
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

筆順変動を表現するHMMとそのオンライン文字認識へ
の応用

片山, 喜規
九州大学大学院システム情報科学研究院

内田, 誠一
九州大学大学院システム情報科学研究院

迫江, 博昭
九州大学大学院システム情報科学研究院

https://hdl.handle.net/2324/7402679

出版情報：電子情報通信学会論文誌 D. J91-D (5), pp.1434-1441, 2008-05-01. The Institute of
Electronics, Information and Communication Engineers
バージョン：
権利関係：©（社）電子情報通信学会2008



論 文

筆順変動を表現するHMMとそのオンライン文字認識への応用

片山 喜規†a) 内田 誠一†b) 迫江 博昭†

An HMM Representing Stroke Order Variations and Its Application to Online

Character Recognition

Yoshinori KATAYAMA†a), Seiichi UCHIDA†b), and Hiroaki SAKOE†

あらまし 本論文では，筆順フリーなオンライン文字認識の高精度化を目指し，(i) 筆順変動の統計的モデル
の構築，及び (ii) その認識における利用，の 2点について検討する．一般に筆順フリー化には不自然な画対応の
許容による誤認識の問題があるが，提案する筆順変動モデルを用いることでそれらを抑制できる．この筆順変動
モデルは，筆順フリー認識のためのグラフモデル（キューブグラフ）の確率的拡張として定式化され，結果的に
文字形状に関するゆう度と筆順のゆう度を同時に扱うことが可能な隠れマルコフモデル（HMM）の一種となる．
公開されているオンライン文字データベース “HANDS-kuchibue d-97-06-10” を用いた認識実験により，筆順
変動モデル導入の有効性及び妥当性を明らかにした．

キーワード オンライン文字認識，筆順フリー，筆順変動モデル，隠れマルコフモデル，キューブサーチ

1. ま え が き

漢字など多画文字のオンライン認識においては，筆

順変動が問題となる．すなわち，筆順変動を伴った入

力パターンは，正規筆順で登録されている標準パター

ンと部分的若しくは全体的に大きく異なったデータと

なり，誤認識される可能性が高くなる．そこで，筆順変

動があっても正しく認識できる手法（筆順フリーなオ

ンライン文字認識手法）が多数検討されてきた [1], [2]．

後述するように，筆順フリーなオンライン文字認識

手法にはいくつかの実現方式がある．これらの中に，

入力パターンと標準パターン間に最適な画対応を決

定することで，筆順フリー性を実現するという方式が

ある．適切な画対応が求まれば，その対応下での両パ

ターン間の類似度は筆順によらず一定となるために，

筆順変動に頑強な認識を実現できる．

しかしこの最適画対応方式には副作用もある．すな

わち，画の形状や位置に基づいて画対応を定めると，

異なるカテゴリーの文字パターンであっても強引な画
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対応付けにより類似度が過大評価される場合があり，

結果的に誤認識を起こすという問題もあった．例えば，

正規筆順で書かれた入力パターン “本” の各画を標準

パターン “未”の第 1，3，4，5，2画にそれぞれ対応

づけることで誤認識してしまう可能性が高くなる．

本論文では，筆順フリーなオンライン文字認識の高

精度化を図るべく，筆順変動の統計的モデル（キュー

ブ HMM）の構築及びその認識における利用について

検討する．認識の際に，この筆順変動モデルを用いな

がら画対応並びに類似度を求めることで，起こりやす

い画対応のみを許容し，強引な画対応を排除すること

を可能にする．先の “本” と “未” の例では，“未” に

おいて第 5画→第 2画の順に書かれることはほとん

どないために，それをモデルに反映できれば，誤認識

を回避できると考えられる．

本手法は，従来の筆順フリー認識手法であるキュー

ブサーチ法 [3], [4] を発展させたものである．後述する

ように，キューブサーチ法では，すべての筆順を表現

するグラフ（キューブグラフ）を用い，その始端ノー

ドから終端ノードまでの可能なすべての経路により，

すべての筆順を表現する．そして最適画対応決定問題

をこのグラフ上の最適経路探索問題として表現する．

本手法ではキューブグラフを一種の隠れマルコフモデ

ル（HMM）と見て，グラフの各エッジの遷移確率とし
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て筆順変動の統計モデルすなわちキューブHMM を構

築する．簡単にいえば，上述の各経路についてその確

率が計算されることになり，これがその経路で表現さ

れる筆順の生起確率となる．遷移確率は通常の HMM

と同様，学習により自動的に設定できる．このように

グラフに基づくキューブサーチ法を出発点とすること

で，HMMという非常に自然な形式で筆順変動モデル

を構築できる．

2. 関 連 技 術

2. 1 従来の筆順フリー認識手法

筆順フリーなオンライン文字認識には，大きく 2種

類の方式がある．
• 第 1 は，予想される筆順変動をすべて標準パ

ターンとして登録しておくという方式である [5]～[7]．

例えば「右」「女」「必」といった筆順変動が起こりやす

い文字カテゴリーについては，複数の標準パターンを

準備する．極めて実際的な戦略であるものの，当然なが

ら予想外の筆順変動には対応できない．更に続け書き

による画数変動が起こった場合まで考えると，相当に

大量の標準パターンを準備しておかなくてはならない．
• 第 2は，入力及び標準パターン間に最適な画対応

を求め，その対応下で両パターンの類似度を求めるとい

う方式である [3], [4], [8]～[11]．画対応を探索するため，

第 1の戦略に比べて計算量を要することが多いが，上述

の問題を解消できるため，より本質的な筆順フリー化戦

略であるといえよう．加えて多くの場合続け書きに対応

するための拡張が可能であることは大きな特長である．

このように第 2の方式すなわち最適画対応決定に基

づく方式は，その拡張性を含めて重要なアプローチで

あるといえる．本手法もこの第 2の方式の一種である．

従来，この最適画対応決定問題は，画間類似度の文

字全体での総和を 1対 1対応制約条件のもとで最小化

する問題として定式化されてきた．この類似度は，画

の形状や画の位置といった幾何的情報をもとに設計さ

れることが多い．その結果，入力パターンを表す画の

集合と，標準パターンを表す画の集合間に，画の幾何

的類似度評価に基づいて 1対 1対応を定めることにな

る．筆順情報を用いることなく，集合の要素間の単純

な対応付け問題としているので，対応付けの自由度が

非常に高い．

しかし，この自由度の高さは第 2の方式の問題点に

もなっている．すなわち，1. の “本”と “未” の例の

ように，実際には起こり得ないような対応付けをも許

図 1 キューブグラフ
Fig. 1 Cube graph for stroke order-free recognition.

容してしまうということにより，異なるカテゴリーの

パターン間の類似度が過大評価される危険性がある．

実際，後述する実験結果から明らかになるように，こ

の問題による誤認識は相当に多い．

本手法では，筆順変動モデルを導入することでこの

対応付けの自由度を制御し，出現頻度の低い筆順につ

いてはその頻度に応じて抑制することを目指す．この

導入により，非常にまれな筆順で書かれた入力パターン

については誤認識となる可能性があるが，上記第 1の

方式のように完全に未登録の筆順変動を排除する枠組

みとは異なるため，こうした副作用は少ないと考える．

なお，以上第 1，第 2 の方式とは別に，最近では，

オンライン文字パターンを画像化することで筆順情

報を含めた動的情報を消去し，オフライン文字認識

の技法を用いて認識するという方式も検討されてい

る [12], [13]．ただし，実際には動的情報を完全に消去

することは少なく，多くはオンライン文字認識手法と

の相補的なハイブリッド構成をとる．したがって本論

文の結果もこのハイブリッド方式の性能向上に資する

ことができる．

2. 2 キューブサーチ [3], [4]

本節では，本手法の出発点となるキューブサーチ

法について概観する．既述のように，キューブサーチ

法は最適画対応を決定する方式の一つであり，キュー

ブグラフを用いて各文字のすべての筆順を表現する．

図 1 は 4画文字 “木”に関するキューブグラフである．

このグラフの始端ノードから終端ノードまでの可能な

すべての経路により，“木” のすべての筆順が表現さ

れていることが分かる．なお各ノード内の 4けたの 2

進数は，そのノードに到達した時点で対応済みの画番

号を表現している．例えば 0101 は，入力パターンの
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1画と 2画が標準パターンの 1 画（一）と 3画（ノ）

若しくは 3画と 1画に対応済みであることを意味して

いる．

キューブグラフの各エッジは特定の画対応を表現

する．図 1 の例でいえば，ノード m = 0001 から

n = 0101へのエッジには標準パターンの第 3画（ノ）

と入力パターンの第 2 画の類似度（若しくは相違度）

が計算される．このように，隣接ノード m,n により

標準パターンと入力パターンのどの画を対応づけるか

が一意に定まるが，m や n は画番号を直接表してい

るのではない点には注意されたい．

最適画対応決定問題はキューブグラフ上の最適経路

探索問題として表現される．最適化の基準は，キュー

ブグラフの各エッジで計算される入力画と標準画の画

間類似度である．この類似度の累積値が最大となる

経路が最適経路であり，最適画対応，すなわち入力パ

ターンの筆順を表現している．

他の手法 [8]～[11]と同様，このキューブサーチも画

の位置関係・形状といった幾何学的評価のみを考慮し

ながら画対応が最適化される．したがって，筆順変動

の起こりやすさといった評価はなされていなかった．

3. キューブHMM

本章では，提案するキューブ HMM の構造，学習

法，並び文字認識における利用について述べる．以下

では k = 1, . . . , K を入力パターンの画番号とする．

3. 1 キューブHMMの構造

キューブHMMは，図 1 のキューブグラフの各ノー

ドを状態とみなし，エッジで結ばれた 2 状態 m, n

間に遷移確率 pm,n を付与したものである（ただし∑
n

pm,n = 1）．したがってキューブHMMは，キュー

ブグラフをトポロジーとし，自己状態への遷移（セル

フループ）をもたない left-to-right HMMである．

2. 2 のキューブサーチと同様，キューブHMMの各

エッジも特定の画対応を表現する．例えば図 1 の状態

m = 0001 から n = 0101 へのエッジは，標準パター

ンの第 3画（ノ）と入力パターンの第 2画の対応付け

を表現する．したがってそのエッジの通りやすさを示

す pm,n は，その特定の画対応が起こりやすいか否か

を表現している．遷移確率 pm,n は 3. 2 で述べるよう

に学習により決定される．

各エッジでは，確率 pm,n に加え，そのエッジが表

現する対応画間の類似度 qm,n が計算される．通常の

HMM の用語にたとえれば，pm,n が状態遷移確率，

qm,n がシンボル出力確率に相当する．この場合のシン

ボルは，入力画を表す特徴ベクトル系列である．本論

文では，時刻 tにおける座標特徴 (xt, yt)と方向特徴

θt による特徴ベクトル (xt, yt, θt)の時系列を用いた．

画間類似度 qm,n には様々な形態が考えられるが，本

論文では，その計算にも HMM を利用することとす

る．すなわち標準パターンの各画についてその形状を

表現する HMM（いわゆるストローク HMM）を準備

しておく．入力画との画間類似度 qm,n はその HMM

による入力画のゆう度として求められる．この場合，

キューブ HMM の各エッジにストローク HMM が埋

め込まれた構造となり，全体として一つの大規模な

HMM となる．なおストローク HMM 自体にも様々

な形態が考えられる．本論文では文献 [15]の座標特徴

と方向特徴を併用する手法を用いた（注1）．ストローク

HMM の状態数は画の屈曲点数に応じておよそ 1～4

状態とした．

3. 2 キューブHMMの学習

キューブ HMM の状態遷移確率 pm,n は，通常の

HMMと同様，EMアルゴリズムによる反復学習（再

推定）が可能である．以下，再推定に必要な前向き確

率と後向き確率，及びそれらを用いた再推定の方式に

ついて述べる．なお，画間ゆう度 qm,n 計算のための

ストローク HMM は既に学習済みであり，そのパラ

メータは固定とする．（ただし，4. 5 においてストロー

ク HMMの追加学習について実験的に検討する．）

3. 2. 1 前向き確率

まず入力画番号が 1から順に kまできたときに状態

m ∈ S(k)に存在し得る確率，いわゆる前向き確率 αm

を計算する．ここで S(k)は入力の第 1画から第 k 画

までの画対応が終了したことを示す状態の集合である．

4 画の例ならば，図 2 のように S(2) = {0011, 0101,

0110, 1001, 1010, 1100} である．
具体的には αm は以下のように計算される．

（ 1） 初期状態 α0 = 1.0

（ 2） k = 1, · · · , K に対して以下を実行

（ 3） ∀m ∈ S(k) に対して以下を実行

（ 4） αm =
∑

l∈Pre(m)

αlpl,mql,m (1)

ここで，Pre(m)は，状態mに先行可能な状態の集合で

（注1）：具体的には，N 本の線分で近似できる画について，N 状態の
left-to-right 型 HMM により表現し，ゆう度計算を行った．線分の始
端では座標特徴を出力し，線分内では方向特徴を出力する工夫を施し，
各特徴の観測確率密度関数としてはガウス分布を用いた．
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ある．同じく 4画の場合，m = 0011ならばPre(m) =

{0001, 0010} である．
3. 2. 2 後向き確率

前向き確率 αm と同様，後向き確率 βm についても

計算する．後向き確率 βm は入力画が第 k画から第K

画まで筆記されたとき，それが状態 m ∈ S(k)から開

始され得る確率であり，次式で計算される．

（ 1） 状態m ∈ S(K)について βm = 1.0

（ 2） k = K − 1, · · · , 1, 0 に対して以下を実行

（ 3） ∀m ∈ S(k) に対して以下を実行

（ 4） βm =
∑

n∈Post(m)

βnpm,nqm,n

ここで Post(m)は，状態mに後続可能な状態の集合

である．4 画の場合，m = 0011 ならば Post(m) =

{0111, 1011} である．
3. 2. 3 遷移確率 pm,n の再推定

上で得られた αm, βm から，以下のように EMアル

ゴリズムに基づく pm,n の再推定式が得られる．

p̂m,n =
αmpm,nqm,nβn∑

n′∈Post(m)

αmpm,n′qm,n′βn′
(2)

ただし再推定の初期値はすべて等確率すなわち pm,n =

1/|Post(m)|とした．なお，以下の実験では学習パター
ンセット全体での一括学習を行った．すなわち，一つ

の学習パターンごとに pm,n を修正するのではなく，

学習パターンセット全体での総和を式 (2)の分子分母

ともに適用した再推定式により，ゆう度の最大化を

図った．

3. 3 キューブHMMを用いた認識

入力パターンの認識は，以上で準備された各文字カ

図 2 キューブ HMM における S(k), Pre(m), Post(m)

Fig. 2 Sets of states, S(k), Pre(m), and Post(m).

テゴリーのキューブ HMMについて入力パターンのゆ

う度を計算すればよい．具体的には，まず入力パター

ンと標準パターンの各画について，ストローク HMM

により画間ゆう度 qm,n を算出する．その後，以下に

述べる計算法により，状態遷移確率 pm,n を考慮しな

がら，キューブ HMMによって最ゆう画対応及び文字

全体のゆう度が決定される．最も高いゆう度を示した

キューブ HMMのカテゴリーを認識結果とする．この

ようにキューブ HMMは，qm,n による文字形状のゆ

う度と pm,n による筆順のゆう度の同時評価を実現し

ている．

文字全体のゆう度の具体的計算法には 2 種類が考

えられる．すなわち，最終状態 m ∈ S(K) における

前向き確率 αm を用いる場合と，ビタビアルゴリズ

ムによるゆう度を用いる場合である．後者はキュー

ブ HMM 上の開始状態から最終状態までの経路で

求まり得る最大確率であり，3. 2. 1 の漸化式 (1) を

αm = max
l∈Pre(m)

αlpl,mql,m に置き換えた手続きで導出

される．予備実験の結果，両計算法の認識率にほとん

ど違いが見られなかった．以下本論文では，ビタビア

ルゴリズムによるゆう度計算を行った結果を示して

いる．

4. 実 験

4. 1 データセット

実験用データセットは東京農工大のオンライン文

字データベース “HANDS-kuchibue d-97-06-10” [14]

中の教育漢字でかつ正規画数で書かれたものを使用し

た．画数別の傾向を観察するべく，5，10，15，20画の

カテゴリーのみを用いた．ただし，ストローク HMM

の学習に必要となる正規画数・正規筆順パターン数が

30 未満のカテゴリーについては除外した．表 1 に実

験対象となったパターン数などを示す．

各パターンについて前処理を行った．具体的には，

128 × 128 への線形スケーリング，平滑化，リサンプ

リング，及び方向量子化を適用した．

4. 2 ストロークHMMの学習

各カテゴリーの正規筆順・画数パターン（前述のよ

表 1 実験で用いたデータセット
Table 1 Statistics of dataset.

#strokes 5 10 15 20

#categories 67 76 21 2

#samples 28,525 17,605 3,336 624
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図 3 “未” の筆順変動の学習結果
Fig. 3 Trained stroke order variation of “未”.

うに 30パターン以上存在）のうち 2/3を用いてスト

ロークHMMを学習した．残る 1/3は評価用パターン

として 4. 4の認識実験の評価用パターンに含めた．ス

トローク HMMとしては 3. 1 で述べた手法を用いた．

4. 3 筆順変動モデル学習結果

図 3 にカテゴリー “未” について，学習された状

態遷移確率 pm,n を可視化したものを示す．実線は

pm,n ≥ 10−3 となった状態遷移であり，pm,n が大き

くなるほど太く示している．逆に点線は pm,n < 10−3

となった状態遷移を示す．

同図より，キューブグラフ上縁の経路に相当する正

規筆順については，大きなゆう度をもつことが分かる．

実際，“未”の正規画数パターン 343個の筆順を調査し

た結果，1-3-2-4-5 の筆順で書かれた 1 パターンを除

いてすべて正規筆順で書かれており，pm,nは実際の筆

順情報を反映していることが分かる．なお，1-3-2-4-5

という表現は正規筆順の画順番に対して第 1，3，2，

4，5画の筆順（“未”では – → ｜ → — → ／ → ＼

の順）を意味する．

図 4 に，より筆順変動の種類の多かったカテゴリー

“用” の学習結果を示す．“用” の正規画数パターン

1496 個の筆順を調査した結果，正規筆順が 1315 個，

1-2-5-3-4 の筆順が 178 個，4-2-1-3-5，1-3-5-2-4，2-

3-1-4-5 の筆順が各 1 個であった．これら実際の筆順

に対応する経路が学習によって獲得されているのが

確認できる．（例えば，2 番目に多かった筆順 1-2-5-

3-4 は，経路 00000→00001→00011→10011→10111

→11111 に対応．）

なお，図 3，図 4 において，主要な筆順以外に，高

いゆう度をもった状態遷移が散在している．これらは

図 4 “用” の筆順変動の学習結果
Fig. 4 Trained stroke order variation of “用”.

表 2 本手法及び従来法の誤認識率（%）
Table 2 Error rates by the proposed method and the

conventional method.

#strokes, K 5 10 15 20

conventional closed 9.06 2.13 1.14 0.2

open 9.55 2.26 1.26 0.2

proposed closed 5.98 0.22 0.06 0.0

open 6.47 0.70 0.54 0.0

同一文字内の画形状の類似性（例えば “用” の場合は

1画と 5画）と実際の筆順の組合せにより発生したも

のである．一見すると筆順変動モデルとして適切でな

いようにも見えるが，散在的すなわち主要な経路に組

み込まれていない遷移なので，筆順情報としてほとん

ど機能しない．実際，後述する認識実験の考察結果か

らも，特に悪影響を及ぼさないことが判明している．

4. 4 認 識 結 果

4. 4. 1 認 識 率

表 2 に本手法による誤認識率を示す．これらの誤認

識率は 3重交差確認法によった．すなわち，同一筆者

データが極力分割されないように全データを 3分割し，

そのうち二つを確率 pm,n の学習用，残る一つを評価

用として誤認識率を求める処理を 3回繰り返し，その

平均値を誤認識とした．表中の “open”がそうして求

めた誤認識率である．一方の “closed”は，参考のため

に示した学習用パターンに対する誤認識率である．

同表中の従来法とは，筆順変動モデルを用いない

2. 2 の手法のことであり，具体的には本手法において

pm,n をすべて 1.0にした場合に相当する．したがって

この従来法と比較することで，筆順変動を学習するこ

との効果を検証できる．ストローク HMM の学習用

パターンと画間ゆう度 qm,n，及び評価用パターンは，
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表 3 本手法による改善（improved），改悪（degraded）
パターン数，及び本手法・従来法ともに誤認識となっ
たパターン数（failed）．括弧内はその全データに占
める割合（%）

Table 3 The numbers of improved samples and de-

graded samples.

#strokes, K 5 10 15 20

improvedclosed1,821 (3.19)674 (1.91)72 (1.08) 2 (0.2)

open 981 (3.44)349 (1.98)34 (1.02) 1 (0.2)

degraded closed 63 (0.11) 3 (0.01) 0 (0.00) 0 (0.0)

open 103 (0.36) 75 (0.43)10 (0.30) 0 (0.0)

failed closed3,347 (5.87) 76 (0.22) 4 (0.06) 0 (0.0)

open 1,742 (6.11) 48 (0.27) 8 (0.24) 0 (0.0)

本手法のそれらと同一とした．

表 2 より，筆順変動モデルを利用することで誤認識

率を大幅に低減できることが分かる．評価用パターン

（open）について誤認識が低減された割合を計算する

と，5画では誤認識が 32%，10画では 69%，15画で

は 57% 減っている．20画については，すべての評価

用パターンが正しく認識された．なお，他の 10 画以

上の文字に対して 5画における誤認識の低減効果が低

いことに関しては 4. 5 にて後述する．

表 3 に従来法を基準とした本手法による改善パター

ン数及び改悪パターン数を示す．いずれの画数 K に

おいても，改悪パターン数は少ない．すなわち，前述

の誤認識率低減は，従来法で誤認識されていたものが

そのまま正解に転じたことによるものであり，筆順変

動モデル導入による副作用は少ないことが分かる．

4. 4. 2 改 善 例

表 4 に，5画における従来法に対する本手法の主要

な改善結果を示す．例えば，正規筆順で書かれた “本”

のうち，従来法では誤った筆順同定の結果 “未”と誤認

識されていた 151パターンが，本手法では正しく筆順

同定されたことで正解に転じたことを示している．ま

た，同表では従来法では誤認識した “未” モデルでの

筆順同定結果には，1-3-4-2-5などが多かったことも併

せて示している．これらの筆順同定結果は，4. 3 で述

べたように “未”の学習パターン中には存在せず，図 3

に示す “未” の筆順変動モデルにおいても極めてまれ

な筆順である．本手法で獲得した統計的な筆順情報に

よって誤認識カテゴリーの過度な画対応が抑制された

結果，正しいカテゴリーに認識されたことが分かる．

次に，従来法では “用”と誤認識されていた “田”106

パターンが本手法によって正解となった事例に着目す

る．図 5 にここで言及される各事例の物理ストローク

を示す．表 4 の (*1)は，非正規筆順で書かれた “田”

表 4 従来法に対する本手法の改善例（5 画）
Table 4 Major improved samples.

#sam input recognition result

ples conventional proposed

cat. order cat. order cat. order

151 本 1-2-3-4-5 未 1-3-4-2-5, 本 1-2-3-4-5

1-3-4-5-2,

2-3-4-1-5,

2-3-4-5-1

139 本 1-2-3-4-5 末 1-3-4-2-5, 本 1-2-3-4-5

1-3-4-5-2,

2-3-4-5-1,

2-3-4-1-5

107 目 1-2-3-4-5 司 3-1-2-4-5, 目 1-2-3-4-5

3-1-4-2-5,

3-1-4-5-2

106 田 1-2-4-3-5 用 1-2-4-5-3, 田 1-2-4-3-5

(*1) 1-2-3-5-4

1-2-3-4-5 1-2-5-4-3, 1-2-3-4-5

(*2) 1-2-5-3-4

1-2-4-5-3 1-2-4-3-5 1-2-4-5-3

1-3-5-2-4 1-5-4-2-3 1-3-5-2-4

103 市 1-2-3-4-5 布 2-1-3-4-5, 市 1-2-3-4-5

2-1-5-4-3

図 5 改善例 (*1)，(*2) の物理ストローク対応
Fig. 5 Physical stroke order of improved samples.

に対して “用” モデルの過度な画対応が抑制されたこ

とで正答に転じた例である．一方，同表の (*2)は，正

規筆順で書かれた入力パターン “田”の改善例である．

4. 3 で見たように，カテゴリー “用”には “田”の正規

筆順に対して形状的に類似した非正規筆順 (1-2-5-3-4)

が学習パターン中に有意数存在するので “用” モデル

にとって過度な画対応ではない．したがって筆順変動

モデルを用いてもこれら入力パターンは “用” に誤認

識される可能性はある．しかし，筆順変動モデル適用

によるゆう度低下は，“田” の正規筆順に対して “用”

の非正規筆順の方が大きい．その結果，“田”の正規筆

順モデルの方が “用” の非正規筆順モデルよりもゆう

度的に上回るため，正答に転じている．

以上から，本手法では筆順変動モデルに学習された

実際の筆順情報に基づいて現実には起こらない筆順や，

起こり得るが頻度の低い筆順のゆう度を下げることに

よって認識率を改善している．なお，表 4 から，筆順

変動の多い “田” においても，入力パターンの筆順が

本手法により正しく同定できていることが分かる．
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表 5 従来法に対する本手法の改悪例（5 画）
Table 5 Major degraded samples.

sam- input recognition result

ples conventional proposed

cat. order cat. order cat. order

15 用 1-2-3-4-5 用 1-2-4-3-5, 申 1-2-3-4-5

1-2-3-4-5

12 用 1-2-5-3-4 用 1-2-5-4-3, 田 1-2-3-4-5

1-2-5-3-4

10 生 1-2-4-3-5 生 1-2-4-3-5, 主 1-2-4-3-5

3-2-4-1-5

1-2-3-4-5 3-2-1-4-5 1-2-3-4-5

10 四 1-2-3-4-5 四 1-2-4-3-5 皿 1-2-3-4-5

9 右 2-1-3-4-5 右 2-1-3-4-5, 石 1-2-3-4-5

5-1-3-4-2

4. 4. 3 改 悪 例

4. 4. 1 でも述べたように，改善パターンに比べ改悪

パターンの数は非常に少なく，1/10程度である．表 5

に，本手法による 5画文字での主な改悪パターンを示

す．誤認識に転じた要因は様々あるが，それらの中で

も一つの特徴的な例を同表 2 番目の “用” の “田” へ

の誤認識に見ることができる．これは，非正規筆順の

ゆう度に対して正規筆順のゆう度が相対的に高くなる

という，4. 4. 2 の “本”の改善例でも見た本手法の全

般的な傾向が逆効果となった例である．すなわちこの

入力パターン “用”は非正規筆順 (1-2-5-3-4)で書かれ

たものであり，したがってそのゆう度は正規筆順の場

合に比べて多少低くなった．一方，不正解となった文

字カテゴリー “田” との画対応付けの結果は正規筆順

(1-2-3-4-5) であり，そのゆう度は非正規筆順に対し

て相対的に高くなった．この結果 “田” とのゆう度が

“用”とのゆう度に勝り，誤認識に転じた．こうした改

悪パターンはあまり多くないものの，筆順変動の統計

的モデルを使う場合に必ず起こり得る問題といえよう．

4. 5 ストロークHMMの追加学習

筆順変動モデルには，不自然な画対応による誤認識

の抑制という上述の効果に加え，利用可能な学習パ

ターンの拡大によるストローク HMM の高精度化と

いう二次的効果をもたらす．すなわち，筆順変動モデ

ルにより良好な画対応が得られるようになれば，言い

換えると，筆順変動を伴う学習パターンについてもそ

の第 k 画が正規筆順の第 k′ 画であることが分かれば，

前者を第 k′ 画用ストローク HMMの学習に利用でき

ることになる．結果的に，ストローク HMM用学習パ

ターンとして，少数の正規筆順パターンだけでなく，

任意筆順のパターンを利用できることになる．

表 6 追加学習を導入した場合の誤認識率（%）
Table 6 Error rate by the proposed method with in-

cremental training.

#strokes, K 5 10 15 20

proposed with closed 3.38 0.10 0.00 0.0

inc. learn. open 3.94 0.60 0.45 0.0

このことを踏まえ，正規筆順でないパターンをもス

トローク HMMの学習に利用すべく，pm,n の学習と

同時にストローク HMM を追加学習する方式につい

て実験的に検討した．具体的な追加学習の方式は以下

のとおりである．まず 3. 2 での pm,n 学習の際に，各

学習パターンについてキューブ HMMグラフ上で最大

ゆう度を与える経路を Viterbiアルゴリズムによって

求める．次に，この経路により学習パターンの筆順が

正しく表現されているとして，学習パターンの筆順を

正規筆順に変換し，対応するストロークHMMの再学

習に適用する．各ストローク HMMの追加学習が収束

した後に，pm,n の学習を継続する．これによりスト

ローク HMM の学習パターンが増加し，ストローク

HMMの精度が向上すると考えられる．

表 6 に追加学習を導入した場合の誤認識率を示す．

表 2 と比べると，追加学習の導入により，更に誤認識

率を低減できていることが分かる．

より細かく見ると，低画数文字ほど誤認識率低減効

果が高いことが分かる．すなわち，5画文字について

9.55%→6.47%と 32%であった誤認識低減率（表 2 参

照）が，追加学習導入によって 59%となり，他の画数

における誤認識低減率と比肩するに至った．これは，

追加学習の導入によってストローク HMM用の学習パ

ターンを増やすことができ，変動の大きな低画数文字

のストローク形状を追加学習導入前よりも適切に表現

できるようになったためと考えられる．

5. む す び

キューブサーチのもつ高い画対応能力を抑制し適正

化するためにノード間遷移確率を導入したキューブ

HMMを提案した．学習パターンから実際の筆順変動

を学習するために，従来のトレリスとは異なるキュー

ブ HMM 上でありながら従来の EM アルゴリズムの

枠内で機能するノード間遷移確率の再推定手法を提案

した．本手法の学習実験により実際の筆順の獲得が観

察され，認識率の向上によってその有効性を確認した．

更にキューブ HMMの有する筆順判定機能を用いて学

習データの筆順を正規筆順に変換する追加学習手法を
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提案し，認識実験によりその有効性を確認した．

今後の課題は，ストロークHMMの表現能力に関す

る検討が挙げられる．これはキューブ HMMで獲得さ

れた筆順情報や認識結果に，ストロークHMMの表現

能力に起因した問題が見られたためである．また，ス

トローク HMM を内包したキューブ HMM全体が一

つの HMM であることを生かして，一括同時学習に

関する検討も挙げられる．4. 5 でのストローク HMM

の追加学習が効果を挙げたように，それを更に一般化

した形式となる同時学習にも一定の効果が期待される．
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