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Abstract

We construct a real option model in which government determines the timing of invest­
ment in pollution control and examine how irreversibilities affect the optimal investment
decisions. Investment is assumed to be completely irreversible and its benefit Ca value of
damage parameter) is uncertain. Irreversibility of emissions is also considered. By com­
paring the optimal policies for various cases, we get the following results. Irreversibility
of investment delays the optimal timing of policy implementation and this effect gets
stronger as the degree of uncertainty increases. Irreversibility of emissions works for the
opposite direction, but it does not depend on the degree of uncertainty.
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1 Introduction

It is obvious that there is considerable uncertainty in the degree of damage on society caused

by pollution. IPCC (2001) reports that in business-as-usual scenario the average temperature

in 2100 is expected to increase 1.4-5.8 degrees centigrade over 1990, and the sea level is

expected to rise 9-88 cm. This is an example of great uncertainty in future predictions.

Because the scale of damage is uncertain, the optimal pollution control is unknown at present.

In many environmental issues, the relationship between economic activities and pollution

emissions and a process of pollutant accumulation are uncertain as well.

The level of uncertainty, however, is expected to decrease as more information becomes

available in the future. This process is called learning. Learning can be roughly divided into

two groups: exogenous learning and endogenous learning. In exogenous learning, information

can be obtained regardless of the actions of agents and uncertainty will be resolved all at once

or gradually in the future. On the other hand, in endogenous learning, agents' actions such

as R&D and observation have an impact on how fast information will be accumulated. This

type of learning seems more realistic. By considering endogenous learning, we can regard a

way of obtaining information as a strategy.

There are a number of studies focusing on exogenous learning such as Yohe and Wallace

(1996), Ulph and Ulph (1996), and Kolstad (1996a, 1996b). Assumptions of their models
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are all different. The contents of Kolstad (1996a, 1996b) will be considered later. Yohe

and Wallace (1996) simulated an integrated assessment model, which takes into account the

threshold of carbon dioxide concentration. Through the simulation they demonstrated that,

under the assumption that every uncertain parameter concerning global warming will become

clear by 2020, a carbon tax that is supposedly necessary in the near future to minimize the

long-term costs should be considerably lower. Regarding the problem of climate change,

adjustments in emissions will become possible after uncertainty is resolved. Therefore, a

drastic control of emissions is not necessary during a learning period. On the contrary,

Ulph and Ulph (1996), by analyzing the two-period game model, numerically demonstrated

that such a theory would not work when there are multiple agents. According to their

results, the equilibrium control rate in the near future would be adversely increased due to

learning. Additionally, in an asymmetric game with different parameters for each country,

some countries would face a decline in utility because of learning.

There are only a few papers that directly deal with endogenous learning. Kelly and

Kolstad (1999) analyzed an empirical model for climate change, based on the assumption

that an agent will obtain information on uncertain parameter values through Bayes learning.

They concluded that if observation were the only method, the learning of a parameter (a

sensitivity parameter linking the global temperature rise to the greenhouse gas concentra­

tion) would take an extremely long time (90 to 160 years). They also stated that the most

appropriate environmental policy should be sensitive to the amount of information, and dis­

cussed a tradeoff between the amount of emissions control and the lack of information. In

studies of exogenous learning, it is typically assumed that most uncertainty will be resolved

in approximately 30 years. However, this assumption may not be realistic when there are not

any active investments made for learning.

Irreversibility plays an important role in decision-making when uncertainty and learning

are present. Decision-making is called irreversible when a decision considerably reduces the

scope of choices available for future decision-making (Henry, 1974). Normally discussed

irreversibility issues in environmental problems involve pollutant emissions or accumulation,

investment for environmental preservation, and environmental damage.

In broad terms, irreversibility of emissions means impossibility to collect released pollu­

tants. While the stock of pollutant may be absorbed through the natural process to a certain

degree, the limit of such effect is clearly indicated by steadily increasing time-series changes

in atmospheric concentrations of carbon dioxide and sulfur oxide. To artificially reduce emis­

sions below zero is extremely difficult and costly. It may be too late if emissions are reduced

after serious damage becomes apparent. Arrow and Fisher (1974) described the value of

flexible policies that consider irreversibility of land development and keep lands undeveloped

until benefits of land development and preservation are known. This value is defined as the
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"quasi~option value." In terms of pollution, it supports increased control of pollutants today

(Chichilnisky and Heal, 1993). However, Epstein (1980) and Ulph and Ulph (1997) indicated

that whether or not current control should be increased depends on the shape of cost and

damage functions when there is irreversibility of emissions.

In existing literature, irreversibility of emissions is formulated as the following two as­

sumptions: (a) emissions cannot be negative, and (b) there is no natural absorption. It

can be said that the assumption by Arrow and Fisher (1974) is a modification of (a). Kol­

stad (1996a, 1996b) and Ulph and Ulph (1996) adopted assumption (a), and Ulph and Ulph

(1997), Narain and Fisher (1998), and Pindyck (2000, 2002) adopted the both assumptions

(a) and (b).

Irreversibility of investment means that resources used for investment in pollutant control

cannot be used for any other purposes. Investment to modify plant facilities into energy­

efficient ones or to install scrubbers in power plants is irreversible. A significant share of the

investment costs for abatement becomes sunk cost. If we consider this factor, in order to

avoid unnecessary investment, it is desirable to wait until when enough scientific knowledge

is accumulated and information on damage becomes evident and apply appropriate policies

after that, instead of excessively reducing pollutants.

Irreversibility of damage refers to the occurrence of irreversible damages such as extinction

of certain species and serious health damage. Narain and Fisher (1998) considered situations

where catastrophic damages occur with a positive probability and reduce the level of social

welfare to zero thereafter. They came up with the results that if catastrophic risk is avoidable,

that is, the probability of a catastrophe depends on the stock of pollution control capital, the

effects of irreversibility of emissions will get stronger, although their arguments are somewhat

ambiguous. We will not explore the effects of irreversibility of damage in this paper.

Kolstad (1996a) used a general two-period exogenous learning model that assumes that

learning about the impact of pollution occurs between periods 1 and 2, and explained that

irreversibility of emissions and that of investment would affect current pollution control in

opposite directions. Kolstad (1996b) simulated an empirical model of learning associated

with climate change to demonstrate that irreversibility of investment would have a greater

impact than irreversibility of emissions. He emphasized the risk of a hasty implementation of

permanent environmental measures. In these studies irreversibility of investment was defined

as the low depreciation rate of pollution control capital.

Pindyck (2000, 2002) developed a model of irreversible investment for pollution control

when there is uncertainty in both environmental damage and the pollutant accumulation

process. He described this as an optimal stopping model using the real option approach. He

developed a framework to calculate the optimal timing for the implementation of pollution

control investment, specified functional forms, and demonstrated a couple of numerical ex-
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amples through calculations. Real option is an application of an option pricing theory that

is typically used in financial engineering, and is a method to figure out values of investment

when future benefit is uncertain (Dixit and Pindyck, 1994). Pindyck (2000) analyzed a wide

range of optimal policies based on various assumptions using the continuous time learning

model, and showed that irreversibility of investment would delay the optimal control timing.

It was also shown that irreversibility of emissions would make the optimal control timing

earlier. However, his analyses focused on irreversibility of investment, and irreversibility of

emissions was not mentioned much. Pindyck (2000) dealt with uncertainty in damage and

in the accumulation process separately. Pindyck (2002, Section 3) constructed a model that

considers both aspects simultaneously.

We examine roles of irreversibility of emissions and that of investment, using the frame­

work of Pindyck's model. In the next section a pollutant control model is introduced, and a

solution applying specific cost and damage functions is derived. In Section 3, we first analyze

the model with reversible emissions, and then the model with reversible investment to investi­

gate the effects of irreversibilities on the optimal policies. Section 4 provides a summary and

conclusions. We get the following results. Irreversibility of investment delays the optimal

timing of policy implementation and this effect gets stronger as the degree of uncertainty

increases. Irreversibility of emissions works for the opposite direction, but it does not depend

on the degree of uncertainty.

2 Timing of Pollutant Control

2.1 The Model

In this section we introduce the analysis of pollutant control with a single agent by a simplified

version of the model developed by Pindyck (2000).

A benevolent governmental institution is regarded as one risk neutral decision-making

agent. Specific pollutants that are emitted as a result of economic activity will be focused on.

Pollutants accumulate in the atmosphere, and society is damaged by the stock of pollutants.

Damage is measured in a monetary value. However, a parameter for the scale of damage

is uncertain. Let E(t) and M(t) denote the amount of pollutant emitted and the stock of

pollutant accumulated in the atmosphere at continuous time t respectively. It is assumed

that economy is constant, and the amount of pollutant emissions before implementation of

control methods is constant. We set the uncontrolled emissions level as the standard value 1.

This means that: E(t) E [0,1] \It 2 0. 1 The stock is assumed to change over time as follows:

d~t(t) = E(t), M(O) = Mo. (1)

IThe assumption that the emissions level is nonnegative corresponds to irreversibility of emissions (a)
described in Section 1.
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(1) shows that all emitted pollutants are accumulated in the atmosphere, and that the accu­

mulated pollutants will not be absorbed through natural processes. 2

Let us assume that the damage is proportional to the stock of pollution, and is expressed

as ()(t)M(t).3 The damage parameter ()(t) is a nonnegative uncertain variable that changes

over time (a stochastic process), and it is assumed to follow a geometric Brownian motion:4

d()(t) = (J()(t)dz, ()(O) = ()o, (2)

where z represents a Wiener process. In addition, (J(2:: 0) is called a volatility parameter.

Higher (J means higher variance of ()(t). Although a value of ()(t) at each time is observable,

the future value of () always remains uncertain since it is a stochastic process. Damage

parameter can move up and down randomly, but there is no trend in that movement. Even if

the stock of pollutants is constant, the social impact of pollution is thought to vary because

of other random factors. We set (2) as a simplification of these facts.

Let C(E) denote the cost of reducing emissions to the level E. Investment in pollution

control is assumed to be irreversible and all costs needed for investment become sunk cost.

The cost function satisfies: C(l) = 0, C' < 0, C" 2:: O. It is assumed that investment is made

only once, but the timing of investment is arbitrary, and such timing is a controllable variable

determined by the agent.

Under this setting, the optimal amount of pollution control and timing must be deter­

mined by the agent. It is assumed that the agent takes measures to reduce emissions to the

level E at the time when the value of the damage parameter () reaches a certain value of ()*

or higher. This value ()* is called a critical value.

The objective function for the agent is expressed as:

w = £ [- 1= ()(t)M(t)e-rtdt - C(E)e-rT ] (3)

(3) shows that the objective function is the sum of the present value of benefit minus invest­

ment cost. Here, re> 0) is the discount rate and £[ . ] is an operator indicating an expected

value at time o. A variable T is the time when abatement investment is implemented. In

other words, it is when () reaches a value of ()* or higher for the first time. As shown in (2),

a value of () is uncertain, thus T is also a random variable.

2.2 Optimal Policy

We calculate the values of ()* and E that maximize the objective function (3) under the

constraints (1) and (2), taking a typical real option approach.

2This assumption corresponds to irreversibility of emissions (b).
3Models may use the expression -O(t)M(t) to represent "benefit" gained by pollution.
4Usually the equation used to describe geometric Brownian motion takes a form: dO = aOdt + aBdz, where

a is a drift parameter. However, in this paper we set a = O.
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Let WN(Oo, Mo) denote the value function for the "no-adopt" region where no policies

are taken within a society. Then we have

where dt shows an infinitesimal time. Since O(dt) = 00 + aBodz, and M(dt) Mo + E(O)dt =

Mo + dt, Taylor series expansion of W N to the second order gives

WN(O(dt),M(dt)) = WN(Oo,Mo) + WJ¥dO + WjJdM

+~{W~(dO)2+ 2Wf!MdOdM + WjJM(dM)2}

= WN(Oo,Mo) + aOoWJ¥dz + WjJdt

+~{(aOo)2W~(dz)2 + 2aOoWf!Mdtdz + WjJM(dt)2},

aWN
where WJ¥, WjJ, W~,Wf!M, and WjJM are partial derivatives, i.e. for example, WjJ = aM '

and W~ = a~~N. Applying £[dz] = 0 and approximation rules by Ito's lemma: (dt)2 ~
0, dtdz ~ 0, and (dz)2 ~ dt, we have

£[WN (O(dt), M(dt))] = W N (00 , Mo) + (WjJ + ~(aOo)2We~) dt. (5)

Substitution of (5) into (4) leads to:

(1 - e-rdt)WN = _ldt
OoMoe-rT dT + e-rdt (WjJ + ~(aOo)2W~) dt. (6)

Dividing both sides of (6) by dt and taking the limit of dt -----+ 0, we get

rWN = -OoMo + WjJ + ~a205W~. (7)

(7) is called the Bellman equation.

We assume the emissions level after control to be E, and let WA(Oo, Mo, E) denote the

value function for the "adopt" region where policies are taken immediately. In this case,

and using the same procedure as above we can show that W A satisfies:

General solutions of (7) and (8) are

W N (0, M) = AO{3 + A'O{3' _ OM - O2 ,
r r

A {3' (3' OM OEW (O,M,E) = BO + B 0 - - - -2 - G(E),
r r
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where A, A', B, and B' are real constants. In (9) and (10) above, Bo and Mo are written

as B and M for the sake of simplification. We omit subscripts hereafter when there is no

possibility of confusion. We can derive the values of 13 and 13' as solutions of a fundamental
cr2

quadratic 2x(x - 1) = r regarding x, which we can obtain by assuming W N = ABx and

comparing coefficients, thus

1 V1 2r , 1 V1 2r
13 = "2 + 4: + cr2 ' 13 = "2 - 4: + cr2 '

It is easy to see that 13 > 1 and 13' < O. The first and second term of the right-hand side

of (9) are option values, i.e. the values of option for society to implement the control policy

at some time in the future. There should be no option values in W A because it is the value

function when policies are immediately taken, hence B = B' = O. The third term of the

right-hand side of (9) coincides with that of (10), and represents benefit caused by the initial

stock (its absolute value represents damage due to the initial stock). The fourth term of each

function represents benefit accrued by continuing emissions.

Value functions must satisfy the following boundary conditions:

WN(O,M) = 0,

WN(B*,M) = WA(B*,M,E*),

wf (B*, M) = Wt(B*, M, E*).

(11)

(12)

(13)

We can see from (2) that B(t) = 0 holds for any t(?:- 0) when Bo = O. Therefore, (11) follows

from a definition of the value function. (12) is referred to as the "value matching condition."

It says that the choice to implement or not to implement control should be indifferent when

the damage parameter reaches the critical value. (13) is called the "smooth pasting condition."

It means that, when B is indicated as a horizontal axis, graphs of W N and W A must have a

smooth contact (not having a kink) if a decision is optimal at the critical value. 5 Here E* is

the optimal amount of emissions, i.e.

E* = arg max WA(B*, M, E).
EE[O,l)

Coefficients A and A' of (9) should be determined so that the value functions satisfy these

boundary conditions, and the values of B* and E* are obtained at the same time.

To reach a concrete solution, the cost function G(E) is specified as a linear function:

G(E) = c(l - E). It follows that

DWA B
-- = --+c.

DE r 2

Note that SInce this value does not depend on the amount of emissions E, the optimal

emissions should be E* = 0 if control is to be implemented. We can derive A' = 0 from

5Refer to the Chapter 4, Appendix C (pp.130-132) in Dixit and Pindyck (1994) for details of the smooth
pasting condition.
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(11). Next, substitution of (9), (10), B = B' = O,and E* = 0 into (12) and (13) leads to the

following equations:

()*
A()*,6 - - + c = 0

2 'r

/3A()*,6-1 - 1
2

= O.
r

From (14) and (15), we get

* = /3cr
2

= (~),6-1 (_1.),6
() /3 ,A /3 2 '- 1 c r

(14)

(15)

and the optimal investment time is T = inf{t I ()(t) 2: ()*}. Value functions can be expressed

as:
w N ((), M) = (/3 - 1),6-1 (_1_),6 (),6 _()M _ ~,

c /3r2 r r 2

W A ((), M, E*) = _ ()M - c.
r

(16)

(17)

The main results mentioned above can be summarized as follows. The optimal emissions

of society are

E* = { ~ (()o < ()*),
(()o 2: ()*),

and a critical value is

()* = /3cr
2

.

/3-1
(18)

(18) shows that higher marginal control cost and higher discount rate both raise the critical

value. This fact seems intuitively evident.

We now present a numerical example to understand the characteristics of the solution

visually. Suppose that a = 0.2, r = 0.04, c = 100, and Mo = O. Then through simple

calculations we get /3 = 2.0, and ()* = 0.32. Figure 1 shows graphs of W N and W A as

functions of the initial value of damage parameter ()o. Value function for the adopt region

W A becomes a constant function, since the initial stock is assumed to be zero. The agent

should implement control policies when () first reaches 0.32. Note that the smooth pasting

condition holds at P.

Let us consider the case where the investment is too early and the critical value ()' is

smaller than ()*. Solution of differential equations (7) and (8) under the boundary condition

that W N = W A = -c for () = ()' leads to the value function W N in Fig. 2, and it is clear

that the welfare is lower than the optimal case. In the case where the investment is too late

and the critical value ()" is greater than ()*, we have a solution depicted in Fig. 3 and the

welfare is lower than in Fig. 1 again. Thus it is shown that the investment decision at the

critical value ()* is optimal. In both cases the smooth pasting condition does not hold and

value functions have kinks at points P' and P".
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Fig. 1 Value function

o ()f ()*
---+-=-----'------------..... ()o

o ()* ()"--+-=----- --- ()o

-100
:~ ......

""'-._--:..:..,.~_.......:'"'___ W A
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"

-100 ..... /. ~'>.::".. -: .. ,

W N

~------WA
pll

Fig. 2 Case of early investment

3 Effects of Irreversibilities

3.1 Irreversibility of Investment

Fig. 3 Case of late investment

In order to see how irreversibility of investment affects decision-making, let us examine the

optimal decision-making for a model with reversible investments. When investment is re­

versible it is possible to remove the equipment for abatement without any additional costs

and resources used for investment can be redirected to other purposes. This means that even

if we implement abatement policies and lower emissions now, we can increase the emissions

and get back to the original state in the future.

We attempt to solve for the value function and the critical value in the same framework

as the previous section. As has been argued above, the optimal emissions level would be zero

if control policies are to be implemented, so we need to consider only two states; E = 0 and

E = 1. Policies of abating and increasing emissions should have a common critical value

because of the assumption of no costs. In contrast to the previous analyses, even in the state

E = 0 there exists the value of option to implement the policy of increasing emissions in the

future. Thus B = B ' = 0 no longer holds in the solution (10). Note that if the initial value
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of damage parameter ()o is extremely large and close to infinity, there would be no value of

the option to increase emissions. Therefore lim B()(3 + B'()(31 = 0 should hold and we have
(J--+=

B = 0, since (3 > 1 and (3' < o.
Let W RN and W RA denote the value functions in the case of reversible investment. To

determine all unknown variables (()*, A, B') and solve for the value functions, we have to

impose another boundary condition:

(19)

(21)

(20)

W RA =

W RN =

which requires the continuity of the second derivatives of W RN and W RA . (19) is called the

"super contact condition" (Dumas, 1991), and this is also a condition for maximizing the

value function at the critical value. Substituting B = 0 and E* = 0 into (9) and (10) and

applying conditions (11)-(13), and (19), we get

C(31 ()(3 _ ()M _ ~

((3 - (3')r2(3 r r 2 '

c(3 (3' ()M
((3 - (3')r2(3' () - -:;:- - c,

and in this case the critical value is ()* = cr2.

We have already solved the critical value as (3cr
2

when investments are irreversible.
(3-1

Since -(3(3 > 1, this result shows that the existence of uncertainty increases the critical
-1

value. When irreversible investment for pollution control is to be taken under uncertainty

government should delay the timing of applying control policies. Moreover, it turns out that

the value function always takes a greater value in the case where investment is reversible than

in the case where it is irreversible, i.e.

W RN > W N

W RA > W N

W RA > W A

(0 < () < cr2
),

(
(3cr2 )

cr
2

::; () < (3 - 1 '

(
() > (3cr

2
) .

- (3 - 1

(22a)

(22b)

(22c)

See Appendix for derivations of (22a)-(22c). This difference comes from the value of option

to increase emissions.

Let us see the numerical example with the same parameter set as in Section 2. Figure 4

shows graphs of W RN and W RA . The critical value in the reversible investment case is 0.16,

that is half of the value in the case of Fig. 1, and the smooth pasting condition holds at point

Q. Also shown in Fig. 4 are graphs of W Nand W A (broken lines). It can be seen that for

the region ()o > 0, value function in the case of reversible investment is always greater than

that in the case of irreversible investment.
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o 0.16 0.32 (J
---+----~---~----------~ 0

-67

-100
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,I,
\

------_\" ... ~Q
/"'- '- .

W N : A
. ::-:-...,.~~~ - - W

Fig. 4 Comparison of value functions

Next let us examine the optimal policies for a deterministic model to see the effects of

uncertainty. We solve the following problem assuming that the initial value of the damage

parameter and the stock of pollutant are (Jo and Mo respectively:

mjjx W((Jo, Mo, E) = - 1= (JoM(t)e-rtdt - c(l - E),

s.t. d~t(t) = E, M(O) = Mo.

(23)

(24)

The damage parameter remains the same forever: (J(t) = (Jo Vt ~ O. Since there IS no

uncertainty, we can decide the optimal action at time O. From (24), M(t) = Mo + Et.

Substituting this into (23), we obtain

(JoMo ((Jo)W((Jo,Mo,E)=--r-- c + E c- r2 '

which shows that the optimal emissions are

((Jo < cr2),
((Jo ~ cr2).

As a result, the critical value is cr2 . When the value of volatility parameter 0" increases,

13 will decrease, and the value of -1313 will increase. Therefore, the greater the degree of
-1

uncertainty, the higher the critical value will be. The above discussion can be summarized

in the following proposition.

Proposition 1 In a real option model of irreversible pollution control under uncertainty,

irreversibility of investment raises a critical value, delays the optimal timing of policy imple­

mentation, and lowers the social welfare. This effect gets stronger as the degree of uncertainty

increases.
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3.2 Irreversibility of Emissions

Now we relax an assumption of irreversible emissions and assume that a fraction of the stock

of pollutants is absorbed by natural processes. In this case, the stock evolves as:

d~t(t) = E(t) - oM(t), M(O) = Mo, (25)

where 8 represents the absorption rate.

Assuming irreversible investment, we get a critical value B* = j3c~(r + 0) through the
-1

same procedure as Section 2. This value is greater than :~21' since 8 > O. In other words,

irreversibility of emissions lowers the critical value and advances the control policies.

This effect, however, does not depend on the degree of uncertainty. We solve for the

optimal decision-making in a deterministic model as in Section 3.1. If E(t) = E (constant)

is assumed in (25), we have

E ( E)_DtM(t) = - + Mo - - eo o' (26)

Substituting (26) into (23) leads to the result that the critical value is cr(r + 0), which is

r + 0 times as cr2 in the case of irreversible emissions. The ratio remains the same regardless
r

of the degree of uncertainty. The reason for this seems to be that irreversibility of emissions

is represented only by the absorption rate in the model. On the other hand, uncertainty plays

a crucial role in deciding the benefit of delaying investment, so the effect of irreversibility of

investment depends on how uncertain future will be.

Proposition 2 In a real option model of irreversible pollution control under uncertainty,

irreversibility of emissions lowers a critical value and makes the optimal timing of policy

implementation earlier. This effect does not depend on the degree of uncertainty.

4 Conclusions

In this paper we have examined how uncertainty and irreversibility interact in the decision­

making of pollutant control investment using the real option theory. It is assumed that the

damage is a linear function of the stock of pollutant, and the cost of control investment is a

linear function of abatement of emissions.

The optimal decision is to bring the emissions level down to zero when an uncertain

damage parameter exceeds a certain point (critical value). Considering the case of reversible

investment, we have shown that irreversibility of investment delays the optimal timing of

policy implementation and lowers the social welfare. This effect gets stronger as the degree

of uncertainty increases. On the other hand, irreversibility of emissions advances the optimal

timing of policy implementation. This effect, however, does not depend on the degree of

uncertainty.
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It becomes evident from these results that irreversibility of investment gets more impor­

tant than that of emissions as the degree of uncertainty increases. Therefore the government

should exercise greater care in the implementation of irreversible policies. Policies with rela­

tively weak irreversibilities should be given priorities.

We must note that these model analyses have some problems. While it can be seen

from the models that the emissions level should be zero when control is to be implemented,

it is unrealistic to completely eliminate the emissions of specific pollutants. The results of

the models are· based on the assumption that cost function is linear regardless of the scale

of the control rate, but actual cost function is predicted to be nonlinear for certain range

of the control rate. Therefore, it may be more appropriate and desirable to implement a

discontinuous control up to a certain point and shift to a gradual reduction after that point.

Additionally, this paper assumes that damage would be proportional to the stock. An analysis

of the case of a nonlinear damage function will be necessary.

Future research topics may include the numerical analyses of more complicated scenarios

and the examination of a game situation where multiple agents determine the timing of the

investment in pollution control as a strategy.

Appendix

A Derivation of (22a)

We can see from (16) and (20) that W RN > W N for () > 0 is equivalent to the following

inequality:

C;3' (,6 - 1);3-1 ( 1 ) (3
(,6 - j3')r2;3 > -c- ,6r2

Calculations using ,6' = 1 - ,6 shows that (AI) is rewritten as:

,6;3 > (2,6 - 1)(13 - 1);3-1.

Taking natural logarithms of both sides of (A2), we obtain

(A1)

(A2)

,6log,6 > log(2,6-1) + (,6-1)log(,6-1).

Let f(,6) = ,6log,6 - log(2,6 ~ 1) - (,6 - 1) log (,6 - 1). Then f'(j3) = log (,6 ~ 1) -

2 "() . 1 . (2,6 - 1 ,f 13 = - ,6(,6 _ 1) (2,6 _ 1)2· All we need to do IS to show that f ,6) > 0 for any

,6 > 1. Through simple calculations we have lim f' (,6) = 00 and lim f' (13) = O. Clearly
;3--+1+0 ;3--+=

f" (,6) < 0, therefore f' (,6) is a monotonically decreasing function. Hence f' (,6) > 0 V,6 > 1.

Since lim f(,6) = 0, it follows that f(,6) > 0 Vj3 > 1. Thus (A1) holds, and (22a) has been
(3--+1+0

proved. Q.E.D.
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B Derivation of (22b)

The term - BM is common in W RA and W N, so let us ignore it and treat W RA and W N as
r

functions of B only;

RA _ c/3 /3' . N _ (;3 - 1) /3-1 ( 1 ) /3 /3 B
W (B) - (;3 _ ;3')r2/3' B - c, W (B) - -c- ;3r2 B - r 2 ·

Note that both W RA and W N are convex functions, that is, W RA" (B) > 0, W N " (B) > 0 for

any B. Let g(B) denote a function represented by the tangent to the graph of W RA at point

(cr2, W RA (cr2)). Then

By convexity of W RA,

g(B) =
;3-1 2 c

(2;3_1)r2(B-cr )+2;3-1 -c.

WRA(B) 2: g(B) VB 2: cr2. (A3)

In addition, g U:21) = WN U:21)~ -c holds.

Next, let h(B) denote a function represented by the straight line that connects two points;

(cr2, WN(cr2)) and (;3cr
2

,WN (;3cr
2
)). Then

;3-1 ;3-1

;3-1 (;3-1)/3 1
According to (A2) in the proof of (22a), (2;3 _ 1)r2 > -;3- r 2 ' which means the absolute

;3cr2
value of slope of g is greater than that of h. We already know that g = h at B = ;3 _ 1 .

Therefore, we get

Convexity of W N gives

g(B) > h(B) VB < ::2
1

. (A4)

[
2 ;3cr

2
]h(B) 2: W N (B) VB E cr';3 _ 1 .

From (A3), (A4), and (A5), we obtain

and thus (22b) has been proved.

C Derivation of (22c)

c/3
It is clear that (22c) holds, since > o.

(;3 - ;3')r2/3'
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(A5)

Q.E.D.

Q.E.D.
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