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論 文

座標特徴と方向特徴の選択的利用に基づくオンライン文字認識HMM

片山 喜規†a) 内田 誠一†b) 迫江 博昭†

HMM for On-Line Handwriting Recognition by Selective Use of Pen-Coordinate

Feature and Pen-Direction Feature

Yoshinori KATAYAMA†a), Seiichi UCHIDA†b), and Hiroaki SAKOE†

あらまし 本論文では，高精度なオンライン文字認識のために，方向特徴並びに座標特徴を適切に使い分け可
能な隠れマルコフモデル（HMM）を提案する．両特徴はいずれもオンライン文字認識の基本的な特徴量であり
ながら，全く異なった性質を示す．すなわち，線分内で方向特徴が定常的なのに対し，座標特徴は常に非定常で
ある．したがって，HMMの枠組みにおいて両特徴を同等に扱うのは問題が多い．実際従来法では，座標特徴を
用いずに方向特徴だけが用いられることが多かった．本論文で提案する HMMでは，方向特徴を状態内自己遷移
における出力シンボルとして使用し，座標特徴を状態間遷移における出力シンボルとして使用する．このように
することで，線分方向が一定した定常的な部分においては方向特徴が，線分の方向が変化する過渡的な部分にお
いては座標特徴が評価されることになる．このように特徴を使い分けることで，従来法に比べ認識精度を大幅に
向上できることを，多画文字（漢字）の筆順フリー認識実験並びにその詳細な考察を通して示す．

キーワード オンライン文字認識，筆順フリー，隠れマルコフモデル，特徴の選択的利用

1. ま え が き

オンライン文字認識において，各ストローク（画）

の形状や標本点数などの変動を吸収しつつマッチン

グ処理を行う手段の一つとして隠れマルコフモデル

（HMM）が利用されている．HMMは状態をノードと

するネットワークモデルであり，状態遷移の際に既定

の確率分布に従ってシンボル（文字の局所的性質を表

す特徴量）を出力する．HMMを用いる際は，ネット

ワークのトポロジー及び出力シンボルなどの設計が必

要となる．トポロジーについては，オンライン文字認

識の場合，一般的に自己遷移を含んだ left-to-right型

が適用される．

ストロークを表現する HMM（以下，必要に応じて

ストローク HMMと呼ぶ）の出力シンボルについては

運筆方向特徴（以下，方向特徴）が採用されることが

多い．各状態の確率分布は定常的であるため，自己遷
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移の回数だけほぼ一定の方向特徴が出力されることに

なる．したがって，ストロークを折れ線近似したとき

の一線分を HMMの一状態に対応づければ，文字形状

の局所線形伸縮を自然に表現できることになる．別の

言い方をすれば，方向特徴の線分内定常性を自己遷移

により適切に表現していることになる．

これに対し，座標特徴（二次元平面内におけるペン

先の位置）は，方向特徴のもととなる重要な特徴であ

るにもかかわらず，あまり利用されていない．この理

由としては座標特徴の非定常性が挙げられる．すなわ

ち，折れ線近似した一線分内においても座標特徴は常

に変化するため，一状態の確率分布による定常的な表

現が困難になる．対応策としてより多くの状態に再分

割することも考えられるが，パラメータ数の増加のた

めにより多くの学習データが必要となる．また，そも

そも定常性を表現可能なHMMを用いる意義自体が失

われることにもなる．

しかし，座標特徴の無視は，ストロークの位置や長

さを直接表現できなくなるという副作用をもたらす．

一画文字や筆順変動を考えなくてよい文字（すなわち

ペンアップ部分を接続することで実質一画文字とみな

せる文字）では，これが大きな問題にならない場合も
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ある．しかし，多画文字を筆順フリー条件下で認識す

る場合，座標特徴の無視は深刻な問題となる．例えば，

“四”と “兄”は，方向特徴だけで考えれば，ほとんど

同一の文字として認識されるであろう．

そこで本論文では，方向特徴の線分内定常性と座標

特徴の非定常性という性質を生かし，それらを適切に

使い分けた HMM の構成手法を提案する．具体的に

は，方向特徴を状態内自己遷移における出力シンボル

として使用し，座標特徴を状態間遷移における出力シ

ンボルとして使用する．このようにすることで，線分

方向が一定した定常的な部分においては方向特徴が，

線分の方向が変化する過渡的な部分（すなわちスト

ロークの始端・終端・屈曲点）においては座標特徴が

評価されることになる．

以下では，まず従来のHMMにおける方向及び座標

特徴の使われ方について再考し，問題点及び限界につ

いて指摘する．次に，それらを踏まえた上で，本論文

で提案する HMMについて説明する．その後，従来法

に対する本手法の優位性について，大規模かつ詳細な

実験を通して，定量的並びに定性的に検証する．

2. 従来のストロークHMM

以下，xyt = (xt, yt)を時刻 t における座標特徴と

し，その時系列 xy1, · · · , xyt, · · · , xyT により単一のス

トロークを表現する．また θt = arg(xyt − xyt−1)に

より，時刻 tでの方向特徴を表す．

2. 1 方向特徴のみを用いたHMM

図 1 に典型的な従来法の一つである方向特徴 θt

を出力シンボルとするストローク HMM（以下，θ-

HMM）[1]～[4]を示す．1.でも述べたように，方向特

徴 θt のみを出力シンボルとし，座標特徴 xyt を無視

することで，特徴量の線分内定常性を HMMの自己遷

移により適切に表現できる．

この θ-HMMの学習，すなわち状態 iから j への遷

移確率 ai,j 及び状態 iから j への遷移で方向特徴 θtを

図 1 従来の HMM（θ-HMM）
Fig. 1 A conventional HMM (θ-HMM).

観測する確率 bi,j(θt)の学習は，極めて一般的なHMM

の枠組みで行われる．例えば，図 1 の left-to-right型

HMMの学習では，まず前向き変数 αt(i)（時刻 1か

ら始まって時刻 tで状態 iにある確率）を，広く知ら

れた以下の漸化式を用いて効率的に計算する．

αt(i) = αt−1(i − 1) ai−1,i bi−1,i(θt)

+ αt−1(i) ai,i bi,i(θt) (1)

なお θ-HMMにおいては bi−1,i(θt) = bi,i(θt)である

が，後の議論との整合性のためにここでは区別してい

る．後向き変数 βt(i)についても同様に計算する．

HMM パラメータは，以下のように通常の Baum-

Welchアルゴリズムを適用することにより再推定され

る．出力シンボル確率 bi,j(θt) を正規分布で表現し，

bi,j(θt|μi,j , Σi,j)とする．ただし，μi,j , Σi,j は出力シ

ンボル θt の平均，分散を表す．学習用データの引数

を n とするとき，ai,j , bi,j(θt|μi,, Σi,j)の再推定式は

以下のとおりである．

γ(i, j, t) = αt−1(i)ai,jbi,j(θt|μi,j , Σi,j)βt(j)

âi,j =

∑
n

∑
t
γ(i, j, t)

∑
n

∑
t
αt(i)βt(i)

μ̂i,j =

∑
n

∑
t
γ(i, j, t)θt

∑
n

∑
t
γ(i, j, t)

Σ̂i,j =

∑
n

∑
t
γ(i, j, t)(θt − μi,j)

2

∑
n

∑
t
γ(i, j, t)

ここで左辺の âi,j , μ̂i,j , Σ̂i,j はパラメータの再推定値

である．HMMパラメータの値を再推定値に置き換え，

パラメータの値が収束するまで再推定を繰り返す．

1. で述べたように，方向特徴だけではストローク

の位置や長さが明示的に制御できないという問題が

ある．この問題は，多画文字における筆順フリー文字

認識において特に深刻になる．例えば，筆順フリー条

件のもと，座標特徴を無視して方向特徴だけを用いる

と，“四” は “兄” に誤認識される可能性が高くなる．

文献 [1]～[3] では，起こり得るすべての筆順変動につ

いてそれぞれ標準パターンを準備し，更に必要に応じ

てペンアップ部分を接続することにより，事実上筆順

固定問題とすることで対処している．若しくは文献 [4]

のように部首単位の位置制御などに座標特徴を補助的

に利用する形態がとられる．

2. 2 座標特徴を用いたHMM

図 2 及び図 3 は，出力シンボルに座標特徴を用い
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図 2 座標特徴を用いた HMM (1)（xy-HMM）
Fig. 2 HMM with coordinate feature (xy-HMM).

図 3 座標特徴を用いた HMM (2)（xyθ-HMM）
Fig. 3 Another HMM with coordinate feature (xyθ-

HMM).

た HMMである．このうち前者は，座標特徴のみを出

力シンボルとするもの [3] で，以下 xy-HMMと呼ぶ．

一方後者は各状態で座標特徴と方向特徴を同時に出力

するもの [5]で，以下 xyθ-HMMと呼ぶ．

先に述べたように，座標特徴 xyt を用いた HMM

は従来あまり用いられていない．これは座標特徴がス

トロークの一線分内で定常的とはみなされず，一線分

内での座標特徴の変化を表現するには一状態では不十

分であるためと予想される．すなわち座標特徴は時間

とともに変化する特徴であり，したがって基本的に非

定常的である．座標特徴を使うために，状態数を大幅

に増やし，サンプル点数 T と同程度にすることも考

えられるが，それでは HMMを使う意義が失われる．

実際，状態数を増やすならば，Stochastic DP [6] や

Bahlmann ら [7] の検討に見られるように，HMMに

よる確率過程としての枠組みではなく，決定論的な枠

組みにする方が妥当であろう．加えて，学習すべきパ

ラメータももとの HMM 状態数 N に対して T/N 倍

（一般に N � T）に増えるため，学習パターンの不足

も問題となる．

3. 座標/方向出力型HMM

2.で述べたように，方向特徴量はそのストローク形

状記述能力に限界があり，座標特徴は HMMとの相性

が良くない．そこで両者を適切に使い分ける工夫が必

図 4 本手法の HMM（(xy/θ)-HMM）
Fig. 4 The proposed HMM ((xy/θ)-HMM).

要である．これまでに θ-HMMと xy-HMMを加重結

合した事例 [3] もあるが，本質的な解決にはなってい

ないと思われる．実際，その xy-HMMには 2. 2の問

題点がそのまま残っている．また方向特徴と座標特徴

がHMMトレリス上で独立に非線形時間伸縮すること

になり，整合性の面でも問題がある．

本論文で提案する (xy/θ)-HMMは，方向特徴と座

標特徴を単一のHMM上で適切に使い分けたものであ

る．図 4 にこの (xy/θ)-HMMを示す．この “適切な

使い分け”とは，各特徴と定常・非定常性を考慮し，ス

トロークを線分近似した各線分の始端・終端では座標

特徴，始端以降の各線分内では方向特徴を使用する方

式を指す．HMM上では，過渡的な座標特徴 xy は状

態間遷移で 1回だけ出力され，定常的な方向特徴 θは

状態内遷移（自己遷移）で繰り返し出力される．言い

換えると，状態間遷移によりストロークの始端・屈曲

点・終端の座標分布が規定され，状態内遷移において

ストロークを構成する各線分の方向分布が規定される．

この (xy/θ)-HMMの学習に使用される前向き変数

αt(i) は，以下のように式 (1) を若干変更した漸化式

によって計算される．

αt(i) = αt−1(i − 1) ai−1,i bi−1,i(xyt)

+ αt−1(i) ai,i bi,i(θt) (2)

ここで bi−1,i(xyt)は二次元正規分布である．後向き変

数も同様な方法で計算される．式 (1) に対し，式 (2)

は，状態遷移の違いに応じて出力シンボルを使い分け

ていることが分かる．(xy/θ)-HMMの学習は，こうし

て計算される前向き変数及び後向き変数を用いて，従

来どおりの Baum-Welchアルゴリズムで計算される．

4. 筆順フリーなオンライン文字認識にお
けるストロークHMMの利用

本論文では主として筆順フリーなオンライン文字認

識実験を通して，各種ストローク HMM の性能を比
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較評価する．筆順フリー認識のためには，K ストロー

クからなる入力パターン I = I1, I2, · · · , IK と標準

パターン R = R1, R2, · · · , RK の間に最適な 1 対 1

ストローク対応を求める必要がある．これら最適対応

するストローク間の類似度を文字全体で総和したもの

が，筆順によらない I と R 間の類似度となる．スト

ローク対応の最適化手法はこれまでに様々な手法が提

案されている（例えば [8]～[12]）．いずれの手法も比

較評価実験に利用可能であるが，本論文では大局的に

最適なストローク対応を求めるべく，キューブサーチ

法 [11], [12]を採用した．

この筆順フリー認識の枠組みにおいて，ストローク

HMM はストローク間の類似度として確率ゆう度の

計算に利用される．具体的には，Rl を表現するスト

ローク HMM に Ik を入力して得られるゆう度が Rl

と Ik 間の類似度となる．ストローク HMM により，

ストロークの局所的な変動を吸収しながら，類似スト

ロークの位置関係の差異を適切に評価できれば，認識

に適した類似度が与えられ，結果的に高い認識率が得

られる．

画数変動問題は，画数 K の入力文字と画数 Lの標

準文字の間の最適なK 対 L対応を求めることにあり，

本論文の主題である画の表現方法に対して比較的独立

した問題である．対策としては，画数変動を標準モデ

ルの分岐で表現したり，主要な画数変動に標準モデル

を準備する手法が挙げられる．一方，上述のキューブ

サーチ法を画数変動に対応するべく発展させた多層

キューブサーチ法 [12]の利用も考えられる．

5. 実 験

5. 1 データセット

実験用データセットは東京農工大のオンライン文

字データベース “HANDS-kuchibue d-97-06-10” [13]

中の教育漢字を使用した．4.で述べた画数変動問題の

解釈から，本論文では画数固定条件による実験とした

ため，正規画数で書かれたものだけを対象とした．画

数別の傾向を観察するべく，5，10，15，20画のカテ

ゴリーのみを用いた．本手法では画単位のHMMモデ

ルを適切に学習させるために，画対応が既知で HMM

モデル学習に十分な量の文字データ集合を用意する必

要がある．本論文では画対応既知の条件として正規筆

順を重視した．更に後述する三重交差確認法において

ストローク HMM学習用に 20 パターンの正規画数・

正規筆順データを確保するために，正規画数・正規筆

表 1 実験で用いたデータセット
Table 1 Statistics of dataset.

#strokes 5 10 15 20

#categories 67 76 21 2

#samples 28,525 17,605 3,336 624

順パターン数が 30 未満のカテゴリーについては除外

した．表 1 に実験対象となったパターン数などを示す．

各パターンについて前処理及び特徴抽出を行った．

具体的には，まず 128 × 128 への線形スケーリング，

平滑化，リサンプリングを適用した．次にこうして得

られた座標特徴量系列から方向特徴量を求めた．方向

特徴量については，その分布が 2. 1で述べたように一

次元正規分布すなわち連続分布として表現されるため，

8方向や 16方向などの量子化は特段行っていない．

5. 2 ストロークHMMの学習

各カテゴリーより正規筆順パターンのみを抽出し，

それらの 2/3 を用いてストローク HMMを学習した．

残る 1/3 は 5. 3の認識実験の評価用パターンに加え

た．ストロークHMMとしては，2.で挙げた θ-HMM，

xy-HMM，xyθ-HMM，及び本手法 (xy/θ)-HMMを

用いた．各ストローク HMMの状態数（開始・終了状

態を除く）は，対応するストロークの標準形を折れ線

近似した際の線分数とした．例えば “｜”“ノ”“ー” 状

のストロークならば 1 状態，“¬” 状ならば 2 状態と

した．折れ線近似における最大線分数は 4（“乙”状ス

トローク及び “しんにょう” 2画目）とした．

カテゴリー “右” の全 5 ストロークについて，xy-

HMM，xyθ-HMM，(xy/θ)-HMMの各手法が学習に

よって獲得した出力シンボルの分布を図 5 に示す．そ

れぞれの楕円の中心と形状は座標特徴の平均と分散

（2σ 等分散面）を表す（注1）．ストローク HMM内の状

態の時系列は，楕円の線種を実線，破線，一点鎖線の

順に変えて表現している．また楕円中心から出ている

3本の線分は，方向特徴の平均と分散（±2σ 方向）を

表す．

同図より，xy-HMMと xyθ-HMMの座標特徴の分

布は，線分全体を無理に定常的なものとみなしたため

に線分の伸長方向に細長く，かつ線分を包含する広範

囲な分布となっている．この場合，想定外のストロー

ク形状であっても，その分布内に含まれてさえいれば

不当に高いゆう度を与えてしまう点が問題になる．例

（注1）：xyθ-HMM の楕円形状は，座標特徴の分散（2σ 等分散面（楕
円球））の筆記方向平均値による断面で表している．
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図 5 HMM の出力シンボル分布．上より “右” の第 1

（“ノ”），2（”一”），3（“｜”），4（“¬”），5（“一”）
ストロークの HMM．左列：xy-HMM，中央列：
xyθ-HMM，右列：(xy/θ)-HMM

Fig. 5 Symbol distributions of trained stroke HMMs.

えば画像の左端から右端まで広がる長い水平線分を学

習した HMM は，分布内にある半分の長さの線分や，

分布内を左右に大きく行き戻りするようなストローク

にも高いゆう度を与えてしまう．

一方，本手法である (xy/θ)-HMMでは，ストロー

ク始端・終端・屈曲点の座標特徴を，適度な局所性を

保ったまま獲得することに成功している．特に，4画

目（“¬”）について注目すると，学習時に屈曲点を明

示的に教示していないにもかかわらず，学習結果とし

て屈曲点の座標特徴の分布が極めて妥当に自動獲得さ

れていることが分かる．また，座標特徴平均から方向

特徴平均方向へのほぼ延長線上に次の座標特徴平均が

存在することから，HMMの学習によって得られた始

端・終端・屈曲点の座標特徴と線分区間内の方向特徴

との関連性は高く，かつ破綻を来していないことも分

かる．

表 2 筆順フリー条件における本手法及び他のストローク
HMM による誤認識率（%）

Table 2 Error rates by the proposed HMM and the

other HMMs at stroke order-free recognition

experiment.

#strokes, K 5 10 15 20

θ-HMM closed 68.56 58.63 62.13 19.9

open 69.42 59.73 62.13 19.1

xy-HMM closed 9.49 4.21 2.38 0.7

open 10.04 4.58 2.25 1.0

xyθ-HMM closed 7.18 1.62 1.00 0.0

open 7.81 1.91 1.08 0.0

(xy/θ)-HMM closed 3.43 0.37 0.15 0.1

(proposed) open 3.80 0.47 0.39 0.0

5. 3 筆順フリー条件での認識実験

4.で述べたように，主として筆順フリーなオンライ

ン文字認識の枠組みにおいて各種ストロークHMMの

性能を比較評価した．なお，多様な条件下で本手法と

従来法の比較を行うべく，筆順固定の条件下での評価

も行っており，これについては 5. 4. 3にて後述する．

誤認識率は三重交差確認法により求めた．すなわ

ち，全データを 3分割し，そのうち二つをストローク

HMMの学習用，残る一つを評価用として誤認識率を

求める処理を 3回繰り返し，その平均値を誤認識とし

た．以下，表中の “open”がそうして求めた誤認識率

である．一方の “closed”は，参考のために示した学習

用パターンに対する誤認識率である．

本手法及び他の HMM による誤認識率を表 2 に示

す．全般的に座標特徴に方向特徴を併用した手法が低

い誤認識率を得ている．更にその中でも本手法 (xy/θ)-

HMMが最も低い誤認識率を与えた．実際，xyθ-HMM

と (xy/θ)-HMMを評価用パターン（open）について

比べると，5画で 51%，10画で 75%，15画で 64%の

誤認識低減を達成した．20 画ではすべての評価用パ

ターンが正しく認識された．

一方，同表からは θ-HMMの精度が極めて低いこと

も分かる．筆順フリー条件は，ストロークの位置情報

が使えない θ-HMM にとって極めて不利な条件であ

る．実際 θ-HMMは筆順固定条件下で利用されること

が多い [1]～[4]．このため 5. 4. 3では筆順固定条件下

において θ-HMMと本手法を比較する．

ところで，図 4，図 5 から分かるように，本手法

は座標特徴出力の機会が独立に存在する分，他のスト

ローク HMMに比べて出力回数が多い．このため，上

述の本手法の優位性が出力回数の差すなわちモデル

の自由度の差によると解釈される可能性もある．そこ
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表 3 状態数を 2 倍としたときの誤認識率（%）
Table 3 Error rates by the conventional HMMs with

double states.

#strokes, K 5 10 15 20

xy-HMM closed 6.83 3.03 1.93 0.3

w/ double states open 7.23 3.37 1.98 0.2

xyθ-HMM closed 6.17 1.45 1.21 0.1

w/ double states open 7.00 1.89 1.14 0.2

表 4 本手法による改善（improved），改悪（degraded）
パターン数，及び本手法・従来法ともに誤認識となっ
たパターン数（failed）．括弧内はその全データに占
める割合（%）

Table 4 The numbers of improved samples and

degraded samples.

xyθ-HMM → (xy/θ)-HMM

#strokes, K 5 10 15 20

improved closed 2,978 (5.22) 496 (1.41) 58 (0.87) 0 (0.0)

open 1,618 (5.67) 285 (1.62) 29 (0.87) 0 (0.0)

degraded closed 838 (1.47) 57 (0.16) 1 (0.01) 1 (0.1)

open 473 (1.66) 31 (0.18) 6 (0.18) 0 (0.0)

failed closed 1,120 (1.96) 75 (0.21) 9 (0.09) 0 (0.0)

open 611 (2.14) 52 (0.30) 7 (0.21) 0 (0.0)

で，本手法の優位性があくまで特徴量の選択的利用に

あることを示すために，従来のHMMの状態数を 2倍

にして出力回数の差異をなくした上で，同様の実験を

行った．結果を表 3 に示す．xy-HMMでは認識性能

が向上したが，xyθ-HMMでは一部に認識性能の低下

すら見られた．いずれにせよ，状態数を 2倍にしても

(xy/θ)-HMMの認識性能には及ばないことが分かる．

5. 4 本手法による改善及び改悪

表 4 に，従来法の中で最も高い認識性能を与えた

xyθ-HMM に対する本手法の改善パターン数（im-

proved）及び改悪パターン数（degraded）を示す．な

お同表中の failed は xyθ-HMMでも本手法でも誤認

識されたパターン数である．

同表から，いずれの画数K においても，改善パター

ンの方が改悪パターンや誤認識のままのパターンに比

べて優勢であることが分かる．すなわち，多少の副作

用はあるものの本手法によって大多数の誤認識が改善

されている．以下では，具体的な改善例及び改悪例を

挙げ，それらが生じた理由について考察する．

5. 4. 1 改 善 例

表 5 に，本手法による改善パターンのうち主要なも

の（5画）を示す．また，ここで述べる改善例の実例を

図 6 に示す．例えば，xyθ-HMMでは “末”に誤認識

していた 249 サンプルが (xy/θ)-HMMでは “未”に

正しく認識されたことを表す．図 6 上段に示すように，

この例では (xy/θ)-HMMの適用によってストローク

表 5 本手法による改善例（5 画）
Table 5 Major improved results.

#samxyθ-HMM → #samxy-HMM → #samθ-HMM →
ples (xy/θ)-HMM ples(xy/θ)-HMM ples(xy/θ)-HMM

249 末 → 未 364 由 → 生 911 司 → 目
228 布 → 市 271 主 → 立 780 正 → 主
227 由 → 生 212 布 → 市 769 功 → 用
165 皿 → 四 193 田 → 四 767 司 → 田
145 皿 → 立 175 失 → 矢 744 犯 → 他

図 6 xyθ-HMM での誤認識が (xy/θ)-HMM で改善さ
れた例．(a) xyθ-HMM による誤認識，(b) 誤認識
カテゴリーの (xy/θ)-HMM 表現，(c) 正解カテゴ
リーの (xy/θ)-HMM 表現

Fig. 6 Samples improved by (xy/θ)-HMM.

の端点の位置関係がより明確に表現された結果，“末”

と “未”の各 HMMの 1画目と 2画目の端点の到達位

置の違いが評価され，正答に転じたと判断される．

次に，xyθ-HMMによって “由”に誤認識していた

227 サンプルが (xy/θ)-HMM では “生” に正しく認

識された事例に着目する．図 6 中段に示すように，こ

の改善は本手法の二つの効果による．第一は，“由” 1

画目の位置評価における改善効果である．すなわち，

“由” 1 画目（左端の “｜”）が文字の下方に分布する

のに対して，“生” 1画目（“ノ”）は文字の上方に分布

する．この 1画目の始端・終端座標分布の違いがゆう

度に差を生じさせ，それぞれを正しいカテゴリーに分

類させたと考えられる．第二は，xyθ-HMMでは座標

特徴の分布が広範囲となったために起こっていた問題
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が，(xy/θ)-HMMで解消されたという効果である．具

体的には，xyθ-HMMでは “由” 2 画目（“¬”）の屈

曲点から下方向に延びて終端に至る部分が大幅に省略

され，“生” 2画目（“－”）に不当に高い類似度で対応

してしまう問題があった．一方，(xy/θ)-HMMでは，

終端範囲が明確になり，屈曲点から終端までがある程

度の長さをとるようになった結果，上記の合わせすぎ

の問題を回避できた．

“布”の 228サンプルが “市”に正しく認識された事

例も上の効果による．これら 2カテゴリーは，1画目

の後半以外はほぼ同一な構造をもつ．図 6 下段に示す

ように，xyθ-HMMでは “布” 1 画目（“ノ”）のスト

ロークの後半部分が省略され，“市” 1画目（“｜”）に

高い類似度で対応していた．この省略が (xy/θ)-HMM

では回避され，正解に転じたものと考えられる．部分

ストローク欠損の有無による改善例は，これら以外に

も “皿”→“四”（4画），“皿”→“立”（2画）等が挙げ

られる．

最後に θ-HMMとの比較において特徴的な例として，

“功”に誤認識していた 769サンプルが (xy/θ)-HMM

では “用”に正しく認識された事例を挙げる．θ-HMM

では位置や長さ情報が欠損しているため，筆順フリー

条件下では方向特徴上の類似ストロークがすべてそ

ろっている “功”と正解の “用”との区別がつかなかっ

た．一方 (xy/θ)-HMMでは座標特徴の利用によりゆ

う度に差が生じ，正しく認識されるようになったと解

釈できる．

5. 4. 2 改 悪 例

5. 2で述べた本手法の長所は，そのまま短所にもな

り得る．すなわち，ストローク端点における大きな位

置ずれや各種ノイズ要因に対して，本手法は xy-HMM

や xyθ-HMMよりも敏感であり，影響を受けやすい．

表 6 に，筆順フリー条件下での認識実験において

本手法による主な改悪パターン（5画）を示す．“本”

が “末”や “未”に誤認識したパターンを観察したとこ

ろ，(xy/θ)-HMM でストローク端点座標ゆう度分布

表 6 本手法による改悪例（5 画）
Table 6 Major degraded results.

#samxyθ-HMM → #samxy-HMM → #samθ-HMM →
ples (xy/θ)-HMM ples(xy/θ)-HMM ples(xy/θ)-HMM

206 本 → 末 188 未 → 末 22 用 → 田
119 本 → 未 185 本 → 末 14 左 → 圧
98 右 → 石 159 右 → 石 8 本 → 末
90 未 → 末 111 本 → 未 7 矢 → 失
79 末 → 未 80 失 → 矢 7 代 → 他

から外れる要因として，長さが極端に長い/短いスト

ローク，標準的な位置からずれた場所に書かれたスト

ロークが見られた．図 7 に，以上の要因が観測された

パターン事例を示す．これらは (xy/θ)-HMMでスト

ローク端点座標ゆう度分布から外れる要因となり，誤

認識を起こしたものと考えられる．

5. 4. 3 筆順固定下の認識結果

筆順フリー条件下では認識性能が極端に低かった

θ-HMMに対して，通常用いられている筆順固定条件

下での認識実験を行い，同一条件下での (xy/θ)-HMM

の性能と比較した．筆順固定とするため，本実験では

データセットから正規筆順のパターンだけを利用した．

更に，ペンアップ時の取扱い方の異なる次の 2通り

のゆう度評価を行った．一つ目は，ペンダウン時の各

ストロークのゆう度のみ使用しペンアップ時の情報を

使用しない方法である．二つ目は，文献 [1] を模した

形態である．すなわち，ペンアップ時の画間移動方向

を一つの方向出力シンボルとして表現してペンダウン

時の方向特徴とは区別する．ストロークHMM学習時

図 7 改悪例のパターン事例（数字はストローク番号，右
は出力シンボル分布との比較（3 画目））

Fig. 7 Degraded patterns.

表 7 筆順固定条件下における本手法及び従来法の誤認
識率（%）

Table 7 Error rates by the proposed HMM and the

other HMMs at stroke order-fixed recogni-

tion experiment.

without pen-up information

#strokes, K 5 10 15 20

θ-HMM closed 30.28 1.10 0.0 0.0

open 31.04 1.46 0.1 0.0

(xy/θ)-HMM closed 1.58 0.09 0.0 0.0

(proposed) open 1.78 0.12 0.0 0.0

with pen-up 1 information

#strokes, K 5 10 15 20

θ-HMM closed 8.17 0.14 0.0 0.0

open 8.62 0.14 0.0 0.0

(xy/θ)-HMM closed 1.24 0.03 0.0 0.0

(proposed) open 1.38 0.04 0.0 0.0
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にペンアップ時の画間移動方向分布を学習することに

より，各ストロークのゆう度とペンアップ時の画間移

動方向のゆう度を連結して評価する方法である．

表 7 に本手法及び従来法の θ-HMM の認識率を示

す．いずれの場合でも θ-HMMより (xy/θ)-HMMの

方が低い誤認識率を示す．このことから，方向特徴だ

けでは識別が難しい類似ストロークに対して，(xy/θ)-

HMM の座標特徴が識別の一助となることが分かる．

この結果は，本手法が英筆記体文字など 1画からなる

他の文字の認識にも有効であることを示唆している．

6. む す び

方向特徴の線分内定常性と座標特徴の非定常性を生

かして両特徴量を適切に使い分けたストローク HMM

の表現方法として (xy/θ)-HMM を提案した．HMM

の状態内の自己遷移では方向特徴，状態間遷移では座

標特徴というように，状態遷移に応じて出力シンボル

を使い分けながらも，従来法と同等の Baum-Welch

アルゴリズムの枠組みで HMMの学習・認識が可能で

あることを実験により示した．特に，学習の結果，極

めて妥当な出力シンボル分布が獲得されたことも確認

した．筆順フリー及び筆順固定条件下での認識実験に

おける誤認識率の改善によって従来法に対する本手法

の有効性を確認した．

今後の課題は，HMMのシンボル出力を状況に応じ

て使い分けるという本手法の基本構想を更に発展させ

ることや，改悪例への対策が挙げられる．また，オン

ライン文字認識が一種の行動認識であることをかんが

み，他の行動パターン認識への適用も考えられる．

実験規模の拡大も一つの課題であろう．すなわち，

今回は画数固定の条件のもと，5，10，15，20画のカ

テゴリーのみを用いて手法の有効性を示したが，例え

ば HANDS-kuchibueのすべてのデータを認識対象と

した実験も必要であろう．この場合，画数変動と 20

画以上の多画文字への対応が主たる問題となる．前者

については，4.で挙げたように，主要な画接続が施さ

れた文字を標準パターンに登録するといった最も単純

な対処法に加え，本論文で用いたキューブサーチ法の

画接続対応型である多層キューブサーチ法 [12]を用い

ることも考えられる．また前者及び後者に共通して，

計算量の低減が重要となる．これについても種々の対

策が考えられる．例えば大分類の導入やキューブサー

チ過程への枝刈りの導入 [11]はその一例である．いず

れにおいても，本論文で提案した高精度なストローク

HMMの利用によって正解カテゴリーと不正解カテゴ

リーのゆう度差を大きくできる可能性が高く，こうし

た計算量低減手法の効果を強めることができると期待

できる．
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