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SET-EVALUATION

HIDEFUMI KAWASAKI

ABSTRACT. When evaluating two students using two types of tests, assigning
weights to their scores can be a useful approach. Consider the following scenarios:
Suppose student ai’s scores are (40, 80) and student as’s scores are (60, 60).
With equal weights of 1:1, their overall evaluations are the same. With weights
of 2:1, student a2 outperforms student a;. With weights of 1:2, the conclusion is
reversed. This observation indicates that one can control the overall evaluation
by weights. This paper shows the same is true for not only individuals but
also groups (sets). The mathematical foundation for this approach is based on
Borsuk ’ s antipodal theorem ([1]).

1. INTRODUCTION

Topology has long been applied to protein structure analysis and data analysis.
While fixed-point theorems are essential tools in optimization theory and game
theory, it cannot be said that topology has been fully utilized in these fields. The
author has been working on applying Borsuk’s antipodal theorem to optimization
theory ([3]-[6]). Borsuk’s antipodal theorem states that for any continuous mapping
© from the n-sphere S™ to the n-dimensional Euclidean space R", there exists a point
u € S™ such that p(u) = p(—u). This paper shows Borsuk’s antipodal theorem is
useful for evaluating sets.

In Section 2, we introduce a family of parametric optimization problems with
parameter u € S™, and present an antipodal theorem for it. In Section 3, we provide
a set evaluation theorem as a corollary of our antipodal theorem. In Section 4, we
will deal with a positive weight.

2. ANTIPODAL THEOREM FOR PARAMETRIC OPTIMIZATION PROBLEM

For any point w = (ug, ..., u,+1) of the n-sphere S™ = {u | u? +--- +ui+1 =1},
we write u = (u,u,11). D" denotes the n-disk {(z1,...,2) | 2 + - + 22 < 1}.
Throughout this paper, we assume for any ¢ = 1,...,n that 4; C R" is a nonempty

compact set in R™ and f; : R™ x D™ — R is a continuous function that is antipodal
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w.r.t. w € D" that is, fi(z,—u) = —fi(z,u) for any (z,u) € R™ x D™. Then, it
holds that f;(z,0) = 0.
We define an optimal-value function x; with a shift term by

(2.1) ki(uw) := max fi(z,u) — Yitpt1,
TEA;

where 7; is a given real constant. Then, k; is continuous. Applying Borsuk’s
antipodal theorem to x := (k1,..., Ky), we obtain the following.

Theorem 2.1. (1) For any v = (71,...,7) € R", there exists a point u =
(U, Upt1) € S™ such that

2.2 ax f; in f; = 2v; L =1,...,n).
( ) :IE%A)f fl(xau) +£Iégll fl(xvu) Yiln+1 (Z ) ,TL)
In particular, when ~y; is nonzero for some i, u is a nonzero vector.
(2) There exists a nonzero uw € D" such that max filx,u) + migl filx,u) does
TrTEA; TEA;

not depend on i1 =1,...,n.
(3) If there is no nonzero v € D™ satisfying

(2.3) max fi(z,v) +£IélAni filz,v) =0 (i=1,...,n),
then for any v € R"™, there exists an interior point u of D™ such that
max fi(z,u) + min fi(x,u) (i = 1,...,n) are proportionate to v; (i =
TEA; TEA;
1,...,n).

Proof. By Borsuk’s antipodal theorem, there exists a point u € S™ such that x(u) =

k(—u). Since fi(z,—u) = —fi(x,u), we have

max filz,u) = vitny1 = max fil®, —u) + yiuni1 = —mnin fil,w) + vyiuny1,

which implies (2.2). Suppose that v = 0, then it follows from (2.2) that

2%iUn41 = max fi(z,0) + ;Ielgl fi(z,0) = 0.
Since ; # 0 for some i, we have u,+1 = 0, which contradicts (u,u,+1) # (0,0).
Therefore, u # 0. (2) follows from (1) by taking ; = 1 for every i. (3) It follows

from (1) and the assumption on (2.3) that u,4+1 7# 0. Hence, we obtain the desired
proportional relation. O

3. SET EVALUATION THEOREM
When we take the inner product (u,x) = uyxy + - - + upzy, as fi(x,u), we have
ki(w) = max fi(z, u) = yitn41 = 07 (u [ Ai) = Yitin,
where §*(u | 4;) is the support function of A;. Further, (2.2) reduces to

0 (u | Ay) + 0x(u | Ay
(3.1) ci(u) == (u] A) ;_ (u] A)
where d,(u | A;) := mingeq, (u, z). Figure 1 indicates that ¢;(u) is a kind of center
of A; in the direction u.

- %’Un+17
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Theorem 3.1 is a direct consequence of Theorem 2.1.

Theorem 3.1. (Set evaluation theorem)
(1) For any v1,...,7vn € R, there exists a point u = (u,up41) € S™ such that
(3.2) ci(u) = Yitupsr (i =1,...,n).

In particular when ; is nonzero for some i, u is a nonzero vector.
(2) There exists a nonzero u € D™ such that c¢;(u) does not depend on i =

1,...,n.
(3) If there is no nonzero v € D™ such that c;(u) = 0 for any i, then for any
V1,50 € R, there exists an interior point u of D™ such that
(3.3) cr(u): - rep(u) =11 Y.

FIGURE 1. The hyperplane (u,z) = ¢;(u) equally divides the width
of A; in the direction wu.

Theorem 3.1 (3) demonstrates the evaluation method with weights is applicable
to sets. In Figures 2 and 3, there is no line passing the origin that equally divides
the width of A; and Ay in any direction. Hence, it follows from (3) that for any v,
and 9, there exists a weight u € R? such that ¢ (u) : ca(u) = 71 : y2.

FIGURE 2. ¢j:c9=1:2

FIGURE 3. ¢c1:co=1: -2
In particular when A; is symmetric w.r.t. a point p;, the weight « in Theorem
3.1 can be computed by a linear equation.

Lemma 3.2. If A; is symmetric w.r.t. a point p; € R™, then ¢;(u) = (p;,u). So,
(8.2) reduces to the linear equation

(3.4) PTu = uyq17,
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where P := (p1 ... pn). Further, there is no nonzero u € R™ satisfying c;(u) = 0
(t=1,...,n) if and only if p1,...,pn are linearly independent. In such a case, the
solution (u,uny1) € S™ of (3.4) is obtained by solving

(3.5) PTy =+,
and normalizing (u,1).

Proof. . Since C; := A; —p; = {x —p; | * € A;} is symmetric w.r.t. the origin,
x € C; is equivalent to —x € C;. Hence

8.(u| C;) = min (u,z) = — ,—z) = — —x) = —5*(u | Cy).
(u] Ci) = min (u, z) max (u, —z) ~ Imax {u, —z) (u] C)

Thus,
2ci(u) = 0" (u|A;)+d(ulA;)
= 0"(u| Cy) + (u,pi) + 0 (u | C;) + (u, i)

= 2<pi7u>'
Therefore, ¢;(u) = (p;,u), and (3.2) reduces to pf u = up1v; (i =1,...,n).
Further, ¢;(u) = 0 (¢« = 1,...,n) has no nonzero solution w if and only if
(p1,--.,pn)Tu = 0 has no nonzero solution, which is equivalent to pi,...,p, are
linearly independent. Then, (3.5) has a unique solution. O

4. POSITIVE WEIGHT

As we have seen in Figures 2 and 3, some components of the weight v may be
negative. When each A; is symmetric w.r.t. a point p;, the weight w is a solution
of the linear equation PTu = . Hence, the positive (nonnegative) weight reduces
to the positive (nonnegative) solution of the linear equation.

For any n x n matrix @, The (4, j)-minor of @, denoted |Q;;|, is the determinant
of the (n — 1) x (n — 1) matrix that results from deleting i-th row and j-th column
of Q. The (i,j) cofactor of @ is defined by gi; := (—1)"*7|Q;;|, and the cofactor
matrix of Q is defined by C~2 = (gi;)T.

When P is nonsingular, the solution of PTu = v is expressed as

1 = 1

w= (P71 _
(4.1) (P = pr P77 =1y

_ L .
|PT] 7

Theorem 4.1. Assume that A; is symmetric w.r.t. p; for any i = 1,...,n and
D1,-..,pn are linearly independent. Let p;; be the (i,7) cofactor of P. Then, for
any v > 0, there exists a weight u > 0 such that (3.4) if and only if

(4.2) Pliy >0 (1<, j <n).
For any v > 0, there exists a weight u > 0 such that (3.4) if and only if

(4.3) |P|pij >0 (1<i,j<n).
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Proof. First, we note that (3.4) has a positive solution (u,u,+1) if and only if
PTu = « has a positive solution u. It follows from (4.1) that PTu = + has a
positive solution u for any v > 0 if and only if (4.2) holds. The latter part can be
proven in the same way. U

Next, let us change our approach and find the set of all «v that are achieved by a
positive (nonnegative) weight wu:

Iy ={PTu|u>0}, Ty:={PTu|u>0}.
For comparison, we set I := {PTu | u € R"}. Theorem 4.2 is easily proven.

Theorem 4.2. Assume that A; is symmetric w.r.t. p; * for anyi=1,...,n, and
set PT = (q1,...,qn). Then,

(1) ., = {Z?:l U;q; | u; >0 (2 =1,.. ,n)}

(2) 'y equals to the convex cone generated by qi,. .., qn.
(3) For any v > O there exists a weight u > 0 such that PT =~ if and only if
the interior of the convex cone generated by qi,...,qn contains the positive

orthant of R™. Then, p1,...,pn have to be linearly independent.

(4) For any v > 0, there exists a weight w > 0 such that (3.4) if and only if the
convex cone generated by qi,...,q, contains the nonnegative orthant of R™.
Then, p1,...,pn have to be linearly independent.

Proof. Both (1) and (2) are trivial. (3) The former part is a direct consequence of
(1). Then, the rank of P is equal to n. (4) can be proven in the same way. O

Example 4.3. In Figure 4, the centers of A; and As are p; = (60,60) and py =
(40, 80), respectively. Then, I'; is the convex cone generated by ¢ = (40, 60) and
g2 = (80,60). If weights are allowed to be negative, then any v € R? is achieved
by a weight vector. In Figure 5, the centers of A; and As are p; = (60,60) and
p2 = (80,80), respectively. Then, I'; is the ray extending from the origin to the
point g1 = (60, 80). Namely, only 71 : 72 = 3 : 4 is achieved by positive weights. On
the other hand, I' equals to the line generated by ¢; = (60, 80).

5. CONCLUDING REMARKS

The set evaluation theorem is applicable to any nonempty compact sets Aq,..., A,.
In particular when every A; is symmetric, the weight u© € R™ is obtained by solving
linear equation PTu = ~. When A; is not symmetric, we need some alternative to
p;. For example, the geometrical center and the center point ([2]) are candidates.
This is a matter for future work.
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FIGURE 4. T} is the convex cone generated by ¢; = (40,60) and (80, 60).

q1 = q2 = (60, 80)
g

Ay

FIGURE 5. 71 i1y =3:4
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