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ABSTRACT

Understanding the link between interannual variations in net primary production (NPP) and soil CO,
efflux (Ry) is essential for evaluating carbon dynamics in forest ecosystems, particularly in ecosystems
such as Moso bamboo (Phyllostachys pubescens) forests with distinctive 2-year cycles of new shoot
production. In this study, we measured NPP and R; components in a Moso bamboo forest over
a 5-year period to clarify the consistency of their interannual variation patterns. Our results revealed
significant year-to-year variations in NPP (CV =41%), primarily attributable to above-ground produc-
tivity, while R; components (i.e. autotrophic (R,) and heterotrophic (Ry) respiration) exhibited
less year-to-year variations (CV =10%-22%). Although NPP and R did not exhibit synchronized
interannual variations, we observed marginal positive correlations between litterfall, fine root pro-
duction, and R, (Spearman’s correlation coefficient = 0.9, p < 0.1). These findings suggest that while
current-year NPP components may influence R,, Ry, variations appear to be relatively independent
from NPP variations in Moso bamboo forests. We discuss the simplification of net ecosystem
production (NEP =NPP —R;) estimates in Moso bamboo forests for regional C assessment, high-
lighting the importance of long-term monitoring of above- and below-ground processes in these
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ecosystems.

Introduction

Moso bamboo (Phyllostachys pubescens) is one of the
dominant and economically important vegetation types
in East Asia (Benton 2015). Owing to its rapid growth,
Moso bamboo forest has been recognized as an impor-
tant carbon (C) sink that has ecological benefits, such
as climate change mitigation (Shinohara et al. 2014;
Song et al. 2016; Lin et al. 2017; Xu et al. 2018; Zhou
et al. 2019). The sizes of C sinks in Moso bamboo
forests, similar to those of woody forest ecosystems,
are evaluated using a net ecosystem production (NEP)
index derived from net primary production (NPP)
minus heterotrophic respiration (R,). NPP is generally
quantified from the increments in above- and below-
ground biomass and litterfall production (Lf) (e.g.
Waring et al. 1998), although measuring below-ground
biomass increments remains challenging compared with
above-ground measurements (Finér et al. 2011; Osawa
and Aizawa 2012; Katayama et al. 2019). NPP has been
quantified in various types of forest ecosystems, includ-
ing Moso bamboo forests (Song et al. 2017; Lin et al.
2017; Chen et al. 2018; Shimono et al. 2022). However,
few studies have quantified Moso bamboo NEP owing
to the lack of soil CO, efflux (R,) measurements,
including R;,, (Tang et al. 2016, Lin et al. 2017; Li
et al. 2022; Yuan et al. 2023). Because NEP can sub-
stantially affect long-term C storage compared with
NPP (Riuta et al. 2021), NEP estimates, including R,

and its components, in Moso bamboo forests should be
encouraged to assess their effectiveness for climate
change mitigation.

The R, is commonly separated into autotrophic and het-
erotrophic components. Autotrophic respiration (R,)
includes the respiration from live plant parts and can repre-
sent ~50% of the total R, (Hogberg et al. 2002).
Heterotrophic respiration (R}) includes respiratory pro-
cesses from soil microbes, which depend on the availability
of organic substrates in the soil (Hanson et al. 2000). The R
and its components vary with fluctuations in environmental
factors such as precipitation and temperature (Raich et al.
2002; Chen et al. 2010; Zhang et al. 2023). The interannual
variations in the R and its components have been quantified
globally in various types of woody forest ecosystems (Irvine
et al. 2008; Kume et al. 2013; Makita et al. 2018; Sun et al.
2020, Li et al. 2022). Although recent studies have quantified
the Ry and its components in Moso bamboo forests with
measurements on an annual basis (Hsieh et al. 2016;
Huang et al. 2021; Jin et al. 2023), significant uncertainty
remains regarding the interannual variations in the R, and its
components in these forests due to the lack of long-term R
measurements.

Long-term Moso bamboo NPP measurements show signifi-
cant interannual variations (Song et al. 2017; Lin et al. 2017),
which might affect the interannual variations in Ry and its
components. These variations are mainly caused by the 2-year
cycles of new shoot production in Moso bamboo, whereby
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a high number of new shoots are produced in an “on-year”,
followed by a low number of new shoots in an “off-year” (Li et al.
1998; Kleinhenz and Midmore 2001; Song et al. 2016; Lin et al.
2022). This can cause more than two-fold interannual differ-
ences in NPP (Song et al. 2017, Lin et al. 2017). It is possible that
the 2-year cycles in Moso bamboo new shoot production might
cause large interannual variations in below-ground processes,
such as in R and its components (R, and Ry,). However, it is not
known whether the 2-year cycles in NPP in Moso bamboo
forests are accompanied by 2-year cycles in annual R, and its
components.

Previous studies show a linkage between NPP and R, in
vegetative ecosystems (Xu et al. 2015; Endsley et al. 2022; Yan
et al. 2022). Although the mechanisms for the linkage
between NPP and Ry are still under discussion, R, might
increase with NPP because high NPP might accompany
high Lf, and there is a positive relationship between Lf and
R, (Raich and Nadelhoffer 1989; Davidson et al. 2002;
Hibbard et al. 2005). Such potential strong linkages between
NPP and R, are important from a practical viewpoint
because long-term NPP measurements might enable us to
understand interannual variations in R, and its components
without the direct measurements of R,. Indeed, a previous
study found strong correlations between annual NPP and R
over a 5-year study period in grassland ecosystems (Yan et al.
2022).

This study was conducted to clarify whether interannual
variations in Ry were linked with those of NPP in a Moso
bamboo forest that shows large interannual variations in new
shoot production. To do this, we measured NPP and R,
components in a Moso bamboo forest, central Taiwan over
a 5-year period. Then, we (1) compared the size of the
interannual variations between NPP and R; components
and (2) examined the correlation between year-to-year var-
iations in NPP and R,.

Materials and methods
Site

A 20x25m study plot was established in a pure Moso
bamboo forest with the area of about 18ha in the
Experiment Forest of National Taiwan University (23'40”
N, 120'48" E), located in Nantou County, central Taiwan,
in 2012. The study plot was located at 1120 m.a.s.l., and it
experiences a subtropical monsoon montane climate with
a mean annual air temperature of 18.6°C and mean annual
precipitation of 2407 mm (Chiu et al. 2016; Tseng et al.
2017). The soil at the study site had a sandy-loam texture
with a pH of 4.1, and understory vegetation was rare.
Conventional management practices, including annual
selection cutting, fertilization and weeding in September-
October, have been implemented since 1949 at this site. All
treatments, such as felling and weeding, were halted within
the experimental area during the study period. Stand culm
density in the study plot was 3954 culms ha™" in April 2012
with a mean diameter of breast height (DBH) of 9.0 cm. New
culms sprouted annually in late April to early May. The
annual stand culm densities after the appearance of new
culms were 5632, 5793, 6000, and 7925 culms ha™! in 2013,
2014, 2015, and 2016, respectively. Accordingly, total above-
ground biomass was 27.3, 36.4, 39.7, 42.0, and 49.4 Mg
C ha™! in 2012, 2013, 2014, 2015, and 2016, respectively.
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Total below-ground biomass measurements were performed
only in 2013, which was 33.7 Mg C ha™'consisting of 6.5 and
27.2Mg C ha™' in roots and rhizomes, respectively. At the
study site, dead and fallen culms were removed from the plot
every year. More detailed site information is available in
Hsieh et al. (2016) and Lin et al. (2017).

NPP and NEP definitions

According to previous studies (Clark et al. 2001; Luyssaert
et al. 2007), NPP (Mg C ha™! yrfl) was derived from the
annual increment in biomass (AB) (Mg C ha™! yrfl), con-
sisting of the biomass of culms (AB,), branches (AB},), leaves
(ABy), roots (AB,), and litterfall (Lf) (Mg C ha™! yearfl) as
follows:

NPP = AB + Lf (D

AB = AB. + ABy, + AB; + AB; (2)

Total NPP can be divided into above-ground productivity
(ANPP) and below-ground productivity (BNPP). Here,
ANPP (Mg C ha™! yr_l) consisted of culms (AB.), branches
(ABy,), leaves (ABy), and litterfall (Lf) as follows:

ANPP = AB. + ABy, + AB; + Lf 3)

Below-ground productivity (Mg C ha™" yr™') was defined as
follows:

BNPP = AB, ¢ + AB, . (4)

where AB, ¢and AB, . are the increment in fine and coarse
roots, respectively. In this study, we did not consider rhi-
zome increments (Kobayashi et al. 2023) or the root litter
effect (Osawa and Aizawa 2012) in the estimation of BNPP
because of the difficulty in quantifying them.

NEP (Mg C ha™' yr') was defined simply using the
following equation:

NEP = GPP — R, — Ry, (5)
in which
NPP = GPP — R, (6)

where GPP, R..,, and R, are the gross primary productivity
(Mg C ha™! yr™"), total above- and below-ground auto-
trophic respiration (Mg C ha™' yr™'), and heterotrophic
respiration (Mg C ha™"' yr™"), respectively. Hence, NEP was
calculated by

NEP = NPP — R, ?)

Measurements

Above-ground biomass

Above-ground biomass was estimated from the DBH data
measured from each culm in the experimental plot using
allometric equations for leaves, branches, and culms devel-
oped near the study plot (Liu and Kao 1988). The DBH data
were measured during an annual culm census after comple-
tion of new shoot sprouting (ca. late May) during the 5-year
study period. The AB,, ABy, and AB; (Mg C ha™" yr') were
estimated from the annual biomass increments owing to new
culm development in each year and the C contents in each
organ at this site (Lin et al. 2017).
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Litterfall measurement

Five litter traps (1 m?®) were set 1 m above the ground
level in the plot to capture above-ground Lf consisting of
leaves, twigs, and sheaths. The Lf was collected monthly
from 2012 to 2016, and it was weighed after oven-drying
at 70°C for 72 h. The monthly values converted using the
C content at this site (Lin et al. 2017) were summed to
determine the annual Lf (Mg C ha™" yr™').

Root productivity

Root productivity, including both fine and coarse roots,
was assessed using the root mesh method (Hirano et al.
2009). Five nylon meshes (measuring 10 cm in length, 20
cm in depth, with a mesh size of 1 mm) were randomly
placed within the experimental plot each year. After 1
year, soil samples surrounding the meshes were extracted
from the ground, forming soil blocks measuring 10 cm in
length, 4 cm in width, and 20 cm in depth. Fine roots,
with a diameter of <2mm, were distinguished from
coarse roots with a diameter of >2mm. Subsequently,
all root samples were oven-dried at 60°C for 72h and
weighed. Five new meshes were then randomly inserted
into the soil following the collection of the previous year’s
meshes. On the basis of the methodology outlined by
Hirano et al. (2009), root productivity (AB,: Mg C ha™
yr '), including both fine (AB, ¢) and coarse (AB, ) root
production, was calculated using the dry weight of roots
(g), the projected area of soil blocks (10 cm x 4 cm), and
the root carbon contents determined at the site (Lin et al.
2017).

Soil CO, efflux

The R, was measured using a portable, closed, dynamic
infrared gas analyzer (EGM-4 CO, gas analyzer, PP
Systems, MA, U.S.A.) equipped with a chamber that was
15 cm high and 10 cm in diameter (SRC-1, PP Systems,
MA, U.S.A.)). Twenty measurement locations were
selected randomly from the plot at the study site. In
each measurement location, a polyvinyl chloride (PVC)
collar (10 cm internal diameter, 5 cm height) was inserted
in the soil. Measurements were recorded every 1-2
months during the 5-year period, with three replicates
at each point, and averaged. The measurements were
carried out during the daytime on a single day
(07:00-14:00).

The R, was determined by the trenching method
(Kuzyakov 2006; Bond-Lamberty et al. 2011). Three 1 x 1
m trenching plots outside the study plot were prepared in
December 2012, which were surrounded by ditches of
50-70 cm depth and 40 cm width. The trenches prevented
other live roots and rhizomes from extending into the
trenching plots. Three PVC collars were placed in the
center of each trenched plot to minimize boundary effects.
We recorded R, every 1-2 months from February 2013 to
March 2016. We assumed that R, in the trenching plots
after August 2013 was available to represent Ry, because
the ratio of the trenching-plot Ry to the 20-location R,
showed stable values (=0.4) after August 2013. Thus, we
estimated the R}, data before August 2013 by multiplying
the R, measured in the 20 locations by the mean Ry/R
ratio (0.4). This study calculated the annual Ry, and R, for
each year (Mg C ha™' yr™') from the arithmetic mean of
the monthly measurements of Ry and Ry, respectively, to

estimate annual R, (= R, - Ry) and NEP (= NPP - Ry).
Note that the arithmetic means basis annual R corre-
sponded well to annual R estimated from the interpolated
R, using modeled R, and continuous measurements of
environmental variables such as soil temperatures at this
site (Hsieh et al. 2016). More detailed information on the
Ri-related methodology at this site is provided by Hsieh
et al. (2016) and Lin et al. (2017).

Statistical analysis

This study used an annual value basis. The coefficient of
variation (CV) was calculated to estimate the interannual
variability in NPP and Ry components. We calculated the
CV of each component as CV =S.D./mean, where mean
and S.D. represent the mean and standard deviation of
each component (Mg C ha™' yr™') across 5 years (2012--
2016). To assess whether the interannual variation differed
between NPP and R, components, we compared the CVs
of R, R,, and Ry, with BNPP, ANPP, and NPP using the
asymptotic test in the “cvequality” package (Marwick and
Krishnamoorthy 2019) in R (ver. 4.3.2; R Core Team
2023). This test assesses whether the CVs across multiple
groups are significantly different by estimating
a population CV (i.e. a combined measure of variability
from all sampled data) and comparing it to each group’s
CV. The test statistic, D'AD, quantifies the deviation of
each group’s CV from the estimated population CV, allow-
ing us to calculate a p-value to assess the statistical sig-
nificance. Spearman rank correlation was conducted to
assess the association among NPP (ANPP and BNPP) and
R components using the “cor()” function in R, with the
method specified as “spearman”.

Results

We found large year-to-year variations in NPP, while Ry, R,,
and Ry, showed small year-to-year variations (Figure 1). NPP
ranged between 5.0 and 15.5Mg C ha™' yr ', The year-to-
year variations in NPP were mainly caused by ANPP rather
than BNPP. AB. was the dominant component in ANPP and
accounted for 26.3%-67.4% of ANPP with an average of
53.3%. In contrast, R, showed a smaller range (11.2-16.1

Mg C ha™' yr™') than that of NPP. In particular, Ry, exhibited
minor year-to-year variations with a range of 4.4-5.6 Mg
Cha'yr ™.

The CV in NPP (41.3%) was larger than that of R, (17.2%)
(Figure 2). The CV values in ANPP (47.5%) and its components
(27.0%-62.6%) were mostly larger than that of BNPP (28.7%),
R (17.2%), R, (22.4%), and Ry, (10.1%). R, and its components
(R, and Ry) had significantly lower CVs compared with ANPP
and NPP (D'AD=7.51, p=0.05 and D'AD =9.64, p =0.02,
respectively). There was no significant difference in CV between
R,, R,, Ry, and BNPP (D'AD = 3.61, p > 0.05).

Strong linkages between NPP and R; components were
not found in the interannual variations at this site (Table 1).
However, marginal correlations were found between R,, R,
and some NPP components (Table 1). R, had a small positive
correlation with AB. (4=0.9, p<0.1), ANPP (4=0.9, p<
0.1), and NPP (4 =0.9, p < 0.1). Additionally, R, had a small
positively correlation with Lf (A=0.9, p<0.1) and AB, ( (4
=0.9, p <0.1). R, was not correlated with NPP components.
In additional analysis, Pearson correlation tests supported
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Figure 1. Year-to-year fluctuations in a) net primary production (NPP) and b) soil CO, efflux (R;) components with c) net ecosystem production (NEP) for 5-years.

See abbreviations in Materials and Methods section.
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Figure 2. Coefficient of variations (CVs) in net primary production (NPP) and soil CO, efflux (Ry) components with net ecosystem production (NEP). See

abbreviations in Materials and Methods section.

the positive correlation between R,, Lf, and AB, g but they
did not support the correlation between AR;, AB.,, ANPP,
and NPP (Supplementary Table S1).

Discussion
Size of interannual fluctuations in NPP and R,

We assumed that the large interannual variations in NPP
(mainly attributable to ANPP) might be accompanied by
similar R, interannual variations; however, we did not find
synchronized interannual variations between NPP and R

(Figures 1 and 2). Although we cannot identify the mechan-
isms for the large and small interannual variations in NPP
and R, respectively, such tendencies also can be inferred
from previous studies (Supplementary Table 2C and 2F).
These studies showed that the interannual CV of NPP was
approximately 2%-38% with a mean of 20.3% in various
types of woody forest ecosystems (Supplementary
Table 2C), which was larger than that of most R, observa-
tions in woody forests (CV=11.1%) (Supplementary
Table 2F). Our interannual CV in NPP (41.3%) was close
to the upper range of the previous studies. The interannual
CV for Lf at this site (27.0%) was also in the top 15% of
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Table 1. Spearman'’s correlation coefficients and significance (ms: p < 0.10, *: p < 0.05) among NPP and R; components (n =5). Here, above-ground net primary
production (ANPP) is the sum of annual biomass increment of culm (DB,), branch (DBy,), leaves (DB), and litter fall (If). Below-ground net primary production (BNPP)
is the sum of fine root (DB, ¢) and coarse root (DB, ) productions. Annual soil CO, effluxes (R;) consists of heterotrophic (rh) and autotrophic (ra) respiration. Net

ecosystem production (NEP) is calculated from ANPP + BNPP - Rh.

DB, DBy DB, Lf ANPP DB, ¢ DB, .  BNPP NPP R, Rn R, NEP
DB. 1.00
DBy 0.90 ™ 1.00
DB, 0.90 ™ 1.00 * 1.00
Lf 030 -0.10 -0.10 1.00
ANPP  1.00 * 0.90 ™ 0.90 ™ 030 1.00
DB, 030 -0.10 -0.10 0.70 030 1.00
DB, —070  -0.90™  —0.90 ™ 0.20 -0.70 030 1.00
BNPP 0.00 -0.40 —0.40 0.70 0.00 0.70 070  1.00
NPP 1.00 * 0.90 ™ 0.90 ™ 030 1.00 * 030 —070 000 1.00
R, 0.40 0.00 0.00 0.90 ™ 0.40 0.90 ™ 0.10 060 0.40 1.00
Rn 0.60 0.50 0.50 0.10 0.60 0.10 —0.10 040 0.60 000  1.00
Rs 0.90 ™ 0.70 0.70 0.60 0.90 ™ 0.50 —060 010 090™ 070 030 1.00
NEP 1.00 * 0.90 ™ 0.90 ™ 030 1.00 * 030 —070 000 1.00* 040 060 090™ 100

The significance of bold values is p < 0.10 (ms) and p < 0.05 (¥).

observations in previous studies (range of 5%-47%, mean of
15.6%) (Supplementary Table 2A). In contrast, interannual
CV in R (17.2%) at this site was closer to the mean of
previous R, studies (11.1%) (Supplementary Table 2).

The trend from the Moso bamboo forest was identical to
those of woody forest ecosystems (i.e. interannual CV in
NPP was larger than that of R;). However, the Moso bamboo
was unique in the size of the year-to-year fluctuations of the
NPP. Because ANPP accounted for more than half of NPP at
this site, the large interannual variations in NPP were caused,
first, by the 2-year cycles of new shoot production (Lin et al.
2022) and, second, by episodic events such as drought in the
early spring. According to the biennial cycles of Moso bam-
boo new shoot production, 2015 should have been “on-year”,
but we observed the smallest NPP during the study period,
probably owing to below-average rainfall during the period
April-June 2015 (around 50% of rainfall in normal years).
Such reduced rainfall might lead to soil drought conditions,
potentially suppressing photosynthesis and thereby declining
new shoot production. A previous study reported that severe
summer drought significantly reduced Moso bamboo pro-
ductivity (Song et al. 2017). A 20-year long-term monitoring
project in a Moso bamboo forest also suggested the biennial
cycles could be disturbed by environmental conditions (Li
et al. 1998), although the mechanisms are still uncertain.
Further studies including long-term monitoring with envir-
onmental variables are needed to clarify the factors disturb-
ing the biennial cycles of the new shoot productions.

Possible mechanisms for the marginal linkage between
NPP and R,

Although we did not find a strong relationship between the
NPP and R, components, we observed marginal correlations
between AB, g Lf, and R, (Table 1, Supplementary Table S1).
Although the mechanism of their marginal correlations was
unclear, some previous studies might imply the mechanism
behind the correlations. First, fine roots substantially con-
tributed to total R, in woody forests due to their high pro-
ductivity (Desrochers et al. 2002; Chen et al. 2009; Makita
et al. 2012; Hirano et al. 2023), suggesting AB, ¢ could affect
R,. However, contribution of fine roots to total R, is still
unknown in Moso bamboo forests; further sophisticated
studies covering separations of R, components with root
phenology monitoring (Kume et al. 2018; Cui et al. 2021;

Hirano et al. 2023) are needed there. Second, the large
amount of Lf occurring biennially (or every few years) in
the period between April and May might affect R, through
the changes in culm-leaf age structure at the stand level. Note
that Moso bamboo leaves have a 2-year lifespan and that new
first-year leaves can have higher photosynthesis rates than
those of 2-year-old leaves (Huang et al. 1989; Lin et al. 2022).
The possible biennial (or every few years) increases in first-
year leaves at the stand level could increase R,, probably
because of increased total below-ground C allocation from
the new first-year leaves at the stand level (Raich and
Nadelhoffer 1989; Davidson et al. 2002; Hibbard et al.
2005). The culm-leaf age structure at the stand level might
be a key for understanding the relationship Lf and R,.

Although Wang et al. (2023) showed week positive rela-
tionships between Ry and NPP components, such as Lf
probably due to enhanced microbial activities, the interann-
ual fluctuations in R}, were largely independent of the NPP
components in this study, which suggested that current-year
NPP components had little effect on R;, at this site. We
should note that we have only a 5-year dataset, which is not
statistically adequate to understand the linkage between NPP
and R, components. Further long-term monitoring would
enable us to clarify the mechanisms linking NPP and R
components, including the effect of time lags between Lf
productions and microbial activities. Note that more than
1 year is needed to complete the decomposition of Moso
bamboo organs (Orrego et al. 2023). Additionally, stable
isotope labeling could be a useful way to understand the
linkage between above- and below-ground C dynamics
(Dannoura et al. 2011; Rog et al. 2021).

Implications for NEP estimates in Moso bamboo forests

The inconsistent interannual variations in NPP and R, com-
ponents observed in this study (Figures 1 and 2) suggest that
a simpler method could be applied to estimate NEP in Moso
bamboo forests. Although the regular and irregular occur-
rences of large interannual variations in NPP indicate that it
is important to monitor NPP (i.e. ANPP), the constant Ry,
observed in this study suggests that it is possible to use the
constant values of Ry, for NEP estimates in Moso bamboo
forests. Actually, we could reproduce 5-year NEP variations
using the constant values of R;, (i.e. 5-year mean R;) plus
measured NPP with high accuracy, i.e. the mean difference
between measured and estimated NEP of 0.3 Mg C ha™" yr™*



with a tight relationship between measured and estimated
NEP (y =1.1x —0.5, y: estimated NEP; x: measured NEP, R?
=0.99).

Recently, NPP has been estimated from remote sensing
techniques such as airborne LiDAR, as these technologies
can provide forest stand structural data (e.g. stand density
and vegetation height), which allows for estimating annual
biomass increment (e.g. Naesset and Gobakken 2005; Dial
et al. 2021). Although we need a careful discussion if these
techniques can be applied to Moso bamboo forests, these
techniques might enable us to estimate regional and global
scale monitoring for the interannual fluctuations more easily
compared with the plot-based intensive measurements for
NPP and ANPP adopted in this study. Because Moso bam-
boo forests are distributed over large areas in East Asia (Song
et al. 2017), fluctuations in Moso bamboo C cycling may
affect the regional-scale C balances. Furthermore, Moso
bamboo habitat could be enlarged to the north under future
global warming scenarios (Takano et al. 2017). Currently,
although regional-scale assessments for land-surface
C cycling have considered various types of vegetation
(Kondo et al. 2017; Sha et al. 2022; Xi et al. 2023), they
have not considered bamboo forests explicitly.

This study had several limitations. First, there is a level of
uncertainty in our BNPP measurements in Moso bamboo
forests. Our study did not consider the year-to-year fluctua-
tions in rhizome production. Kobayashi et al. (2023)
reported the importance of rhizome production, which
accounted for 9.5% of DB. Furthermore, it is possible that
the rhizome production could contribute to 20-30% of total
NPP at this site, which was roughly estimated from
a rhizome turnover rate (=0.11 g g ') reported by
Kobayashi et al. (2023) and rhizome biomass at this site.
Second, the management intensity level also can substantially
affect NEP. This study was conducted under the transitional
management condition, i.e. conventional managements such
as fertilization and harvesting were performed before our
measurements and the management practices were stopped
during our study period. Such treatments could affect
C balances in this study, as a recent study suggested that
unmanaged Moso bamboo stands could have low
C sequestration ability compared with fertilized well-
managed stands (Yuan et al. 2023). Changes in culm density
resulting from harvesting could also affect NEP as
a consequence of the density-dependency effects of new
shoot production (Lin et al. 2022). Further studies, including
long-term monitoring of the rhizome system under the dif-
ferent levels of management practices, are needed to clarify
the linkage between ANPP, BNPP, and R, in Moso bamboo
forests. While monitoring the rhizome system of Moso bam-
boo remains challenging, the use of larger-sized root win-
dows (Silva and Beeson 2011) than those of the A4-sized
optical scanner method (e.g. Dannoura et al. 2008; Kume
et al. 2018; Endo et al. 2019; Tamura et al. 2022) and/or radar
systems (Hirano et al. 2012) might enable us to observe long-
term BNPP including the rhizome system.
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