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Abstract: We investigated the impact of analog errors on large-scale photonic neural networks using
an experimentally obtained error model. Performance degradation due to analog error can be
recovered by proposed hardware-aware fine-tuning with ~1.6% trainable parameters.

Keywords: Highly parallelized scalable photonic computing architectures and devices, Deep learning for photonic
device and applications, Optical transformer

1. INTRODUCTION

The rapidly increasing size of deep-learning models has motivated the development of alternative computational
engines that can dramatically reduce the energy cost of running state-of-the-art deep neural networks (DNNs) [1]. One
promising candidate as an alternative processor is a photonic neural network (PNN) with a photonic matrix-vector
multiplication (MVM) engine, including both coherent [2, 3] and incoherent [4, 5] systems. Considering a practical use
case by referring to existing edge computing devices, we will use such a processor by downloading and fine-tuning the
parameters of various existing digitally pre-trained DNNs and transferring them to the PNN as shown in Fig. 1 (a).
However, PNNs generally suffer from inherent errors, namely input/output quantization errors for digital-to-
analog/analog-to-digital conversions (DA/ADC), and analog errors between the ideal and implemented matrix weight oW
due to crosstalk and fabrication/control errors. These analog errors significantly degrade the inference performance of
PNNSs [6]. Accordingly, it is important to understand their effect on the model scale and task complexity by considering
actual error levels in implemented photonic processors. In addition, an error mitigation algorithm is highly desired towards
large-scale PNN [7-9].

Here, we investigate the impact of analog errors on various DNN models up to a practical parameter size (~8.7x107)
by simulation based on an experimentally observed error model with a GPU cluster. To mitigate the observed significant
performance degradation even under the observed low-level error (~1.2%) in our processor, we also demonstrate a
hardware-aware fine-tuning method named “Analog Low-Rank Adaption” (ALoRA), inspired by a recent efficient fine-
tuning algorithm [10-13], which could recover the performance while ~99% of parameters are untrained. Our
investigation clarified the scalability of PNNs even under implementable analog error levels.

II. SIMULATION OF PHOTONIC MVM BASED ON EXPERIMENTAL RESULTS

Fig. 1 (a) is a schematic illustration of our simulation setup. We transfer the pre-trained DNN weights W to the photonic
MVM engine by quantizing each parameter to an #n-bit value. The input x is quantized to an m-bit value by DAC. The
quantized input x " is sent to the photonic MVM engine, which returns the MVM results with analog error (W +W)x’,

( N
(a) Various pretrained DNN models (b) (d) g —E ®
MLP ResNet “Transformer _ g o

)

Photonic MVM engine with error

32X1002. WDM weight banks

Gaussian
fitting ~

Measured

Target

Quantizg

R /
E
-
x

Coherent
MZI array WDM Micro-ring weight banks
(Our example system) —
' | 3 . .
Chip = == W'g (©)  sxsMzlarray (€) 1dentity matrix Random matrix

0.1 0.2

Diffractive optics | WDM weight banks on SLM
mplesystem)

Target
(O s
Free spacq IE‘E 3
4 N £ -
-;' ‘ | S z
" Zo002]
Iw’,,+6w“ Wi+ Wy ][x'1 Exp. z
)

Wi+ Wy Wi+ 6Wy i |[¥2 |
Quantized 1/0 ) ) B w %2 a1 0 0.1 02
= J n ™

out Measured error 3W

[_pac_]

S
13
2
Measured

Normalized
transmittance

[output.y ][ tnput,x |
[Rescate ][ Rescate |

ADC
(Quantize)

Fig. 1 (a) Schematic illustration of photonic MVM engine with transferring pre-trained DNN parameters. Images of our fabricated (b) incoherent and
(c) coherent photonic MVM engines. Comparison of target and measured weight for (d) incoherent and (e) coherent processor. Measured histogram
of (f) incoherent and (g) coherent processors.
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where W’ and oW are the quantized weight and its analog error. On the detector side, output values are quantized again
by ADC. Note that to consider the impact of the fidelity of the photonic MVM engine itself, we neglected the detection
noise (thermal and shot noise), which depends on the type of photodetector. To consider the effective the error model of
OW in the photonic MVM engine, we measured 6/ in our developed incoherent [Fig. 1 (b)] and coherent [Fig. 1 (¢)]
photonic processors [3, 5]. By implementing random weights, we estimated the difference between target and measured
weights. Examples of measurements are shown in Figs. 1 (d) and (e). Figs. 1 (f) and (g) show the histogram of measured
OW for each photonic processor. Both histograms could be fitted by a gaussian function, suggesting that the error can be
modeled by gaussian noise by considering the measured standard deviation (SD) o (6=1.2% and 1.3% for the incoherent
and coherent processors, respectively). The bit number of the processors is m=n=8, which was determined by our digital-
analog interface. We have implemented an in-house simulator based on PyTorch [14] and Hugging Face [15] to
investigate the impact of analog errors on various large models. The simulator performs processing based on the inference
flow in Fig. 1. By applying gaussian noise based on the standard deviation of the measured error in units of MVM
execution, the simulator achieves both high speed and high accuracy.

III. IMPACT OF ANALOG ERROR ON PHOTONIC MVM WITH POST-TRAINING QUANTIZATION

We investigated the impact of the analog error on the model and task complexity by using the in-house simulator on
GPU cluster (NVIDIA H100 x 8), enabling the investigation on the larger models beyond the previous studies [e.g., 5].
In the training phase, the weights on pretrained DNN models (FP32) are simply quantized (INT16, INTS8) which are well
known as PTQ (Post-Training Quantization). Then, the quantized weights are transferred to photonic MVM simulator in
inference phase. Fig. 2 (a) — (d) show the simulated test accuracies as a function of the SD of error for the 4-layer
multilayer perceptron (MLP), 4-layer convolutional DNN (CNN), 18-layer residual DNN (ResNet-18) [16], and 12-layer
vision transformer (ViT) [17, 18]. The MNIST (red), CIFAR10 (blue), and CIFAR100 (green) tasks were tested with
m=n=8 (solid lines) and 16 bits (dashed lines). As can be seen in the figures, the error robustness was highly dependent
on the model size, while the task dependency was relatively small. For instance, the test accuracies for the simple MLP
model were highly stable against both quantizing and weight errors, but those for the ViT significantly depended on the
analog error (only 1% error and 8-bit quantization are critical). This suggests that a method for mitigating these errors is
important. Although previous studies have suggested various hardware-aware training for the error mitigation [7-9], they

typically require full-parameter tuning from the vanilla state, meaning that substantial computational time and energy are
required for the retraining.
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Fig. 2 Test accuracies as a function of weight error for (a) MLP, (b) CNN, (c) ResNet, and (d) Vision Transformer.

IV. AROLA: HARDWARE-AWARE FINE-TUNING FOR ERROR MITIGATION

For mitigating the error, we also demonstrate a hardware-aware fine-tuning method named “Analog Low-Rank
Adaption” (ALoRA), inspired by a recent efficient three fine-tuning algorithm: QAT (Quantized-Aware Training) [10],
NAT (Noise-Aware Training) [11], and LoRA (Low-Rank Adaptation) [12, 13]. Fig. 3 (a) shows the overview of our
simulation flow and proposed scheme “ALoRA”. QAT is a training technique designed to improve the robustness of deep
neural networks when deployed with quantized weights and activations. Fig. 3 (b) shows the details of the QAT procedure.
In general, there are feed-forward (inference) and back-propagation (training) processes in the fine-tuning. The
quantization error is incorporated only in the feed-forward process, and the back-propagation process is performed in
single-precision (FP32). In the quantization, the values contained in a single MVM process are scaled according to their
dynamic range, converted to integer type (int), and then converted to single precision again. Unlike PTQ, QAT simulates
quantization effects during training, allowing the model to learn to compensate for precision loss. This is particularly
important for photonic neural networks (PNNs), where digital-to-analog and analog-to-digital conversions introduce
quantization errors that can degrade performance. Noise-Aware Training (NAT) focuses on enhancing model robustness
by explicitly incorporating noise effects into the training process. As shown in Fig. 3 (c), just like QAT, noise is applied
only to the feed-forward process, and all back-propagation is processed in single precision (FP32). In our simulator,
adding gaussian noise of an arbitrary standard deviation to the weights W before matrix multiplication is possible.
Furthermore, it is also possible to investigate the effects of experimental system errors by adding measurement errors
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Fig. 3 (a) Schematic illustration of ALoRA fine-tuning. (b) Training process overview and QAT: Quantized-Aware Training (c) NAT: Noise-Aware
Training (d) LoRA: Low-Rank Adaptation.

such as those shown in Fig. 1 (f, g). In the context of PNNs, NAT helps mitigate performance degradation caused by
analog errors such as fabrication imperfections and crosstalk by injecting noise into the model during training. This
approach allows the network to adapt to real-world error conditions, improving its resilience in practical deployment
scenarios. Finally, LoRA is an efficient fine-tuning method that reduces the number of trainable parameters while
maintaining performance. It was originally inspired by singular value decomposition to capture task-specific adjustments
with minimal computational overhead effectively. Instead of updating all model parameters, LoRA introduces low-rank
trainable matrices to capture task-specific adaptations. As shown in Fig. 3 (d), we add trainable adapter layers (Vxk and
kxN full connections, where £ is typically much smaller than N) for each NxN layer. The original transferred NxN layer
remains untrained, and only the adapters are trainable, drastically reducing the training parameters. The adapter layer can
be considered a low-rank N xN matrix, assuming that this matrix would be sufficient to capture task-specific features.
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Fig. 4 Test accuracies after ALoRA training as a function of weight error in ViT for (a) MNIST, (b) CIFAR10, and (c) CIFAR100 tasks.

Our proposed method, ALoRA, efficiently combines these methods to enable rapid fine-tuning of large-scale models.
When applied to ViT, adding a parallel adapter to layers such as key, query, value, mha output, fcl, fc2, and mlp head
reduces the model's 8.7 x 107 parameters to 0.14 x 107 (~1.6%). This means that ViT, which previously required a few
days of training on our GPU cluster, can be trained in 40 minutes. Fig. 4 (a)—(c) shows the test accuracies of the ViT after
5-epoch ALoRA training as a function of the weight error for MNIST, CIFAR10, and CIFAR100. First, we can see that
QAT improves robustness against quantization and weight errors compared to PTQ as shown in Fig. 2 (d). Furthermore,
QAT+LoRA allows many parameters training with the same resources, resulting in improved quantization tolerance. For
example, even with 6-bit quantization for MNIST and CIFARI10 and 8-bit quantization for CIFAR100, we achieved
accuracy comparable to 16-bit quantization. Finally, we found that ALoRA further improves robustness against
quantization and weight errors. The fine-tuned ViT model became highly robust against both quantizing and weight errors,
suggesting that the PNNs can scale to practical scale models even under the observed error levels.

V. CONCLUSIONS

In this study, we investigated the impact of analog errors on large-scale PNNss using an experimentally derived error
model. Our simulations demonstrated that even low-level analog errors (~1.2%) could significantly degrade inference
accuracy, particularly for complex models such as vision transformers. To address this issue, we proposed and evaluated
a hardware-aware fine-tuning method, ALoRA, which efficiently mitigates accuracy degradation while requiring only
~1.6% of parameters to be trained. Our findings highlight the scalability of PNNs despite inherent analog errors,
suggesting that the proposed fine-tuning approach enables the practical deployment of large-scale photonic deep learning
models. The combination of QAT, NAT, and LoRA within ALoRA enhances robustness against quantization and weight
errors, making it a promising solution for energy-efficient, high-performance photonic computing. Future work includes
extending ALoRA to broader model architectures and further optimizing training efficiency for various applications.
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