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ARTICLE INFO ABSTRACT
Keywords: Oral lichen planus (OLP) is a chronic inflammatory disorder with autoimmune features and malignant trans-
Oral lichen planus formation risk, lacking a definitive treatment, with CD4" T cells being pivotal in its pathogenesis. Dysbiosis, an

Gut microbiome

Dysbiosis

regulatory T cell

16S rRNA sequencing

single cell RNA sequencing (6 words)

imbalance in the microbiome, is linked to various autoimmune and inflammatory diseases, where CD4" T cells
play a significant role. Given these insights, the development of OLP might be influenced by dysbiosis. This study
investigates the association between dysbiosis and CD4" T cells in OLP. We collected stool and saliva samples
from OLP patients, conducting 16S rRNA gene analysis and mass spectrometry, and assessed CD4" T cell
characteristics in lesions through multiplex immunofluorescence and single-cell RNA sequencing. Peripheral
blood samples were subjected to flow cytometry and cell culture assays. Results showed extensive gut dysbiosis
in OLP patients, notably a reduction in short-chain fatty acid (SCFA)-producing bacteria essential for regulatory T
cell (Treg) differentiation. While various CD4 ™ T cell subsets, including Tregs, were present in tissues, these Tregs
as unresponsive to specific antigens, showing reduced immunosuppressive molecule expression. The decline in
SCFA-producing bacteria correlated with fewer activated Tregs in tissues and blood. These findings suggest that
gut dysbiosis may contribute to OLP by impairing Treg regulation, influencing disease pathogenesis.

Abbreviations: B. longum, Bifidobacterium longum; B. adolescentis, Bifidobacterium adolescentis; CTLA-4, cytotoxic T-lymphocyte associated protein 4; F. prausnitzii,
Faecalibacterium prausnitzii; HC, healthy control; IL, interleukin; LEfSe, linear discriminant analysis effect size; NSU, non-specific ulcer of oral mucosa; HK, hyper-
keratosis; OED, oral epithelial dysplasia; OLP, oral lichen planus; OSCC, oral squamous cell carcinoma; PBMCs, peripheral blood mononuclear cells; PCoA, principal
coordinate analysis; PERMANOVA, permutational analysis of variance; SCFA, short-chain fatty acid; scRNA-seq, single-cell RNA sequencing; Treg, regulatory T cell;
TGF-p, transforming growth factor f.
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Introduction

Lichen planus is a chronic inflammatory condition affecting the skin.
When it involves the mucous membranes, it is referred to as oral lichen
planus (OLP). OLP is characterised by parakeratosis of the oral mucosa
and band-like infiltration of T cells in the subepithelial layer. The disease
is linked to cell-mediated immune dysfunction; some cases of OLP can
progress to squamous cell carcinoma, highlighting the need for long-
term monitoring.' > One of the main challenges in managing OLP is
that, despite its suspected autoimmune origins, the underlying aetiology
remains unknown. This uncertainty has resulted in a lack of definitive
treatments, although the disease is common and has the potential for
malignant transformation.*® Thus, a better understanding of OLP
pathogenesis is essential for the development of more effective
treatments.

The band-like infiltration of T cells in OLP suggests an association
with immune dysfunction, and autoimmune mechanisms have been
implicated in its pathogenesis. The predominant population in the
subepithelial lymphocyte infiltrate is composed of cluster of differenti-
ation CD4" T helper (Th) cells, which include Th1, Th2 and Th17 cells,
as well as CD8™ T cells.® ? Similar to other autoimmune diseases, there is
evidence that regulatory T cells (Tregs) play a critical role in OLP
pathogenesis.'® Compared with samples from healthy controls (HCs),
increased levels of Tregs have been found in OLP lesions and peripheral
blood from affected patients, suggesting that the balance among various
lymphocyte subtypes influences the clinical course of the disease.
Studies of OLP lesions have revealed a negative correlation between
Treg number and disease activity. Notably, the proportion of Tregs in
peripheral blood significantly increased among patients who underwent
immunosuppressive treatment. 1

Despite ongoing research, the mechanisms underlying immune
dysfunction, including factors that contribute to autoimmune diseases,
remain unclear. However, several chronic immune-mediated conditions
associated with immune dysfunction have been linked to alterations in
the gut microbiome highlighting the importance of gut dysbiosis
research.'” The gut microbiome exists in close symbiosis with the host,
providing essential metabolic molecules that influence various aspects
of host physiology, including immune system maturation.'®> Advance-
ments in next-generation sequencing technology have revealed that gut
microbiome dysbiosis, characterised by the expansion or depletion of
specific bacteria and their associated proteins and metabolic activities, is
associated with numerous autoimmune diseases.'*"'° In conditions such
as inflammatory bowel disease, rheumatoid arthritis, Kawasaki disease,
and systemic sclerosis—where CD4™ T cells have been implicated in the
pathogenesis—microbiome analysis has provided insights into immune
response distortion and corresponding pathogenesis. Considering that
OLP affects the oral mucosa, which can be considered an extension of the
gastrointestinal system, a potential relationship between dysbiosis and
OLP pathogenesis has been suspected but remains unexplored. Several
recent reports have suggested that dysbiosis in the oral/salivary
microbiome of OLP patients supports the need to investigate the gut
microbiome in these patients.*°,

We hypothesized that dysbiosis is associated with the pathogenesis
of OLP and aimed to investigate the relationship between oral/gut
microbiome and the pathogenesis of OLP, particularly from an immu-
nological perspective. This study is the first to investigate gut and oral
microbiome dysbiosis in samples of saliva and stool from corresponding
OLP patients. We demonstrated a reduction in short-chain fatty acid
(SCFA)-producing bacteria in the gut microbiome, which has been
associated with impaired Treg differentiation.'”'® Additionally, we
examined all conventional CD4" T cell subsets in tissue lesions using
single-cell RNA sequencing (scRNA-seq), T cell receptor (TCR) reper-
toire analysis, multiplex immunofluorescence (IF) staining, and flow
cytometry. Our results showed that molecules associated with Treg
activation and function were not upregulated in either tissue-infiltrating
or circulating Tregs, consistent with the observed decrease in SCFA-
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producing bacteria. This comprehensive approach provides new in-
sights concerning the connection between gut and oral microbiome
dysbiosis and the functional alterations of Tregs in OLP tissue lesions,
which may contribute to the observed disease symptoms.

Results

Comprehensive investigation of the relationships between immune cells and
the gut and oral microbiomes

To understand these relationships of the oral and gut microbiomes
with the pathogenesis of OLP, as well as their connection to immune
cells, we performed 16S rRNA gene sequencing to identify bacteria in
stool and saliva samples from 30 HCs and 33 OLP patients. Then, high-
performance liquid chromatography—tandem mass spectrometry (HPLC-
MS/MS) analysis was performed using stool samples from 6 HCs and 5
OLP patients. We also processed a biopsy sample from an OLP patient for
scRNA-seq and integrated it with both our previous data and published
scRNA-seq data from 9 OLP patients, 4 HCs, and 12 OSCC patients.®!%%!
For validation, we performed multiplex IF staining and image quantifi-
cation on tissue samples from 26 OLP patients, 9 HCs, 7 hyperkeratosis
(HK) patients, 7 non-specific ulcer of oral mucosa (NSU) patients, 13
oral epithelial dysplasia (OED) patients, and 9 oral squamous cell car-
cinoma (OSCC) patients. Subsequently, we used flow cytometry to
analyse peripheral blood mononuclear cells (PBMCs) isolated from
blood samples of 10 HCs and 14 OLP patients. Finally, cell-culture assays
by using sorted Treg were performed to investigate the impact of SCFAs
co-culture on Tregs and evaluate the functionality of Tregs in OLP pa-
tients (Fig. 1A).

Altered gut microbial diversity between OLP and HC groups

It is widely accepted that changes in gut flora are associated with
many diseases, including inflammatory bowel disease, rheumatoid
arthritis, Kawasaki disease, and systemic sclerosis, and may play a role
in the pathogenesis of those diseases. To determine whether gut mi-
crobial diversity differs between OLP patients and HCs, we initially
calculated the alpha diversity of gut microbiome in each set of samples.
Although no significant differences in Shannon and Pielou indices were
evident between the OLP and HC groups, we found statistically signifi-
cant differences in Faith’s phylogenetic diversity (PD) and the number of
observed features, suggesting variation in species’ evolutionary re-
lationships and feature richness (Fig. 1B). Next, we assessed the simi-
larity of microbial communities between the OLP and HC groups via
beta diversity analysis using the Bray—Curtis distance metric. Principal
coordinate analysis (PCoA) was then conducted to visualise the sample
distribution; samples were color-coded by group (Fig. 1C). Additionally,
permutational analysis of variance (PERMANOVA) revealed a statisti-
cally significant difference between the OLP and HC groups. These di-
versity analyses demonstrated that gut microbial diversity in the OLP
group was altered relative to the HC group.

Depletion of specific types of Bifidobacterium and Faecalibacterium
prausnitzii in the OLP gut microbiome

Considering the observed differences in alpha and beta diversities,
we analysed the gut microbiome composition in the OLP and HC groups
at the species and genus levels using the linear discriminant analysis
effect size (LEfSe) method. The analysis showed that the HC group had a
higher abundance of Bifidobacterium at the genus level (Fig. 1D and
Supplementary Fig. 1A). Bifidobacterium, a commensal bacterial genus,
is known for its pro-homeostatic and anti-inflammatory immunomodu-
latory properties.”>?* At the species level, 20 bacteria with relative
abundances exceeding 1 % were considered predominant; Faecalibacte-
rium prausnitzii C71358 (F.prausnitzii C71358), Bifidobacterium ado-
lescentis (B.adolescentis), and Bifidobacterium longum (B.longum)
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Fig. 1. Altered gut microbiome diversity and depletion of SCFAs-producing bacteria in the oral lichen planus (OLP) gut microbiome. (A) Workflow schema.
Gut and saliva samples from OLP patients and healthy controls (HCs) were used for 16S rRNA gene sequencing and high-performance liquid chromatography-tandem
mass spectrometry (HPLC-MS/MS), tissue samples were used for multiplex immunofluorescence (IF) staining and single-cell RNA sequencing (scRNA-seq), and
peripheral blood mononuclear cells (PBMCs) were used for in vitro experiments. (B) Alpha diversity indices of the gut microbiome. Faith’s phylogenetic diversity
(PD) and observed features values were significantly higher in the OLP group. *P < 0.05 and **P < 0.01 according to Mann-Whitney U test. (C) Principal coordinates
analysis (PCoA) plot based on Bray-Curtis distance. Permutational analysis of variance (PERMANOVA) test shows a statistically significant difference between the
two groups. (D) Relative abundances of gut microbes at the genus level. Left panels show individual compositions; right panels show the mean relative abundances
for each group. (E) Relative abundances of gut microbes at the species level. Twenty species with > 1 % relative abundance in all samples were ordered using a
phylogenetic tree. (F) Linear discriminant analysis effect size (LEfSe) assessment at the species level. Only taxa with an LDA score (log10) > 3.0 are displayed. (G)
Schematic illustration of quantification of SCFAs using HPLC-MS/MS. Stool samples were collected from OLP patients and HCs, and SCFAs were extracted and
derivatized for quantification. (H) Comparisons of mass-specific concentration of SCFAs (short chain fatty acids). Butyric acid, acetic and propionic acid were
quantified by HPLC-MS/MS. *P < 0.05 and **P < 0.01 according to Mann-Whitney U test or Student’s t-test (two-tailed t-test). Each test was performed after
zipplying the D’Agostino & Pearson test to determine and validate the presence of normal distribution.

exhibited higher abundances in the HC group than in the OLP group (Fig. 3C). Furthermore, the proportion of Tregs among CD4 ™ T cells in
(Fig. 1E). Additionally, LEfSe confirmed that several bacteria, including the lesional epithelium of OLP was significantly increased compared to
F. prausnitzii C71358, B. adolescentis, and B. longum, were more promi- the normal epithelium (HC) of the OLP tissue and HK (Fig. 3D). When
nent in the HC group (Fig. 1F, Supplementary Fig. 2A-C). Notably, some evaluating these CD4" T cell subsets, we noticed a relatively high pro-

species of Bifidobacterium, as well as F. prausnitzii, are SCFA-producing portion of marker-negative CD4™ T cells, particularly in HC. While
gut bacteria; they also have been associated with the induction and leukocytes infiltrating tissues are generally regarded as activated, it is
differentiation of Tregs.>*2® The depletion of these SCFA-producing believed that a number of these may not be effector T cells that do not
bacteria in OLP patients suggests a link to Treg dysfunction, poten- clearly express specific markers, or T cells possessing plasticity.”’.

tially contributing to weakened immune regulation. Although the
presence of representative SCFA-producing bacteria has been found to
decrease in OLP, it remained unclear whether the overall production of
SCFAs was reduced. Thus, we quantified these SCFAs using HPLC-MS/
MS, revealing that the total levels of butyrate, acetate, and propionate
were significantly decreased in the stool of OLP patients compared to
HCs (Fig. 1G and H, Supplementary Fig. S3).

Tregs exhibit a non-activated state and low clonal expansion in OLP
lesions

ScRNA-seq and TCR repertoire analyses offer robust insights con-
cerning tissue-infiltrating immune cells. To resolve the discrepancy in
OLP, where SCFA-producing bacteria that promote functional Treg
maturation are reduced, while substantial Treg infiltration is observed at

Oral microbial community structure varied between OLP and HC groups the lesion site, we integrated our scRNA-seq data with previously pub-
lished datasets. We analysed CD45" immune cells from OLP tissue

Similar to the gut microbiome, the relationship between OLP and the samples, OSCC tissue samples, and HC tissue samples. Various immune
oral microbiome has not been thoroughly investigated. Because OLP is cell subsets were identified based on their marker genes across these
an immune-related disorder affecting the oral mucosa, we compared groups (Fig. 4A and B). We then performed unsupervised clustering
oral microbiome characteristics between OLP patients and HCs. analysis of T cell subsets, which revealed distinct phenotypes such as
Although there were no statistically significant differences in the alpha Tregs, central memory T (T¢y) cells, effector memory T (Tgyp) cells, and

diversity of the oral microbiome between the OLP and HC group- resident memory T (Try) cells (Fig. 4C and E). Compared with the OSCC
s—measured by the Shannon index, Pielou index, Faith’s PD, and and HC groups, the OLP group exhibited a greater proportion of infil-
observed features (Fig. 2A)—beta diversity analysis revealed clear dif- trating Tregs among the T cells (Fig. 4D). These Tregs expressed typical
ferences. Visualisation of sample coordinates using the Bray—Curtis marker genes such as FOXP3, CTLA4, and IL2RA (Fig. 4E). Notably, the
distance metric and PCoA showed distinct clustering between the OLP expression levels of CTLA4, TGFB1, and IL2RA in OLP Tregs were
and HC groups (Fig. 2B); PERMANOVA confirmed a statistically signif- significantly downregulated relative to the high levels displayed by

icant difference between the two groups. However, it remains unclear Tregs in OSCC but there was no significant difference compared to the
whether OLP influences the microbiome or the microbiome contributes Tregs in HC (Fig. 4F).>° Although the proportion of Tregs was higher in
to OLP onset. We also analysed the abundances of oral microbes at the OLP, their clonal expansion levels were lower than those of Tregs in
genus and species levels (Fig. 2C, 2D and Supplementary Fig. 1B), and OSCC (Fig. 4G and H). These results suggested that despite their large
we performed LEfSe for species-level comparison between the two numbers, the Tregs infiltrating OLP lesions exhibit a non-activated state
groups (Fig. 2E). No significant differences in the abundances of typical characterised by low clonal expansion and low expression of genes
microbiome were present, and no high linear discriminant analysis associated with immunosuppression, in contrast to OSCC involving Treg
scores were observed. activation.
Tregs are the most dominant subset of infiltrating CD4™ T cells in OLP Increased infiltration of potentially non-activated Tregs in OLP lesions
tissues
To validate the results of our scRNA-seq analysis, we conducted

Given the potential association between SCFA-producing bacteria multiplex IF staining on tissue samples obtained from patients with OLP,
and Tregs, we conducted multiplex IF staining on OLP tissues to inves- NSU and HK as a condition indicative of non-specific inflammation, OED
tigate the composition of CD4" T cells in OLP lesions. In addition to demonstrating a degree of antigen-specific response, and OSCC char-
Tregs, several subsets of conventional CD4" T cells (e.g., Thl, Th2, acterized by significant Treg activation. The images showed a substan-

Th17, T follicular helper cell, and CD4* cytotoxic T lymphocytes) had tial infiltration of Tregs in the subepithelial regions (Fig. 5A). Compared
infiltrated the lesions (Fig. 3A). Quantification revealed a statistically with OED and OSCC, there were no significant differences in the pro-

significant expansion of Tregs in OLP lesions compared with other CD4 ™" portion of Tregs among CD4 " T cells or in the density of Tregs in OLP
T cell subsets, in terms of density and frequency (Fig. 3B). It is estab- (Fig. 5B). We then compared the expression patterns of several mole-
lished that Tregs exhibit various phenotypes. Upon examining the cules associated with Treg immunosuppressive function across these
expression of representative markers in infiltrating Tregs, the majority diseases (Fig. 5C). The proportion of Tregs expressing interleukin (IL)-10

unexpressed these markers, although some Tregs expressed GATA3 and TGF-p in OLP is significantly reduced compared to OSCC, and the
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Fig. 4. Limited clonal expansion and non-activated state of Tregs in OLP tissue lesions demonstrated by scRNA-seq. (A) Uniform manifold approximation
and projection (UMAP) visualisation of infiltrating immune cells in OLP patients, oral squamous cell carcinoma (OSCC) patients and HCs. CD4" T: CD4* T cell; CD8™
T; CD8™ T cell; Proliferating T: proliferating T cell; NK/NKT: natural killer cell/natural killer T cell; B: B cell; ASC: antibody-secreting cell; pDC: plasmacytoid
dendritic cell; Mast: mast cell; DC/Mg: dendritic cell/macrophage. (B) The expression of marker genes for immune cells. (C) UMAP visualisation of T cells. Treg:
regulatory T cell; CD4" Tem: CD4™ central memory T cell; CD4" Tem-CXCL13: CXCL13-expressing CD4" effector memory T cell; CD8" Trm: CD8™ tissue-resident
memory T cell; CD8" Tem-GZMK: GZMK-expressing CD8 ™" effector memory T cell; CD8" Tem/Tex-GZMB: GZMB-expressing CD8" effector memory/exhausted T cell;
NK/y8T: natural killer cell/y8 T cell. (D) Proportions of T cell subsets. (E) The expression of marker genes for distinct T cell subsets. (F) Comparisons of expression of
CTLA4, TGFB1, IL2RA, and IL10 in Tregs among OLP, HC, and OSCC. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001 according to Wilcoxon rank-sum test.

(G) UMAP visualisation of gradient levels of clonal expansion for T cells. NA: aff TCR sequences were not detected.

proportion of Tregs expressing CTLA-4 in OLP is also significantly
reduced compared to OED (Fig. 5D). These findings suggest that parts of
the Tregs in OLP lesions are not in an activated state.

Scfa-producing bacteria are associated with the expression of
immunosuppressive molecules by Tregs in OLP lesions

As noted above, we suspected that the depletion of SCFA-producing
bacteria in the gut microbiome, such as F. prausnitzii C71358,
B. adolescentis, and B. longum, is linked to increased non-activated Treg
in OLP. To explore this relationship, we conducted linear regression
analysis of the abundances of these bacteria and all Tregs, as well as
Tregs expressing immunosuppressive molecules including CTLA-4, TGF-
B, and CD25 (Fig. 5E, F and Supplementary Fig. 4A and B). At the genus
level, the abundance of Bifidobacterium was significantly positively
correlated with the proportion of CD25" Tregs among CD4" T cells
(Fig. 5E). Notably, regression analysis showed a significant positive
correlation between the abundance of F. prausnitzii C71358 and the
proportion of TGF-B* Tregs, as well as between the abundance of
B. longum and the density of CD25" Tregs (Fig. S5F). These findings
suggested that the reduced abundance of these SCFA-producing bacteria
in the gut microbiome of OLP patients may be related to the non-
activated state of Tregs in tissue lesions.

Circulating Tregs show reduced expression of CD25 and TGF-§ in OLP
patients

Considering the efficient recirculation of naive and central memory T
cells, which increases the probability that T cells will recognise specific
antigens, changes in SCFA-producing bacteria within the gut also may
affect circulating Tregs. To test this hypothesis, we used flow cytometry
to assess circulating Tregs in the blood, as well as their patterns of
immunosuppressive molecule expression. Tregs were identified as CD3™"
CD4" FoxP3" cells; the expression levels of CTLA-4, CD25, TGF-B, and
IL-10 were measured in this population (Fig. 6A). Consistent with the
results of scRNA-seq analysis and multiplex IF staining, the proportion of
Tregs among circulating CD4" T cells was significantly greater in OLP
patients than in HCs (Fig. 6B). However, the proportions of TGF-p* Tregs
and CD25" Tregs within the Treg population were significantly lower in
OLP patients than in HCs (Fig. 6C). This reduction in CD25 and TGF-f
expression suggested that circulating Tregs in OLP patients are not
activated because most Tregs in healthy individuals typically remain
resting. We also performed linear regression analysis to examine the
correlation between these Tregs and SCFA-producing bacteria (Fig. 6D
and Supplementary Fig. 5A and 5B). The abundance of F. prausnitzii
C71358 tended to be positively correlated with the proportion of IL-10"
Tregs.

Circulating Tregs from OLP patients were less effective in
suppressing T cell proliferation but SCFAs enhanced IL-10 and
TGF-p production

To further validate the non-activated state of Tregs in OLP patients,
we isolated Tregs and conventional T cells (Tconvs) from the PBMCs of
both OLP patients and HCs (Supplemental Fig.6A). We performed an in
vitro Treg suppression assay by co-culturing equal numbers of Tconvs
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with gradient-diluted Tregs and activators, and quantified the propor-
tion of proliferating Tconvs under different co-culture conditions using
flow cytometry (Fig. 6E, Supplemental Fig.6B). A significant difference
between the OLP and HC groups was observed using two-way ANOVA,
indicating that circulating Tregs from OLP patients were less effective in
suppressing the proliferation of Tconvs, while there was no significant
difference between the groups in the proliferation of Tconvs without
Tregs added (Fig. 6F). Additionally, by adding appropriate concentra-
tions of SCFAs, as well as IL-2 and activators to the Tregs from OLP
patients and HCs, we assessed the membrane expression of CTLA-4 and
the concentration of IL-10 and TGF-§ in the culture supernatants
(Fig. 6G, Supplemental Fig.6C). Compared to those without any added
SCFAs, these Tregs from OLP patients significantly produced more IL-10
when treated with butyric acid and propionic acid, and more TGF-p
when treated with acetic acid (Fig. 6H). Although Tregs from HCs also
produced more TGF-f and IL-10 under the same conditions
(Supplemental Fig. 7A), after calculating the ratios of these molecules in
the SCFAs co-culture group relative to those in the activator-only group,
it revealed that Tregs from OLP patients showed a greater increase in
TGF-p and IL-10 production compared with those from HCs
(Supplementary Fig. 7B).

Discussion

Although the exact cause of OLP remains unclear, immune dysre-
gulation—particularly involving T cells—is suspected to play a sub-
stantial role.®’ No previous systematic investigation has included an
analysis of the gut microbiome, but several publications have noted an
association between OLP and specific bacteria. Recent researches have
highlighted a link between OLP and oral microbial dysbiosis.**>*
Several studies have identified bacterial species that exhibit increased or
decreased abundance in OLP patients, offering valuable insights into the
microbial changes associated with OLP and potentially contributing to
the understanding of its pathogenesis. However, the mechanism by
which these microbial alterations contribute to OLP pathogenesis re-
mains an open question. Given the prominent T-cell infiltration and
other immune abnormalities in OLP, systematic studies of the oral
microbiome, gut microbiome, blood, and lesions are eagerly awaited.

Recent studies by Atarashi et al. and other groups have demonstrated
that SCFAs, such as acetate, propionate, and butyrate, play crucial roles
in various biological systems.*” Bifidobacterium and F. prausnitzii,
representative SCFA-producing bacteria, exhibited substantially lower
proportions in the gut microbiome of OLP patients, suggesting that
dysbiosis involving these bacteria contributes to OLP pathogenesis.
Deficiencies in Bifidobacterium and F. prausnitzii also have been impli-
cated in several autoimmune and autoinflammatory conditions,
including rheumatoid arthritis, autoimmune myasthenia gravis, and
encephalomyelitis.”>>° Considering the autoimmune disease-like nature
of OLP and the continuity between the gut and oral mucosa, it is
reasonable to speculate that gut microbiome dysbiosis, characterised by
alterations in specific bacteria, triggers the development of OLP. The
HPLC-MS/MS analysis conducted alongside OLP microbiota analysis
revealed a significant reduction in the total amount of each represen-
tative SCFAs in OLP patients, supporting these hypotheses.

Another important question is: how are SCFA-producing bacteria be
involved in the pathogenesis of OLP? Given that SCFAs produced by gut
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Fig. 5. Low proportion of immunosuppressive molecule expressing Tregs within OLP tissue lesions and the correlation with SCFA-producing bacteria in matched
samples. (A) Representative images of multiplex IF staining of Tregs in OLP tissue lesions. White arrows indicate Tregs. Scale bars: 200 pm (left) and 50 pm (right).
(B) Comparisons of densities and percentages of Tregs within CD4™ T cells in tissue lesions from patients with OLP, non-specific ulcer of oral mucosa (NSU), oral
epithelial dysplasia (OED) and OSCC. ***P < 0.001, according to Kruskal-Wallis test (C) Representative images of multiplex IF staining of Tregs with expression of
immunosuppressive molecules in OLP tissue lesions. White arrows indicate TGF-p* Tregs, IL-10" Tregs, CTLA-4" Tregs, and CD25" Tregs. Scale bar: 50 pm. (D)
Comparisons of densities and percentages of CTLA-4" Tregs, TGF-B" Tregs, and CD25" Tregs within all Tregs. **P < 0.01 and ****P < 0.0001 according to
Kruskal-Wallis test. (E, F) Correlations between the percentages of specific SCFA-producing bacteria and the densities or percentages of CD25" /TGF-p" Tregs in OLP
tissue lesions were assessed by simple linear regression. (E) At the genus level, Bifidobacterium displayed a positive correlation with the percentage of CD25" Tregs.
(F) At the species level, Faecalibacterium prausnitzii C71358 showed a positive correlation with the percentage of TGF-B* Tregs, and Bifidobacterium longum showed

a positive correlation with the density of CD25™ Tregs. Model significance was determined by the overall F-test, and r? is given.

bacteria play a pivotal role in the differentiation and induction of
Tregs,””*® we hypothesised that Treg dysregulation occurs in OLP.
Indeed, our co-culture study of Tregs and SCFAs highlighted the pivotal
role of SCFAs in driving the expression of immunosuppressive molecules
in Tregs, underscoring their essential function in Treg activation. We
observed that the numbers of Tregs in tissue lesions and PBMCs from
OLP patients were substantially higher compared with those numbers in
HCs; Tregs were the predominant subset among all CD4" T cells.
However, these Tregs lacked functional marker molecules such as TGF-f
and IL-10, indicating a potential defect in their immunosuppressive
function, which coincided with gut dysbiosis and the findings by co-
culture study.>* ! Tregs have two possible phenotypes: functional and
non-suppressive, distinguished by the levels of several molecules
expression, including FoxP3 and CD25.%>“* Non-suppressive Tregs,
which exhibit no immunosuppressive activity, have been observed in the
contexts of cancer, autoimmune diseases, and infectious diseases.
Intriguingly, a link between non-suppressive Tregs and SCFA-producing
bacteria has been described.?® The positive correlation between the
abundance of SCFA-producing bacteria and functional Treg markers in
our data highlights the importance of the microbiome in Treg differen-
tiation. Furthermore, our functional assays revealed that the immuno-
suppressive capacity of Tregs sorted from OLP patients is diminished
compared to that of HCs. This implies a relationship between non-
activated Tregs and the aspect of prolonged chronic inflammation in
the pathology of OLP, possibly resulting from impaired Treg
differentiation.

Although there were relatively few differences in oral microbiome
between HCs and OLP patients, pronounced gut microbiome dysbiosis
was evident in OLP patients. The mechanism underlying oral micro-
biome dysbiosis remains unclear, but the oral microbiome may indi-
rectly influence the gut microbiome, contributing to OLP development.
Alternatively, the pain associated with OLP might hinder the mainte-
nance of oral hygiene, thereby altering the oral microbiome. Consid-
ering that OLP lesions are predominantly infiltrated by T cells, which are
typically activated in secondary lymphoid organs and then migrate to
the lesion site via peripheral blood, it is unlikely that changes in the oral
microbiome directly influence the differentiation of T cells, particularly
Tregs. However, we observed a certain level of infiltration of GATA3-
positive Tregs alongside conventional Tregs in OLP lesions in the pre-
sent study. GATA3" Tregs increase in disease milieus with prolonged
inflammatory responses and may induce further Treg accumulation.
This suggests the potential of a synergistic effect between GATA3-
positive Tregs and non-activated Tregs in provoking unique immune
responses in OLP lesions. Examining the relationship between GATA3™"
Tregs and non-activated Tregs could be an intriguing topic for future
research.’>°,

In summary, our study provides the first evidence that dysbiosis
involving both the gut and oral microbiome may play a role in the
pathogenesis of OLP. Specifically, the depletion of SCFA-producing
bacteria, such as B. adolescentis, B. longum, and F. prausnitzii, likely
contributes to the pathogenesis of OLP by dysregulating Treg differen-
tiation. A schematic overview of the proposed pathogenesis of OLP,
based on our observations and hypotheses, is presented in Fig. 7.
However, this study had some limitations. Due to the frequency of clinic
visits and the challenges of sample collection (involving stool, saliva,
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lesional tissue, and PBMCs), the sample sizes were relatively small.
Additionally, we used a limited approach to studying immune cell
populations in blood and tissue lesions; the use of complementary
methods would have strengthened the analysis. Furthermore, this study
did not extensively focus on the functional roles of individual bacterial
species. Future research should incorporate assembly-based taxonomic
and functional characterisation, along with association and accessory
gene set enrichment analysis. Despite these limitations, our results
represent a step toward understanding the pathogenesis of OLP.
Considering that SCFA depletion has been linked to various immune-
related diseases, including systemic lupus erythematosus, systemic
sclerosis, IgG4-related disease, and atopic dermatitis, the mechanisms
proposed in this study may be relevant to a broader range of immune
dysregulation disorders.'>*”**° One key question remains: what causes
the depletion of SCFA-producing bacteria? The “chicken or egg”
dilemma persists—does dysbiosis precede the disease, or does the dis-
ease lead to dysbiosis? The findings of this study suggest that dysbiosis
drives the progression of OLP, and we further speculate that it may also
play arole in disease onset. Further studies in both humans and mice are
needed to clarify the specific immunomodulatory pathways involved
and to explore potential therapeutic applications. Probiotic therapy,
which has shown promise in other diseases with few side effects, may be
worth investigating as a treatment option for OLP."’.

Methods
Patients

This study included 42 patients with OLP, 42 HCs (all volunteers), 7
patients with HK, 7 patients with non-specific NSU, 13 patients with
OED, and 9 patients with oral OSCC. NSU and HK were employed as a
disease control for general inflammation, OED was utilized to represent
antigen-specific responses, and OSCC served as a disease control char-
acterized by significant Treg activation, with each condition acting as a
comparative model for OLP. All patients were diagnosed between 2014
and 2023 at the Department of Oral and Maxillofacial Surgery of Kyushu
University Hospital; pathological diagnoses were confirmed by biopsy. A
summary of the OLP patient information is provided in Supplementary
Table 1.

Sample collection, library preparation, and 16S rRNA
microbiome analysis

This analysis included 33 OLP patients from the Department of Oral
and Maxillofacial Surgery at Kyushu University Hospital, as well as 30
HCs. Stool and saliva samples were collected. Patient information is
summarised in Supplemental Table 2. Of the 33 OLP patients included in
the microbiome analysis, 26, for whom tissue samples were available,
were included in the tissue-based study. Detailed procedures for sample
collection, preservation, library preparation, 16S rRNA gene
sequencing, and microbiome data analysis are described in Supple-
mentary Methods.
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Fig. 6. The non-activated state exhibited by circulating Tregs from of OLP. (A) Representative flow cytometry plots of Tregs and their immunosuppressive molecules.
(B) Increased percentage of Tregs in OLP patients compared with HCs. *P < 0.05 according to Mann-Whitney U test. (C) Decreased percentages of TGF-B" Tregs and
CD25" Tregs in OLP patients compared with HCs. **P < 0.01 according to Mann-Whitney U test. (D) Positive correlation between the percentage of Faecalibacterium
prausnitzii C71358 and the percentage of IL-10" Tregs in OLP patients assessed by simple linear regression. P = 0.054, model significance was determined by the
overall F-test, and r? is given. (E) Schematic illustration of the in vitro Treg suppression assay. Circulating Tregs and conventional CD4" T cells (Tconvs) were isolated
from PBMCs, co-cultured and harvested after four days for analysis using flowcytometry. (F) Comparisons of proliferated Tconvs between OLP and HC. The ability of
circulating Tregs from OLP patients to suppress Tconv proliferation is significantly lower than that from HC. **P < 0.01 according to two-way ANOVA (column
factor); No significant differences were observed in the Tconv only group by Mann-Whitney test. (G) Schematic illustration of SCFA-treated Treg activation assay.
Circulating Tregs from OLP patients were treated with SCFAs, harvested after three days, and analyzed by flowcytometry. The TGF-§ and IL-10 levels in culture
supernatants were quantified by ELISA. (H) Comparison of Treg functional molecules in Treg isolated from OLP patients with or without SCFAs treatment. Butyric
acid and propionic acid promoted IL-10 secretion, and acetic acid and propionic acid promoted TGF-f secretion. *P < 0.05, and **P < 0.01 according to paired
Student’s t-test.
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Fig. 7. Schematic model of dysbiosis and non-activated Treg expansion in OLP pathogenesis. Proposed schematic model of gut dysbiosis contributing to the
pathogenesis of OLP. The left panel represents the normal immune response, where SCFAs produced by the intestinal bacteria maintain Treg activation ability and
immunosuppressive function. Compared with the normal state, a decrease in the abundance of SCFA-producing bacteria, such as Faecalibacterium prausnitzii and
Bifidobacterium longum, results in Treg dysregulation during OLP (right panel). These non-activated Tregs display an increased population in the bloodstream and are
circulated throughout the body. Within the oral tissue, these non-activated Tregs fail to suppress the activation of other immune cells, resulting in chronic and
harmful inflammatory responses.

High-performance liquid chromatography—tandem mass spectrometry Abcam), anti-IL10 (1:100, 60269-1-Ig, Proteintech), anti-CTLA4 (1:400,
(HPLC-MS/MS) analysis ab237712, Abcam), and anti-IL-2 Receptor alpha (1:200, ab1289555,
Abcam). Lymphocyte subsets were identified by the following criteria:
Stool samples were collected from five OLP patients and six HCs. CD4" T-bet" for Thl cells; CD4" GATA3" for Th2 cells; CD4" RORyT*
HPLC-MS/MS was performed as described in Supplementary Methods. for Th17 cells; CD41 FoxP3™ for Tregs; CD4" ICOS™ CXCR5" for T
follicular helper (Tfh) cells; CD4" Granzyme A" for CD4" cytotoxic T
lymphocytes; TGF-f, IL-10, CTLA-4 and CD25 for Tregs expressing

Multiplex IF staining and cell quantification immunosuppressive molecules.

The protocols for multiplex IF staining and cell quantification are
provided in Supplemental Methods. The following primary antibodies Library preparation, sequencing for scRNA-seq, and data analysis
were diluented and used: anti-CD4 (1;500, ab133616, Abcam), anti-T-
bet/Tbx21 (1:200, #13232, Cell Signaling), anti-GATA3 (1:200, A fresh tissue sample of an OLP lesion was collected from the buccal
ab199428, Abcam), anti-RORyT (1:100, 3208A, Biocare Medical), anti- mucosa of an affected patient during surgical resection. Tissue homog-
FoxP3 (1:100, #98377, Cell Signaling), anti-CXCRS5 (1:2000, ab254415, enisation, library construction, and sequencing were conducted as
Abcam), anti-ICOS (1:200, #89601, Abcam), anti- Granzyme A (GZMA) described in the online Supplemental Methods. Our dataset was inte-
(1:100, ab209205, Abcam), anti-TGF betal antibody (1:100, ab215715, grated with several published datasets, which included tissues from nine
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OLP patients, four HCs, and 12 OSCC patients.>'°?! Quality control,
data integration, gene expression analysis, and TCR repertoire analysis
are described in Supplemental Methods.

Leukocyte phenotypes were subsequently assigned to these clusters
based on the following marker genes: CD3E, CD4, IL7R for CD4" T cell;
CD3E, CD8A for CD8" T cell; CD3E, MKI67 for Proliferating T cell;
NCAM1, NKG7, GZMB for NK/NK T cell; CD79A, MS4A1 for B cell;
CD79A, CD38, XBP1 for ASCs; AIF1, ITGAX, CD68, CST3 for dendritic
cell (DC) and macrophage (Mg); CD4, CLEC4C, IL3RA for plasmacytoid
dendritic cell (pDC); CST3, FCER1A, CPA3 for mast cell. T cell subsets
were assigned based on the following criteria: FOXP3, IL2RA for regu-
latory T cell; SELL, CCR7 for central memory T cell (Tcy); ICOS, CXCL13,
CD4 for CD4™ effector memory T cell (Tgy); GZMB, GZMK, CCL4, CCL5,
CD8A for CD8" Tgy; CTLA4, PDCDI for CD8" exhausted T cell (Tgx);
CD3E, TRDC for y5 T.

Isolation of peripheral blood mononuclear cells

Peripheral blood samples were collected from 25 OLP patients and
11 HCs. PBMC isolation was performed as described in Supplementary
Methods.

Isolation of regulatory and conventional T cells

Peripheral blood samples were collected from 11 patients diagnosed
with OLP and four healthy volunteers. Treg and conventional T cells
isolation are described in Supplementary Methods.

In vitro Treg suppression assay

We performed in vitro Treg suppression assay with five patients
diagnosed with OLP and four healthy volunteers. Detailed methods are
described in Supplementary Methods.

Scfa-treated Treg activation assay

We performed SCFA-treated Treg activation assay with five patients
diagnosed with OLP and five healthy volunteers. Detailed methods are
described in Supplementary Methods.

Flow cytometry
Flow cytometry methods are described in Supplemental Methods.
Enzyme-Linked Immunosorbent assay

Enzyme-Linked Immunosorbent Assay methods are described in
Supplemental Methods.
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