c + fL) 0 :::; c,v < 00
2(g + 2c + 2v) 2

(ii) T(c,v) = logg+2c+2v O:::;c,v<oo
9 + 2c+ v

, respectively. In fact, the system

x = -g - 2x - 3x, X(O) = v, x(O) = c
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has the solution

x(t) (g+2c+v)e-t - (~+c+v)e-2t -~.

Then we have

x(t) -(g + 2c + v)e-t + (g + 2c + 2v)e-2t

X(t) (g + 2c + v)e-t - 2(g + 2c + 2v)e-2t .

Case 4 Let us consider h(x, x) := -g - x - 2x. Then pde's

(i) vHc - (g + c + 2v)Hv = - v, H(c, 0) = 0

(ii) vTc - (g + c + 2v)Tv = - 1, T(c, 0) = 0

have the solutions

(i) H(c, v) = (g + c + v)e-V /(9+C+V
) - (g + c) 0 :::; c, v < 00

(ii) T(c v) = v 0 :::; c, v < 00
, g+c+v

, respectively. In fact, the system

x = - 9 - x - 2x, x (0) = v, x(0) = c

has the solution

x(t) {(g + c) + (g + c + v)t}e-t - g.

Then we have

x(t) {v-(g+c+v)t}e-t

x(t) {-(g + c + 2v) + (g + c + v)t}e-t.

Case 5 Let us consider h(x, x) := -g - 2x - 2x. Then pde's

(i) vHc - (g + 2c + 2v)Hv = - v, H(c, 0) = 0

(ii) vTc - (g + 2c + 2v)Tv = - 1, T(c, 0) = 0

have the solutions

(i) H(c, v) ~J2V2 + 2(2c + g)v + (2c + g)2 exp (_ tan-1 v ) -
2 v + 2c + 9

- (c + ~) 0 :::; c, v < 00

(ii) T(c,v)
v

tan-1 ----
v + 2c+ 9

- 16-
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Maximum Altitude

, respectively. In fact, the system

x = -g - 2x - 2x, X(O) = v, x(O) = c

has the solution

Then we have

x(t) e-t{ V cos t - (v + 2c + g) sin t}

x(t) e-t
{ -(2v + 2c + g) cos t + (2c + g) sin t}.
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