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w.r.t. u ∈ Dn, that is, fi(x,−u) = −fi(x, u) for any (x, u) ∈ Rn × Dn. Then, it

holds that fi(x,0) = 0.

We define an optimal-value function κi with a shift term by

(2.1) κi(u) := max
x∈Ai

fi(x, u)− γiun+1,

where γi is a given real constant. Then, κi is continuous. Applying Borsuk’s

antipodal theorem to κ := (κ1, . . . , κn), we obtain the following.

Theorem 2.1. (1) For any γ = (γ1, . . . , γn) ∈ Rn, there exists a point u =

(u, un+1) ∈ Sn such that

(2.2) max
x∈Ai

fi(x, u) + min
x∈Ai

fi(x, u) = 2γiun+1 (i = 1, . . . , n).

In particular, when γi is nonzero for some i, u is a nonzero vector.

(2) There exists a nonzero u ∈ Dn such that max
x∈Ai

fi(x, u) + min
x∈Ai

fi(x, u) does

not depend on i = 1, . . . , n.

(3) If there is no nonzero v ∈ Dn satisfying

(2.3) max
x∈Ai

fi(x, v) + min
x∈Ai

fi(x, v) = 0 (i = 1, . . . , n),

then for any γ ∈ Rn, there exists an interior point u of Dn such that

max
x∈Ai

fi(x, u) + min
x∈Ai

fi(x, u) (i = 1, . . . , n) are proportionate to γi (i =

1, . . . , n).

Proof. By Borsuk’s antipodal theorem, there exists a point u ∈ Sn such that κ(u) =

κ(−u). Since fi(x,−u) = −fi(x, u), we have

max
x∈Ai

fi(x, u)− γiun+1 = max
x∈Ai

fi(x,−u) + γiun+1 = −min
x∈Ai

fi(x, u) + γiun+1,

which implies (2.2). Suppose that u = 0, then it follows from (2.2) that

2γiun+1 = max
x∈Ai

fi(x,0) + min
x∈Ai

fi(x,0) = 0.

Since γi ̸= 0 for some i, we have un+1 = 0, which contradicts (u, un+1) ̸= (0, 0).

Therefore, u ̸= 0. (2) follows from (1) by taking γi = 1 for every i. (3) It follows

from (1) and the assumption on (2.3) that un+1 ̸= 0. Hence, we obtain the desired

proportional relation. □

3. Set evaluation theorem

When we take the inner product ⟨u, x⟩ = u1x1 + · · ·+ unxn as fi(x, u), we have

κi(u) = max
x∈Ai

fi(x, u)− γiun+1 = δ∗(u | Ai)− γiun+1,

where δ∗(u | Ai) is the support function of Ai. Further, (2.2) reduces to

(3.1) ci(u) :=
δ∗(u | Ai) + δ∗(u | Ai)

2
= γiun+1,

where δ∗(u | Ai) := minx∈Ai⟨u, x⟩. Figure 1 indicates that ci(u) is a kind of center

of Ai in the direction u.
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Theorem 3.1 is a direct consequence of Theorem 2.1.

Theorem 3.1. (Set evaluation theorem)

(1) For any γ1, . . . , γn ∈ R, there exists a point u = (u, un+1) ∈ Sn such that

(3.2) ci(u) = γiun+1 (i = 1, . . . , n).

In particular when γi is nonzero for some i, u is a nonzero vector.

(2) There exists a nonzero u ∈ Dn such that ci(u) does not depend on i =

1, . . . , n.

(3) If there is no nonzero v ∈ Dn such that ci(u) = 0 for any i, then for any

γ1, . . . , γn ∈ R, there exists an interior point u of Dn such that

(3.3) c1(u) : · · · : cn(u) = γ1 : · · · : γn.

Figure 1. The hyperplane ⟨u, x⟩ = ci(u) equally divides the width

of Ai in the direction u.

Theorem 3.1 (3) demonstrates the evaluation method with weights is applicable

to sets. In Figures 2 and 3, there is no line passing the origin that equally divides

the width of A1 and A2 in any direction. Hence, it follows from (3) that for any γ1
and γ2, there exists a weight u ∈ R2 such that c1(u) : c2(u) = γ1 : γ2.

Figure 2. c1 : c2 = 1 : 2
Figure 3. c1 : c2 = 1 : −2

In particular when Ai is symmetric w.r.t. a point pi, the weight u in Theorem

3.1 can be computed by a linear equation.

Lemma 3.2. If Ai is symmetric w.r.t. a point pi ∈ Rn, then ci(u) = ⟨pi, u⟩. So,

(3.2) reduces to the linear equation

(3.4) P Tu = un+1γ,



96 HIDEFUMI KAWASAKI

where P := (p1 . . . pn). Further, there is no nonzero u ∈ Rn satisfying ci(u) = 0

(i = 1, . . . , n) if and only if p1, . . . , pn are linearly independent. In such a case, the

solution (u, un+1) ∈ Sn of (3.4) is obtained by solving

(3.5) P Tu = γ,

and normalizing (u, 1).

Proof. . Since Ci := Ai − pi = {x − pi | x ∈ Ai} is symmetric w.r.t. the origin,

x ∈ Ci is equivalent to −x ∈ Ci. Hence

δ∗(u | Ci) = min
x∈Ci

⟨u, x⟩ = −max
x∈Ci

⟨u,−x⟩ = −max
−x∈Ci

⟨u,−x⟩ = −δ∗(u | Ci).

Thus,

2ci(u) = δ∗(u | Ai) + δ∗(u | Ai)

= δ∗(u | Ci) + ⟨u, pi⟩+ δ∗(u | Ci) + ⟨u, pi⟩
= 2⟨pi, u⟩.

Therefore, ci(u) = ⟨pi, u⟩, and (3.2) reduces to pTi u = un+1γi (i = 1, . . . , n).

Further, ci(u) = 0 (i = 1, . . . , n) has no nonzero solution u if and only if

(p1, . . . , pn)
Tu = 0 has no nonzero solution, which is equivalent to p1, . . . , pn are

linearly independent. Then, (3.5) has a unique solution. □

4. Positive weight

As we have seen in Figures 2 and 3, some components of the weight u may be

negative. When each Ai is symmetric w.r.t. a point pi, the weight u is a solution

of the linear equation P Tu = γ. Hence, the positive (nonnegative) weight reduces

to the positive (nonnegative) solution of the linear equation.

For any n× n matrix Q, The (i, j)-minor of Q, denoted |Qij |, is the determinant

of the (n− 1)× (n− 1) matrix that results from deleting i-th row and j-th column

of Q. The (i, j) cofactor of Q is defined by q̃ij := (−1)i+j |Qij |, and the cofactor

matrix of Q is defined by Q̃ := (q̃ij)
T .

When P is nonsingular, the solution of P Tu = γ is expressed as

(4.1) u = (P T )−1γ =
1

|P T |
P̃ Tγ =

1

|P |
P̃ Tγ.

Theorem 4.1. Assume that Ai is symmetric w.r.t. pi for any i = 1, . . . , n and

p1, . . . , pn are linearly independent. Let p̃ij be the (i, j) cofactor of P . Then, for

any γ > 0, there exists a weight u > 0 such that (3.4) if and only if

(4.2) |P | p̃ij > 0 (1 ≤ i, j ≤ n).

For any γ ≥ 0, there exists a weight u ≥ 0 such that (3.4) if and only if

(4.3) |P | p̃ij ≥ 0 (1 ≤ i, j ≤ n).
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Proof. First, we note that (3.4) has a positive solution (u, un+1) if and only if

P Tu = γ has a positive solution u. It follows from (4.1) that P Tu = γ has a

positive solution u for any γ > 0 if and only if (4.2) holds. The latter part can be

proven in the same way. □

Next, let us change our approach and find the set of all γ that are achieved by a

positive (nonnegative) weight u:

Γ++ := {P Tu | u > 0}, Γ+ := {P Tu | u ≥ 0}.

For comparison, we set Γ := {P Tu | u ∈ Rn}. Theorem 4.2 is easily proven.

Theorem 4.2. Assume that Ai is symmetric w.r.t. pi
1 for any i = 1, . . . , n, and

set P T = (q1, . . . , qn). Then,

(1) Γ++ = {
∑n

i=1 uiqi | ui > 0 (i = 1, . . . , n)}.
(2) Γ+ equals to the convex cone generated by q1, . . . , qn.

(3) For any γ > 0 there exists a weight u > 0 such that P T = γ if and only if

the interior of the convex cone generated by q1, . . . , qn contains the positive

orthant of Rn. Then, p1, . . . , pn have to be linearly independent.

(4) For any γ ≥ 0, there exists a weight u ≥ 0 such that (3.4) if and only if the

convex cone generated by q1, . . . , qn contains the nonnegative orthant of Rn.

Then, p1, . . . , pn have to be linearly independent.

Proof. Both (1) and (2) are trivial. (3) The former part is a direct consequence of

(1). Then, the rank of P T is equal to n. (4) can be proven in the same way. □

Example 4.3. In Figure 4, the centers of A1 and A2 are p1 = (60, 60) and p2 =

(40, 80), respectively. Then, Γ+ is the convex cone generated by q1 = (40, 60) and

q2 = (80, 60). If weights are allowed to be negative, then any γ ∈ R2 is achieved

by a weight vector. In Figure 5, the centers of A1 and A2 are p1 = (60, 60) and

p2 = (80, 80), respectively. Then, Γ+ is the ray extending from the origin to the

point q1 = (60, 80). Namely, only γ1 : γ2 = 3 : 4 is achieved by positive weights. On

the other hand, Γ equals to the line generated by q1 = (60, 80).

5. Concluding remarks

The set evaluation theorem is applicable to any nonempty compact sets A1, . . . , An.

In particular when every Ai is symmetric, the weight u ∈ Rn is obtained by solving

linear equation P Tu = γ. When Ai is not symmetric, we need some alternative to

pi. For example, the geometrical center and the center point ([2]) are candidates.

This is a matter for future work.
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Figure 4. Γ+ is the convex cone generated by q1 = (40, 60) and (80, 60).

Figure 5. γ1 : γ2 = 3 : 4
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