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1. Introduction

Let G = (V,E) be a simple graph, i.e., no self-loops and multiple edges, and
we call it an (n, q)-graph if |V | = n and |E| = q. We denote the number
of labeled connected graphs with k independent cycles, by N(n, k), which is
also equal to the number of labeled connected (n, n−1+k)-graphs. Since we
are dealing with connected graphs, we note that k corresponds to the Betti
number, the rank of the first homology group, of each (n, n − 1 + k)-graph.
Note that k− 1 is often called excess since such a connected graph has k− 1
more edges than vertices. Connected (n, n − 1)-graphs are spanning trees in
the complete graph Kn over n vertices and it is known as Cayley’s formula
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[1] that N(n, 0) = nn−2. Connected (n, n)-graphs are called unicycles and
the formula for N(n, 1) was found by Rényi [11], which is given by

N(n, 1) =
1

2

(
h(n)

n
− nn−2(n− 1)

)
∼
√
π

8
nn−1/2 (n→ ∞), (1.1)

where

h(n) =

n−1∑
s=1

(
n

s

)
ss(n− s)n−s.

The asymptotic behavior ofN(n, k) for general k as n→ ∞ was also discussed
in [14], where the proofs are based on recurrence equations which N(n, k)’s
satisfy, the algebraic structures of generating functions and their derivatives,
and the combinatorial aspect as will be seen in Theorem 1.6 below.

We consider a bipartite simple graph G = (V1, V2, E) and call it a bipar-
tite (r, s, q)-graph if |V1| = r, |V2| = s and |E| = q, which is also considered
as a spanning subgraph with q-edges in the complete bipartite graph Kr,s.
Here, a “bipartite graph” means a ”colored graph with 2 colors”, namely, all
vertices in V1 and V2 are red and blue, respectively. The previous works on
the asymptotic behavior of the proportion for connected bipartite graphs can
be found in [7, 15]. In [2], a combinatorial analysis using generating functions
is performed on non-uniform hypergraphs, similar to our approach in the
present paper.

We denote by Nbi(r, s, k) the number of labeled connected bipartite
(r, s, r + s + k − 1)-graphs, whose Betti number is k. Similarly as before,
labeled connected bipartite (r, s, r+ s− 1)-graphs are spanning trees in Kr,s

and it is well known [13] that

Nbi(r, s, 0) = rs−1sr−1, (1.2)

which is the bipartite version of Cayley’s formula.

When rs = 0, we understand Nbi(r, s, 0) = 1 if (r, s) = (1, 0), (0, 1);
= 0 otherwise, i.e., the one-vertex simple graph is regarded as a spanning
tree. Labeled connected bipartite (r, s, r + s)-graphs are unicycles in Kr,s

and discussed in the context of cuckoo hashing by [10]. In the present paper,
we discuss Nbi(r, s, k) for k = 0, 1, . . . and the asymptotic behavior of sum
of Nbi(r, s, k) with r + s = n.

We consider the exponential generating function of Nbi(r, s, k) defined
as follows: for k = 0, 1, . . . ,

Fk(x, y) :=

∞∑
r,s=0

Nbi(r, s, k)

r!s!
xrys. (1.3)

For simplicity, we write the exponential generating function for spanning trees
in (1.2) by

T (x, y) := F0(x, y) = x+ y +

∞∑
r,s=1

rs−1sr−1

r!s!
xrys. (1.4)
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We introduce the following functions of x and y:

Tx = DxT, Ty = DyT, Z = Tx + Ty, W = TxTy, (1.5)

where Dx = x∂x and Dy = y∂y are the Euler differential operators. Then we
have the following.

Theorem 1.1. The function F1(x, y) is expressed as F1 = f1(W ) with f1(w) =
− 1

2

(
log(1− w) + w

)
, i.e.,

F1(x, y) = −1

2

(
log(1− TxTy) + TxTy

)
.

This result was discussed in (cf. [10, Lemma 4.4],[3]). However, the term
w seems missing in f1(w) and F1(x, y) was given as − 1

2 log(1− TxTy), which
does not give integer coefficients.

We will give how to compute Fk(x, y) for general k later and, in princi-
ple, we are able to compute them inductively. Here, we just give the expression
F2(x, y) (see Remark 3.3 for F3(x, y) and F4(x, y)).

Theorem 1.2. The function F2(x, y) is expressed as F2 = f2(Z,W ) with

f2(z, w) =
w2

24(1− w)3
{
(2 + 3w)z + 2w(6− w)

}
. (1.6)

From Theorem 1.1 and Theorem 1.2, the asymptotic behavior for co-
efficients of the diagonals F1(x, x) and F2(x, x) is derived as follows. Let
⟨xn⟩A(x) denote the operation of extracting the coefficient an of xn/n! in an

exponential formal power series A(x) =
∑∞

n=0 an
xn

n! , i.e.

⟨xn⟩A(x) = an. (1.7)

The coefficients of ⟨xn⟩Fk(x, x) counts the number of labeled connected bi-
partite graphs with Betti number k over n vertices. Clearly,

Fk(x, x) =

∞∑
r,s=0

Nbi(r, s, k)
xrxs

r!s!
=

∞∑
n=0

∑
r+s=n

(
n

r

)
Nbi(r, s, k)

xn

n!
.

Thus, regarding the coefficient of xn/n!, we put

Nbi(n, k) := ⟨xn⟩Fk(x, x) =
∑

r+s=n

(
n

r

)
Nbi(r, s, k). (1.8)

In this paper, we define a labeled bipartite graph as a triple (V1, V2, E) where
V1 = {1, 2, ..., |V1|}, V2 = {1, 2, ..., |V2|} and E is a subset of the Cartesian
product V1×V2, but in (1.8), we are counting labeled bipartite graphs defined
as a couple (V,E) and a partition V = V1 ⊔ V2. Indeed, the coefficient

(
n
r

)
in (1.8) implies the number of the way of selecting labels {ℓ1, . . . , ℓr} ⊂
{1, . . . , n} used for the vertices in V1. When k = 0, we have

F0(x, x) = 2
(
x+

∞∑
n=2

nn−2x
n

n!

)
,
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hence Nbi(n, 0) = 2nn−2 = 2N(n, 0), which is equivalent to (4.4). That is, as
we will see in Section 4, the spanning trees inKr,s for some (r, s) with r+s = n
are in two-to-one correspondence with those in Kn. When k ≥ 1, the situation
is different since there may exist cycles having odd length in Kn while cycles
must have even length inKr,s. From Theorem 1.1 and Theorem 1.2, we obtain
the asymptotic behavior of Nbi(n, 1) and Nbi(n, 2).

Theorem 1.3. For n = 4, 5, . . . ,

Nbi(n, 1) = nn−1
∑

2≤k≤n/2

n!

(n− 2k)!n2k
∼
√
π

8
nn−1/2 (n→ ∞).

n 3 4 5 6 7 8 9 10 11

N(n, 1) 1 15 222 3660 68295 1436568 33779340 880107840 25201854045

Nbi(n, 1) 0 6 120 2280 46200 1026480 25102224 673706880 19745850960

Figure 1. N(n, 1) and Nbi(n, 1) for n = 3, 4, . . . , 11

From (1.1), this shows that the main term of the asymptotic behavior
of the number of labeled bipartite unicycles over n vertices is the same as
that of the number of unicycles.

Theorem 1.4. As n→ ∞,

Nbi(n, 2) ∼
5

48
nn+1. (1.9)

It is known [14] that in the case of Kn, the main term of asymptotic
behavior of the number of “bicycles” is known to be 5

24n
n+1, which is twice

of (1.9).

n 4 5 6 7 8 9 10 11

N(n, 2) 6 205 5700 156555 4483360 136368414 4432075200 154060613850
Nbi(n, 2) 0 20 960 33600 1111040 37202760 1295884800 47478243120

Figure 2. N(n, 2) and Nbi(n, 2) for n = 4, 5, . . . , 11

For general k, we have the following asymptotic equality.

Theorem 1.5. For k ≥ 0, as n→ ∞,

Nbi(n, k) ∼
1

2k−1
N(n, k). (1.10)

The proof of (1.10) is given in Section 6. The following asymptotic
behavior

N(n, k) ∼ ρk−1n
n+(3k−4)/2 (n→ ∞)

is given in [14], where the explicit value of ρk can be computed by the re-
currence equation. Comparing the generating function of [14, Section 8] with
that of this paper, we can see that the subscript k is off by one. However, the
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meaning of both is the same. To derive (1.10), we use the following result,
which would be interesting on its own right and give more detailed informa-
tion.

Theorem 1.6. For k ≥ 2, Fk(x, y) is decomposed into the sum of rational
functions of Tx and Ty over the set BGk of basic graphs with Betti number
k as

Fk(x, y) =
∑

B∈BGk

JB(x, y) (1.11)

with

JB(x, y) =
T

|V1|
x T

|V2|
y

gB(1− TxTy)Nsp+k−1−e
(1.12)

where V1 ⊔ V2 is the vertex set of B, gB is the number of automorphisms of
B, Nsp and e are the numbers of vertices with degree ≥ 3 and δ-edges in B,
respectively.

The definitions of basic graph and δ-edge will be given in the proof
of Theorem 1.6. From this theorem, we conclude at least that Fk(x, y) for
k ≥ 2 is a rational function of Tx and Ty. Note that Fk(x, y) is symmetric
with respect to Tx and Ty by the bipartite structure, and Fk(x, y) can be
expressed in Z and W for k ≥ 2 as follows.

Theorem 1.7. For k ≥ 2, the function Fk(x, y) is expressed as Fk = fk(Z,W )
with

fk(z, w) =
w2

(1− w)3(k−1)

k−1∑
j=0

qk,j(w)z
j , (1.13)

where qk,j(w) is a polynomial in w.

For k ≥ 3, the generating function becomes highly complicated (see
Remark 3.3) and although we can write it down explicitly in principle as in
Theorem 1.2, it may not be practical to do so, instead, we here emphasize that
the generating function has a particular form given by (1.13). The polynomial
qk,j(w) seems to have more factor wbk,j depending on k and j.

The paper is organized as follows. In Section 2, we give recurrence equa-
tions for Nbi(r, s, q − r − s + 1) and derive recurrence linear partial differ-
ential equations that the generating functions Fk(x, y) of Nbi(r, s, k) satisfy.
In Section 3, we solve these equations by reducing them to a system of ordi-
nary differential equations and obtain the explicit expressions of F1(x, y) and
F2(x, y). In Section 4, we obtain the asymptotic behavior of the coefficients
of Fk(x, x) for k = 1, 2. In Section 5, we will give proofs of Theorem 1.6 and
Theorem 1.7 and another proof of Theorem 1.1 by a combinatorial argument.
In Section 6, we will give proof of Theorem 1.5.
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2. Recurrence equations

Let Nbi(r, s, q−r−s+1) be the number of labeled connected bipartite (r, s, q)-
graphs as defined in the introduction. Since a labeled (r, s, r+s−1)-bipartite
graph is a spanning tree and we are dealing with simple graphs, it is clear
that

Nbi(r, s, q − r − s+ 1) = 0 if q < r + s− 1 or q > rs. (2.1)

As mentioned in (1.2), Nbi(r, s, 0) = rs−1sr−1. Here we understand 0a =
δ0,a as Kronecker’s delta. For example, Nbi(1, 0, 0) = Nbi(0, 1, 0) = 1 and
Nbi(0, 0, 0) = 0.

Lemma 2.1. For (r, s) ̸= (0, 0) and q = −1, 0, 1, . . . , we have the following
recurrence equations:

(q+1)Nbi(r, s, q−r−s+2) = (rs−q)Nbi(r, s, q−r−s+1)+Q(r, s, q), (2.2)

where

Q(r, s, q) =
1

2

r∑
r1=0

s∑
s1=0

q∑
t=0

(
r

r1

)(
s

s1

)
{(r − r1)s1 + r1(s− s1)}

×Nbi(r1, s1, t− r1 − s1 + 1)

×Nbi(r − r1, s− s1, q − t− (r − r1)− (s− s1) + 1) (2.3)

and Q(r, s,−1) = 0.

Proof. Here we give a sketch of the proof. Let G = (V1, V2, E) be a labeled
(r, s)-bipartite graph with q edges and we add an edge to make a labeled
connected (r, s)-bipartite graph with q + 1 edges. There are two cases: (i) G
itself is connected and (ii) G consists of two connected bipartite components.
For the case (i), we add an edge joining V1 and V2. For the case (ii), if
Vj = Vj,1 ⊔ Vj,2 (j = 1, 2), then there are four ways to add an edge joining
two bipartitions, i.e., V1,1 and V2,1, V1,1 and V2,2, V1,2 and V2,1, or V1,2 and
V2,2. □

From Lemma 2.1, we have the following recurrence linear partial differ-
ential equations for generating functions {Fk}k=0,1,... defined by (1.3). For
the sake of convenience, we also consider F−1, which is equal to 0 from (2.1).

Proposition 2.2. For k = −1, 0, 1, 2, . . . ,

(Dx +Dy + k)Fk+1

= (DxDy −Dx −Dy + 1− k)Fk +

k+1∑
l=0

DxFl ·DyFk+1−l, (2.4)

where Dx = x∂x and Dy = y∂y.

Proof. From Lemma 2.1, we have

(r + s+ k)Nbi(r, s, k + 1)

= (rs− r − s+ 1− k)Nbi(r, s, k) +Q(r, s, r + s− 1 + k), (2.5)
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where

Q(r, s, r + s− 1 + k) =
1

2

r∑
r1=0

s∑
s1=0

k+1∑
t=0

(
r

r1

)(
s

s1

)
{(r − r1)s1 + r1(s− s1)}

×Nbi(r1, s1, t)Nbi(r − r1, s− s1, k − t+ 1). (2.6)

Here we used the fact that Nbi(r1, s1, t)Nbi(r−r1, s−s1, k− t+1) = 0 unless
t+r1+s1−1 ≥ r1+s1−1 and t+r1+s1−1 ≥ r1+s1+k, i.e., 0 ≤ t ≤ k+1.

By multiplying both sides of (2.5) and taking sum over r, s = 0 to ∞,
we see that

(Dx +Dy + k)Fk+1 = (DxDy −Dx −Dy + 1− k)Fk

+
1

2

k+1∑
l=0

{DxFl ·DyFk+1−l +DyFl ·DxFk+1−l}

= (DxDy −Dx −Dy + 1− k)Fk +

k+1∑
l=0

DxFl ·DyFk+1−l.

□

In what follows, we write T := F0 and use the symbols Tx, Ty, Z,W
in (1.5). We think of T as a known function below. These functions satisfy
several useful identities.

First let us consider the case k = −1 in (2.4). Then we have

(Dx +Dy − 1)F0 = DxF0 ·DyF0,

which is equivalent to
TxTy = Tx + Ty − T. (2.7)

Remark 2.3. As in the above, in Sections 2 and 3, we always use the subscript
x, y, etc. for the differentiation by Euler operators Dx = x∂x, Dy = y∂y, etc.,
but not the usual partial derivative ∂x, ∂y, etc.

For k = 1, 2, . . . , from (2.4), we have the following linear PDE

LkFk+1 = (DxDy −Dx −Dy + 1− k)Fk +

k∑
l=1

DxFl ·DyFk+1−l, (2.8)

where
Lk := (1− Ty)Dx + (1− Tx)Dy + k. (2.9)

Therefore, in principle, we can solve the (2.8) recursively and obtain Fk for
k = 1, 2, . . . in terms of the known function T . Before solving these equations,
we observe several algebraic relations for Tx’s.

Lemma 2.4. The following identities hold.

Txx = Tx(Txy + 1) (2.10)

Txy = Tyx = TxTyy = TyTxx (2.11)

Tyy = Ty(Txy + 1). (2.12)
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Furthermore,

Txy =
TxTy

1− TxTy
. (2.13)

Proof. It is known that two functions Tx and Ty satisfy the following func-
tional equations (cf. [10, Section 3]):

Tx = xeTy , Ty = yeTx . (2.14)

Differentiating both sides of (2.14) yields the identities (2.10), (2.11), and
(2.12). Plugging (2.10) into (2.11) yields (2.13). □

By using the notations (1.5), we can rewrite (2.7) and (2.13) as

T = Z −W (2.15)

and

Txy =
W

1−W
, (2.16)

respectively.
Functions of Z and W are well-behaved under the action of Lk.

Lemma 2.5. Suppose F (x, y) and G(x, y) admit differentiable functions f(z)
and g(w) such that F (x, y) = f(Z(x, y)) and G(x, y) = g(W (x, y)), respec-
tively. Then,

L0F = (Dzf)(Z), (2.17)

L0G = 2(Dwg)(W ), (2.18)

where (Duf)(u) = uf ′(u). Moreover, H = h(Z,W ) for a differentiable func-
tion h(z, w),

L0H = (Dzh)(Z,W ) + 2(Dwh)(Z,W ). (2.19)

Proof. From (2.10), we have

DxZ = Txx + Tyx = Tx + (Tx + 1)Txy,

DyZ = Txy + Tyy = Ty + (Ty + 1)Txy.

From (2.13), we see that

L0Z = (1− Ty){Tx + (Tx + 1)Txy}+ (1− Tx){Ty + (Ty + 1)Txy}
= Z − 2W + {(1− Ty)(Tx + 1) + (1− Tx)(Ty + 1)}Txy
= Z.

In general, since L0 is a linear operator, we see that

L0f(Z) = f ′(Z)L0Z = Zf ′(Z) = (Df)(Z).

We note that from the definition of L0,

L0T = (1− Ty)Tx + (1− Tx)Ty = Z − 2W.

Since W = Z − T from (2.15), we have

L0W = L0Z − L0T = 2W.
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Therefore,

L0g(W ) = g′(W )L0W = 2Wg′(W ) = 2(Dg)(W ).

For general h(Z,W ), we obtain (2.19) similarly. This completes the proof. □

From this formula, we can reduce the analysis on F (x, y) = h(Z(x, y),W (x, y))
to that on h(z, w) of two variables z and w.

3. Explicit expressions of generating functions

In this section, we solve the PDE (2.8) to obtain the explicit expressions of
generating functions F1 and F2. The algebraic relations of Z,W and their
derivatives, which were seen in the previous section, play an essential role of
the proof.

3.1. For F1: unicycles

For unicycles, we will solve (2.8) with k = 0, i.e.,

L0F1 = (DxDy −Dx −Dy + 1)F0. (3.1)

By using T and their derivatives, we can rewrite (3.1) as

L0F1 = Txy − Tx − Ty + T. (3.2)

The right-hand side is a function of W and is written

Txy − Tx − Ty + T =
W

1−W
−W,

from which together with (2.18) we see that U is also a function of W and
obtain the following.

Proof of Theorem 1.1. Suppose there exists a function f1 = f1(w) such that
F1 = f1(W ). By definition, f1 does not have a constant term, i.e., f1(0) = 0.
Since L0F1 = 2(Df1) by (2.18), (3.2) can be expressed as

2(Df1)(w) =
w

1− w
− w,

or equivalently,

f ′1(w) =
1

2

(
1

1− w
− 1

)
.

From this differential equation with f1(0) = 0, we obtain

f1(w) = −1

2

(
log(1− w) + w

)
and thus we obtain the assertion. □
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3.2. For F2: bicycles

We want to solve (2.8) with k = 1, i.e.,

L1F2 = (DxDy −Dx −Dy)F1 +DxF1 ·DyF1 (3.3)

where L1 = L0 + 1. Here F1 has been given in already given in Theorem 1.1
and considered as a known function. We will solve this equation to prove
Theorem 1.2.

Before proceeding to the proof, we prepare some lemmas.

Lemma 3.1.

Zx =
W + Tx
1−W

, Zy =
W + Ty
1−W

, Zxy =
2 + Z

(1−W )2
Txy.

Moreover,

Zx + Zy =
Z + 2W

1−W
, ZxZy =

W (Z +W + 1)

(1−W )2
. (3.4)

Lemma 3.2.

Wx = (1 + Tx)Txy, Wy = (1 + Ty)Txy (3.5)

and

Wxy = T 2
xy +

1 + Z +W

(1−W )2
Txy. (3.6)

Moreover,

Wx +Wy =
W (Z + 2)

1−W
, WxWy =

W 2(Z +W + 1)

(1−W )2
(3.7)

and

ZxWy + ZyWx =
W (ZW + Z + 4W )

(1−W )2
. (3.8)

Proof. First it follows from (2.11) that

Wx = (TxTy)x = TxxTy + TxTxy = (1 + Tx)Txy.

By symmetry, we have the second equation in (3.5). Next it follows from
(2.13) that

(Txy)y =

(
W

1−W

)
y

=
1

(1−W )2
Wy =

1

(1−W )2
(1 + Ty)Txy (3.9)

Then,

Wxy = ((1+Tx)Txy)y = T 2
xy+(Tx+1)(Txy)y = T 2

xy+(1+Tx)(1+Ty)
1

(1−W )2
Txy.

□

Later we will also use the following.
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Proof of Theorem 1.2. Let G = −2F1, i.e.,

G(W ) = log(1−W ) +W.

First we observe that

Gx =

(
−1

1−W
+ 1

)
Wx =

−W
1−W

Wx = −TxyWx.

Similarly, Gy = −TxyWy. Hence,

Gx +Gy = −Txy(Wx +Wy) = −(2 + Z)T 2
xy.

Next it follows from (3.5), (3.6) and (3.9) that

Gxy = −(TxyWx)y

= −(Txy)yWx − TxyWxy

= − 1

(1−W )2
(1 + Ty)Txy · (1 + Tx)Txy − Txy

×
(
T 2
xy + (1 + Tx)(1 + Ty)

1

(1−W )2
Txy

)
= −T 2

xy

{
2

(1−W )2
(1 + Tx)(1 + Ty) + Txy

}
= −T 2

xy

{
2

(1−W )2
(1 + Z +W ) + Txy

}
.

Lastly, we have

GxGy = T 2
xyWxWy = T 4

xy(1 + Tx)(1 + Ty)

Putting the above all together in (3.3), we have

4L1F2 = 2(Gx +Gy) +GxGy − 2Gxy

= −2(Z + 2)T 2
xy + T 4

xy(1 + Tx)(1 + Ty) + 2T 2
xy

×
{

2

(1−W )2
(1 + Tx)(1 + Ty) + Txy

}
=

T 2
xy

(1−W )2

×
{
−2(Z + 2)(1−W )2 +W 2(1 + Z +W ) + 4(1 + Z +W ) + 2W (1−W )

}
=

W 2

(1−W )4
{
(−W 2 + 4W + 2)Z + (W 2 − 5W + 14)W

}
. (3.10)

Suppose there exist functions a0(w) and a1(w) such that F2 = f2(Z,W ) with
f2(z, w) := a1(w)z + a0(w). Since L1 = L0 + 1, from (2.19), the (3.10) can
be expressed as

4(Dzf2+2Dwf2+f2) =
w2

(1− w)4
{(−w2+4w+2)z+(w2−5w+14)w}. (3.11)
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On the other hand, since f2(z, w) = a1(w)z + a0(w), we have

Dzf2 + 2Dwf2 + f2 = a1(w)z + 2{(Da1)(w)z + (Da0)(w)}+ a1(w)z + a0(w)

= {2a1(w) + 2(Da1)(w)}z + {2(Da0)(w) + a0(w)}.
(3.12)

Comparing (3.11) with (3.12) yields

a0(w) + 2(Da0)(w) =
w3

4(1− w)4
(w2 − 5w + 14)

and

2a1(w) + 2(Da1)(w) =
w2

4(1− w)4
(−w2 + 4w + 2).

On the other hand, by the definition of F2(x, y), the function f2(z, w) does
not have the terms zi, i = 0, 1, 2, . . . since if such a term appears in f2(z, w),
so do the terms xi and yi in F2(x, y), which contradicts to the fact that
Nbi(i, 0, 2) = Nbi(0, i, 2) = 0. This implies that a0(0) = a1(0) = 0. Then,
we can easily solve the above differential equations with initial conditions
a0(0) = a1(0) = 0 to obtain

a0(w) =
w3(6− w)

12(1− w)3
, a1(w) =

w2(2 + 3w)

24(1− w)3
.

Therefore,

f2(z, w) =
w2(2 + 3w)

24(1− w)3
z +

w3(6− w)

12(1− w)3
.

This completes the proof. □

Remark 3.3. We can continue the above computations for Fk(x, y) = fk(z, w).
Here we give f3(z, w) and f4(z, w) just for the reference:

f3(z, w) =
w3(5 + 41w − 23w2 + 8w3 − w4)

24(1− w)6
+
w3(32 + 34w − 9w2 + 3w3)

48(1− w)6
z

+
w2(1 + 8w + 6w2)

48(1− w)6
z2

and

f4(z, w)

=
w3
(
−76w7 + 809w6 − 3746w5 + 9889w4 − 15356w3 + 22820w2 + 7680w + 80

)
2880(1− w)9

+
w3
(
230w6 − 1425w5 + 5568w4 − 6617w3 + 30468w2 + 35988w + 2088

)
5760(1− w)9

z

+
w3
(
61w4 + 64w3 + 1186w2 + 1692w + 312

)
576(1− w)9

z2

+
w2
(
254w4 + 1919w3 + 2624w2 + 704w + 24

)
5760(1− w)9

z3.

These expressions lead to (1.13) in Theorem 1.5.
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4. Asymptotic behaviors of the coefficients

4.1. Asymptotic behavior of the coefficients of F1(x, x)

We use the notation (1.7). We recall the convolution of exponential generating
functions

⟨xn⟩A(x)B(x) =

n∑
k=0

(
n

k

)
akbn−k (4.1)

when ⟨xn⟩A(x) = an and ⟨xn⟩B(x) = bn. For an exponential power series

C(x, y) =
∑∞

r,s=0 crs
xrys

r!s! of two variables, we use the notation

⟨xrys⟩C(x, y) = crs,

and we note that the coefficients of the diagonal C(x, x) is given by

⟨xn⟩C(x, x) =
∑

r+s=n

(
n

r

)
crs.

In Section 3.1, we derived the generating function F1(x, y) for unicycles. In
this section, we focus on the coefficients of the diagonal F1(x, x),

Nbi(n, 1) := ⟨xn⟩F1(x, x) =
∑

r+s=n

(
n

r

)
Nbi(r, s, 1),

which corresponds to the total of the numbers of complete unicycles over n
vertices. We will see the asymptotic behavior of Nbi(n, 1) as n→ ∞.

From Theorem 1.1, we have

F1(x, x) =
1

2

∞∑
k=2

W (x, x)k

k
. (4.2)

First we consider the coefficients of the diagonal W (x, x). Since W = Tx +
Ty − T from (2.15), it is easy to see that

W (x, y) =

∞∑
r,s=1

w(r, s)

r!s!
xrys,

where w(r, s) = rs−1sr−1(r + s− 1). Hence, we have

W (x, x) =

∞∑
n=2

( ∑
r+s=n

w(r, s)n!

r!s!

)
xn

n!
=:

∞∑
n=2

wn
xn

n!
,

where

wn =
∑

r+s=n

rs−1sr−1(r + s− 1)n!

r!s!

= (n− 1)

n−1∑
r=1

(
n

r

)
rn−r−1(n− r)r−1. (4.3)

The sum in (4.3) can be computed by the following identity (cf. [8]).
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Lemma 4.1. For n = 2, 3, . . . ,

n−1∑
r=1

(
n

r

)
rn−r−1(n− r)r−1 = 2nn−2. (4.4)

Proof. Here we give a combinatorial proof of the identity. Let Sn and Sb
n be

the set of labeled spanning trees on Kn and that of labeled spanning trees on
the complete bipartite graph with n vertices, respectively. Also, let Sb

r,s be
the set of labeled spanning trees on the complete bipartite graph Kr,s. Then

Sb
n =

⊔
1≤r≤n−1

Sb
r,n−r.

For (V1 ⊔ V2, Er,n−r) ∈ Sb
r,n−r with |V1| = r and |V2| = n − r, we define a

map η : Sb
n → Sn by

η((V1 ⊔ V2, Er,n−r)) := (V,Er,n−r),

i.e., the map of forgetting partitions. Since every spanning tree on Kn is
bipartite, η is surjective. Moreover, η is two-to-one mapping. Indeed, for
1 ≤ r ≤ n− 1 and (V1 ⊔ V2, Er,n−r) ∈ Sb

r,n−r, there exists a unique spanning

tree (V ′
1 ⊔ V ′

2 , En−r,r) ∈ Sb
n−r,r such that V ′

1 = V2, V
′
2 = V1 and En−r,r =

{(i, j) ∈ V ′
1 × V ′

2 : (j, i) ∈ Er,n−r}. Now we derive (4.4). For 1 ≤ r ≤ n − 1,
|Sb

r,n−r| =
(
n
r

)
Nbi(r, n− r, 0) =

(
n
r

)
rn−r−1(n− r)r−1 by the choice of labeled

r vertices in V1 and (1.2). Hence

|Sb
n| =

n−1∑
r=1

(
n

r

)
rn−r−1(n− r)r−1.

On the other hand, |Sn| = nn−2 by Cayley’s formula. Therefore, we conclude
that (4.4) holds from the two-to-one correspondence of η. □

Corollary 4.2. For n = 1, 2, . . . ,

wn = ⟨xn⟩W (x, x) = 2(n− 1)nn−2. (4.5)

Now we proceed to the case of the power of W (x, x). For k = 1, 2, . . . ,
we write

w∗k
n := ⟨xn⟩W (x, x)k.

In particular, w∗1
n = wn in Corollary 4.2. Note that the smallest degree of the

terms in W (x, x) is 2 and hence w∗k
n = 0 for n = 1, 2, . . . , 2k− 1. From (4.1),

w∗k
n is the k-fold convolution of (wn)n=2,3,... and inductively defined by

w∗(k+1)
n =

n−2∑
r=2k

(
n

r

)
w∗k

r wn−r. (4.6)

From (4.2), the coefficients Nbi(n, 1) of F1(x, x) are given by

Nbi(n, 1) =
1

2

∑
2≤k≤n/2

w∗k
n

k
. (4.7)
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Proposition 4.3. For k = 1, 2, . . . , ⌊n/2⌋,

w∗k
n = 2k · (2k)!nn−2k−1

(
n

2k

)
. (4.8)

Proof. For fixed n, we prove the (4.8) by induction in k. For k = 1, it is
obviously true since w∗1

n = wn. Suppose that (4.8) holds for up to k, then by
(4.5) and (4.6), we have

w∗(k+1)
n =

n∑
r=1

(
n

r

)
w∗k

r wn−r

=

n−2∑
r=2k

(
n

r

)
2k · (2k)!rr−2k−1

(
r

2k

)
· 2(n− r − 1)(n− r)n−r−2

= 4k

n−2∑
r=2k

(
n

r

)
(r − 1) · · · (r − (2k − 1))rr−1−(2k−1)(n− r − 1)(n− r)n−r−2.

Now we introduce a class of polynomials which appears in Abel’s generaliza-
tion of the binomial formula [12, Section 1.5]:

An(x, y; p, q) :=

n∑
r=0

(
n

r

)
(x+ r)r+p(y + n− r)n−r+q.

In particular, when p = q = −1, it is known [12, p.23] that

An(x, y;−1,−1) = (x−1 + y−1)(x+ y + n)n−1. (4.9)

Multiplying both sides by xy yields

(x+ y)Q(x, y) = xy

n∑
r=0

(
n

r

)
(x+ r)r−1(y + n− r)n−r−1

= x(x+ n)n−1 + y(y + n)n−1 + xyS(x, y), (4.10)

where Q(x, y) := (x+ y + n)n−1 and

S(x, y) :=

n−1∑
r=1

(
n

r

)
(x+ r)r−1(y + n− r)n−r−1.

By the generalized Leibniz rule, for p ∈ N, we have

∂px(xS(x, y)) = p∂p−1
x S(x, y) + x∂pxS(x, y),

∂px((x+ y)Q(x, y)) = p∂p−1
x Q(x, y) + (x+ y)∂pxQ(x, y),

which gives

∂px∂
2
y(xyS(x, y))

∣∣∣
x=y=0

= 2pS(p−1,1)(0, 0), (4.11)

∂px∂
2
y((x+ y)Q(x, y))

∣∣∣
x=y=0

= (p+ 2)Q(p−1,2)(0, 0), (4.12)

where S(p,q)(x, y) := ∂px∂
q
yS(x, y) and Q

(p,q)(x, y) := ∂px∂
q
yQ(x, y).
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For k = 1, 2, . . . , ⌊n/2⌋, differentiating both sides of (4.10) 2k times
with respect to x and twice with respect to y and using (4.11) and (4.12)
with p = 2k yield

∂2kx ∂2y(RHS of (4.10))
∣∣∣
x=y=0

= ∂2kx ∂2y(xyS(x, y))
∣∣∣
x=y=0

= 4kS(2k−1,1)(0, 0) = w∗(k+1)
n ,

∂2kx ∂2y(LHS of (4.10))
∣∣∣
x=y=0

= (2k + 2)Q(2k−1,2)(0, 0)

= 2(k + 1) · (n− 1) · · · (n− (2k + 1))nn−1−(2k+1)

= 2(k + 1) · (2(k + 1))!nn−2(k+1)−1

(
n

2(k + 1)

)
,

which complete the proof of (4.8). □

Now we derive the leading asymptotic behavior of Nbi(n, 1) as n→ ∞.

Proof of Theorem 1.3. By (4.7) and (4.8), we have

Nbi(n, 1) =
∑

2≤k≤n/2

(2k)!nn−2k−1

(
n

2k

)

= nn−1
∑

2≤k≤n/2

n!

(n− 2k)!n2k
.

The last summation is similar to the Ramanujan Q-function, so we treat this
summation in the same way as in [4, Section 4]. Let k0 be an integer such
that k0 = o(n2/3) and we split the summation into two parts:∑

2≤k≤n/2

n!

(n− 2k)!n2k
=

∑
2≤k≤k0

n!

(n− 2k)!n2k
+

∑
k0<k≤n/2

n!

(n− 2k)!n2k
.

For k = o(n2/3), by [4, Theorem 4.4] we have

n!

(n− 2k)!n2k
= e−2k2/n

(
1 +O

(
k

n

)
+O

(
k3

n2

))
.

Because the terms in the summation are decreasing in k, and e−2k2/n are
exponentially small for k > k0, the second summation is negligible. Therefore,∑

2≤k≤n/2

n!

(n− 2k)!n2k
=

∑
2≤k≤k0

e−2k2/n

(
1 +O

(
k

n

)
+O

(
k3

n2

))
+ o(1)

=
∑

2≤k≤k0

e−2k2/n +O(1).

Again, since e−2k2/n are exponentially small for k > k0, we can take the
summation for 2 ≤ k ≤ n/2. Therefore, by Euler-Maclaurin’s formula we



Enumeration of labeled connected bipartite graphs with given Betti number17

have ∑
2≤k≤n/2

e−2k2/n =
√
n

∫ ∞

0

e−2x2

dx+O(1) =

√
π

8

√
n+O(1),

which completes the proof. □
4.2. Asymptotic behavior of the coefficients of F2(x, x)

We deal with the coefficients of the diagonal F2(x, x), namely Nbi(n, 2), which
is defined by (1.8) with k = 2. From (1.4), we have

Z(x, y) = Tx + Ty =

∞∑
r,s=0

(r + s)rs−1sr−1

r!s!
xrys.

In particular, by Lemma 4.1 we have

Z(x, x) =

∞∑
r,s=0

(r + s)rs−1sr−1

r!s!
xr+s

=

∞∑
n=1

n

( ∑
r+s=n

n!rs−1sr−1

r!s!

)
xn

n!
=

∞∑
n=1

2nn−1x
n

n!
. (4.13)

Let Y (x) be the exponential generating function for the number of labeled
rooted spanning trees in Kn:

Y (x) :=

∞∑
n=1

nn−1x
n

n!
. (4.14)

First we see the formula for the power of Y (x).

Lemma 4.4. For k = 1, 2, . . . ,

Y (x)k =

∞∑
n=1

k(n− 1)(n− 2) · · · (n− (k − 1))nn−k x
n

n!
. (4.15)

Proof. The proof is by induction in k. Assume that (4.15) holds for k. Then,

Y (x)k+1 =

( ∞∑
n=1

k(n− 1)(n− 2) · · · (n− (k − 1))nn−k x
n

n!

)( ∞∑
n=1

nn−1x
n

n!

)

= kxk+1

( ∞∑
n=0

(n+ k)n−1x
n

n!

)( ∞∑
n=0

(n+ 1)n−1x
n

n!

)

= kxk+1
∞∑

n=0

(
n∑

r=0

(
n

r

)
(k + r)r−1(1 + n− r)n−r−1

)
xn

n!
.

Note that by (4.9),
n∑

r=0

(
n

r

)
(k + r)r−1(1 + n− r)n−r−1 = An(k, 1;−1,−1)

=
(1
k
+ 1
)
(k + 1 + n)n−1,
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so that

Y (x)k+1 = xk+1
∞∑

n=0

(k + 1)(n+ k + 1)n−1x
n

n!

= (k + 1)

∞∑
n=0

(n+ 1)(n+ 2) · · · (n+ k)(n+ k + 1)n
xn+k+1

(n+ k + 1)!

= (k + 1)

∞∑
n=k+1

(n− 1)(n− 2) · · · (n− k)nn−(k+1)x
n

n!
.

Hence, (4.15) holds for k+1, and by induction this completes the proof. □

Lemma 4.4 gives for ak ∈ R, k = 1, 2, . . . ,

∞∑
k=1

akY (x)k =

∞∑
n=1

nn−1

( ∞∑
k=1

akk
(n− 1)(n− 2) · · · (n− (k − 1))

nk−1

)
xn

n!
,

(4.16)

where the summation with respect to k is finite.
From Corollary 4.2, (4.13) and (4.15),

Z(x, x) =

∞∑
n=1

2nn−1x
n

n!
= 2Y (x),

W (x, x) =

∞∑
n=1

2(n− 1)nn−2x
n

n!
= Y (x)2.

(4.17)

Hence, we can express F2(x, x) by using only Y (x), instead of Z(x, x) and
W (x, x). Substituting (4.17) in (1.6) with the notation Y = Y (x), we have

F2(x, x) = f2(2Y, Y
2) =

Y 5(2 + 4Y − Y 2)

12(1− Y )3(1 + Y )2

=
Y 2 − 3Y − 3

12
− 11

64(1 + Y )
+

1

32(1 + Y )2

+
143

192(1− Y )
− 11

24(1− Y )2
+

5

48(1− Y )3
. (4.18)

In the case of Kn, a similar expression can be found in [14, (17)]. As we
will see below, the last term of (4.18) determines the asymptotic behavior of
Nbi(n, 2) in Theorem 1.4.

To obtain the asymptotic behavior of Nbi(n, 2), from (4.18), we only
need to estimate coefficients of 1

(1−Y )p ,
1

(1+Y )p , p ∈ N. For fixed p ∈ N, the
tree polynomials {tn(p)}n≥0 are defined by

1

(1− Y (x))p
=

∞∑
n=0

tn(p)
xn

n!
. (4.19)

This polynomial and their asymptotic behavior of tn(p) are well studied in
[9].
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Lemma 4.5 ([9]). For fixed p ∈ N, as n→ ∞,

tn(p) =

√
2πnn−1

2p/2

(
n(p+1)/2

Γ(p/2)
+

√
2p

3

np/2

Γ((p− 1)/2)
+O(n(p−1)/2) +O(1)

)
.

(4.20)

Hence, we have already obtained the asymptotic behavior of 1
(1−Y )p , p ∈

N. For 1
(1+Y )p , p ∈ N, we only give a rough estimate for coefficients of 1

(1+Y )p .

By the binomial expansion and (4.16), we have

1

(1 + Y (x))p
=

∞∑
k=0

(
p+ k − 1

k

)
(−1)kY (x)k

= 1 +

∞∑
n=1

(
nn−1

Γ(p)

∞∑
k=0

(
n− 1

k

)
(−1)k+1Γ(p+ k + 1)

nk

)
xn

n!
,

so that as n→ ∞,

⟨xn⟩ 1

(1 + Y (x))p
=
nn−1

Γ(p)

∞∑
k=0

(
n− 1

k

)
(−1)k+1Γ(p+ k + 1)

nk

≤ tn(p) = O(nn+(p−1)/2). (4.21)

Now we are in a position to prove Theorem 1.4.

Proof of Theorem 1.4. By (4.17), (4.18), (4.20) and (4.21), we obtain the
leading asymptotic behavior of Nbi(n, 2) as

Nbi(n, 2) = ⟨xn⟩F2(x, x) = − 1

12
nn−1 +O(nn) +O(nn+1/2) +

143

192
(nn +O(nn−1/2))

− 11

24

(√π

2
nn+1/2 +O(nn)

)
+

5

48
(nn+1 +O(nn+1/2))

=
5

48
nn+1 +O(nn+1/2),

which completes the proof. □

5. Another expression for Fk(x, y)

In this section, we introduce the notion of basic graphs obtained from la-
beled connected bipartite graphs, and we give proofs of Theorem 1.6 and
Theorem 1.7. In a similar way to the proof of Theorem 1.6, we give another
proof of Theorem 1.1.

5.1. Proof of Theorem 1.6

Our proof is based on the combinatorial argument developed in [14, Section
6]. Firstly, we explain how to obtain a basic graph from a labeled connected
bipartite graph.

Fix k ≥ 2 and take a labeled connected bipartite (r, s, r+s−1+k)-graph
G = (V1, V2, E). We delete a leaf and its adjacent edge from G, and repeat
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this procedure until vanishing all leaves in the resultant graph. Since we delete
only one vertex and one edge in each procedure, we obtain a labeled connected
bipartite (t, u, t + u − 1 + k)-graph without leaf for some t ≤ r and u ≤ s.
Clearly, the resultant graph does not depend on the order of eliminations of
leaves, and it is denoted by G′. Let V ′ = (V ′

1 , V
′
2) be the vertex set of the

graph G′. For each vertex v ∈ V ′, we call it a special point if deg(v) ≥ 3 and
a normal point if deg(v) = 2. Let rsp and ssp be the number of special points
in V ′

1 and V ′
2 , respectively. By applying the handshaking lemma to the graph

G′, we see that
∑

v∈V ′(deg(v)− 2) = 2(k − 1) and hence

rsp + ssp ≤ 2(k − 1). (5.1)

In the graph G′, a path whose end vertices are distinct special points is said
to be a special path and a cycle which contains exactly one special point is
said to be a special cycle. Since G′ is connected and deg(v) ≥ 2, it is clear
that it consists of such special paths and cycles which are disjoint except at
special points. We classify these special paths and cycles into seven types and
contract them to the minimal ones as in Figure 3 to obtain the basic graph
B(G).

• An αi-cycle is a special cycle with exactly one special point in V ′
i (i =

1, 2). By the structure of bipartite graphs, these special cycles contain
at least three normal points. The minimal αi-cycle has three normal
points as in Figure 3.

• A βj-path is a special path whose end vertices are two distinct special
points in V ′

j (j = 1, 2). By the structure of bipartite graphs, these special
paths contain at least one normal point. The minimal βj-path has only
one normal point as in Figure 3.

• A special path whose end vertices are special points in V ′
1 and V ′

2 is called
in several ways according to the situation. For each pair of special points
v1 ∈ V ′

1 and v2 ∈ V ′
2 , we have two cases.

– Case(i) there is only one special path connecting v1 and v2: such a
special path is called a γ-path. The length of the minimal γ-path
is one.

– Case(ii) there is more than one special path connecting v1 and v2:
since we are considering a simple graph, there is at most one such
a special path of length one, i.e., joined by an edge. A special path
is called a δ-path if the length is three or more and a δ-edge if the
length is one. The length of the minimal δ-path is three.

We decomposed G′ into the union of a collection of αi-cycles, βj-paths,
γ-paths, δ-paths, and δ-edges. The basic graph B(G) is obtained from G′ by
contracting αi-cycles, βj-paths, γ-paths, and δ-paths to the minimal ones as
in Figure 3. In the procedure of contraction, we forget about labels of vertices.
We summarize the contraction procedures below.

• If each αi-cycle (i = 1, 2) contains five or more normal points, we con-
tract it to the minimal αi-cycle, which has three normal points.
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• If each βj-path (j = 1, 2) contains three or more normal points, we
contract it to the minimal βj-path, which has only one normal point.

• If each γ-path contains normal points, we contract it to the minimal
γ-path, which has no normal points.

• If each δ-path contains four or more normal points, we contract it to
the minimal δ-path, which has two normal points.

α1-cycle α2-cycle β1-path β2-path

γ-path δ-path δ-edge

Figure 3. Seven types of minimal special paths, cycles and edge.
The circles denote special points.

We have seen how to make the basic graph B(G) from a given labeled
connected bipartite (r, s, r + s − 1 + k)-graph G. Note that the number of
cycles in graphs is invariant by the contractions, so that B(G) has just k
cycles. We will reconstruct labeled bipartite graphs from each basic graph B
and introduce JB(x, y) to express Fk(x, y) as sum of JB(x, y)’s.

Proof of Theorem 1.6. For a given labeled connected bipartite (r, s, r + s −
1 + k)-graph G, let V ′′ = (V ′′

1 , V
′′
2 ) be the vertex set of B(G), and also let

ai, bj , c, d and e be the number of αi-cycles, βj-paths, γ-paths, δ-paths, and
δ-edges in B(G), respectively. Then, for the number of vertices in B(G), we
have

|V ′′
1 | = rsp + a1 + 2a2 + b2 + d ≤ t ≤ r, (5.2)

|V ′′
2 | = ssp + 2a1 + a2 + b1 + d ≤ u ≤ s. (5.3)

For the number of edges in B(G), since the same number of vertices and edges
are deleted by contraction, we have

4a1 + 4a2 + 2b1 + 2b2 + c+ 3d+ e = |V ′′
1 |+ |V ′′

2 |+ k − 1. (5.4)

Combining (5.2)-(5.4) and the inequality (5.1), we have

a1 + a2 + b1 + b2 + c+ d+ e = rsp + ssp + k − 1

≤ 3(k − 1). (5.5)

Therefore, if G is a labeled connected bipartite (r, s, r+s−1+k)-graph, then
B(G) should satisfy the conditions (5.1)-(5.5). Now we denote the set of all
possible basic graphs having k cycles by BGk, i.e.,

BGk := {B(G) : G is a labeled bipartite (r, s, r + s− 1 + k)-graph for some r, s.}
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It follows from (5.5) that BGk is a finite set.

For fixed B ∈ BGk, let jB(r, s) be the number of labeled connected
bipartite (r, s, r + s − 1 + k)-graphs G such that B(G) = B. We define the
exponential generating function of jB(r, s) as

JB = JB(x, y) :=

∞∑
r,s=0

jB(r, s)
xrys

r!s!
.

We will show below that JB(x, y) is expressed by a rational function of Tx and
Ty. To this end, we count jB(r, s) by reversing the procedure of contraction
above, i.e., by adding pairs of a normal point and its adjacent edge in B and
rearranging labels of (r, s) vertices. We construct labeled bipartite (r, s, r +
s− 1 + k)-graphs from B by two steps as follows.
Step 1: Take B ∈ BGk. Let V ′′ = (V ′′

1 , V
′′
2 ) be the vertex set of B and

M := a1 + a2 + b1 + b2 + c + d be the number of all minimal special paths
and cycles in B except δ-edges. Take t and u such that |V ′′

1 | ≤ t ≤ r and
|V ′′

2 | ≤ u ≤ s. We label all minimal αi-cycles, βj-paths, γ-paths and δ-paths
in B, say, s1, s2, . . . , sM , and we add pairs of a normal point and its adjacent
edge in these special paths/cycles. By the structure of bipartite graphs, for
every j = 1, 2, . . . ,M , the number of added pairs in each sj is even, and the
numbers of added normal points in V ′′

1 and V ′′
2 are equal, which we denote

by mj . Hence, a necessary condition for the numbers of added vertices in V ′′
1

and V ′′
2 is t − |V ′′

1 | = u − |V ′′
2 | =

∑M
j=1mj . Combining (5.2) and (5.3) with

the necessary condition, the non-negative integers {mj}Mj=1 satisfy

m1 +m2 + · · ·+mM = t− (rsp + a1 + 2a2 + b2 + d), (5.6)

m1 +m2 + · · ·+mM = u− (ssp + 2a1 + a2 + b1 + d). (5.7)

Let yB(t, u) = yB(t, u, rsp, ssp, a1, a2, b1, b2, c, d) be the number of the solu-
tions {mj}Mj=1 of (5.6) and (5.7). For each solution {mj}Mj=1, we obtain an
unlabeled connected bipartite (t, u, t + u − 1 + k)-graph, and hence yB(t, u)
of those from B.
Step 2: Take one of yB(t, u) of unlabeled connected bipartite (t, u, t+u−1+k)-
graphs and call its vertices T1, . . . , Tt and U1, . . . , Uu. Let It,u the set of
{(r1i, s1i)}ti=1 and {(r2j , s2j)}uj=1 such that r1i ≥ 1, r2j ≥ 0, s1i ≥ 0, s2j ≥ 1,
t∑

i=1

r1i +
u∑

j=1

r2j = r and
t∑

i=1

s1i +
u∑

j=1

s2j = s. For each {(r1i, s1i)}ti=1 and

{(r2j , s2j)}uj=1 in It,u, we attach a rooted tree of size (r1i, s1i) to Ti for
i = 1, 2, . . . , t and a rooted tree of size (r2j , s2j) to Uj for j = 1, 2, . . . , u, re-
spectively. Let N(r, s, t, u) be the number of these labeled bipartite (r, s, r +
s−1+k)-graphs. Then, by counting t rooted trees whose roots are in V1 and
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u rooted trees whose roots are in V2, we have

N(r, s, t, u) =
∑′

(
r

r11, . . . , r1t, r21, . . . , r2u

)(
s

s11, . . . , s1t, s21, . . . , s2u

)
×

t∏
i=1

rs1i1i s
r1i−1
1i

u∏
j=1

r
s2j−1
2j s

r2j
2j , (5.8)

where the summation
∑′

is taken over the set It,u.
By the above two steps, we obtain all labeled connected bipartite (r, s, r+s−
1 + k)-graphs from the basic graph B. However, not all of them are different
because of forgetting labels s1, . . . , sM after attaching labeled rooted trees to
all vertices. Indeed, if gB is the number of automorphisms of B, then every
graph appears exactly gB times. Hence, we have

jB(r, s) =
∑

|V ′′
1 |≤t≤r

|V ′′
2 |≤u≤s

yB(t, u)N(r, s, t, u)

gB
.

Using this, we have

JB(x, y) =
1

gB

∑
|V ′′

1 |≤t

|V ′′
2 |≤u

yB(t, u)
∑
t≤r
u≤s

N(r, s, t, u)
xrys

r!s!
. (5.9)

For the summation in r and s, by (5.8), we have∑
t≤r
u≤s

N(r, s, t, u)
xrys

r!s!
=
∑
t≤r
u≤s

∑′ t∏
i=1

rs1i1i s
r1i−1
1i

xr1iys1i

r1i!s1i!

u∏
j=1

r
s2j−1
2j s

r2j
2j

xr2jys2j

r2j !s2j !

= T t
xT

u
y .

On the other hand, by a straightforward calculation, we have∑
|V ′′

1 |≤t

|V ′′
2 |≤u

yB(t, u)T
t
xT

u
y =

∑
|V ′′

1 |≤t

|V ′′
2 |≤u

∑
m1,...,mM∑

mj=t−|V ′′
1 |=u−|V ′′

2 |

T t
xT

u
y

= T
|V ′′

1 |
x T

|V ′′
2 |

y

∑
|V ′′

1 |≤t

|V ′′
2 |≤u

∑
m1,...,mM∑

mj=t−|V ′′
1 |=u−|V ′′

2 |

(TxTy)
∑M

j=1 mj

= T
|V ′′

1 |
x T

|V ′′
2 |

y

∑
n≥0

∑
m1,...,mM∑

mj=n

(TxTy)
∑M

j=1 mj

= T
|V ′′

1 |
x T

|V ′′
2 |

y

M∏
j=1

( ∑
mj≥0

(TxTy)
mj

)
= T

|V ′′
1 |

x T
|V ′′

2 |
y (1− TxTy)

−M . (5.10)

Combining (5.2), (5.3), (5.5), (5.9) and (5.10), we obtain (1.12). Since non-
isomorphic basic graphs with k cycles lead non-isomorphic labeled connected
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bipartite (r, s, r + s− 1 + k)-graphs, taking a summation JB with respect to
B ∈ BGk, we obtain (1.11), which completes the proof. □

We give an example of Theorem 1.6 for k = 2.

Example 5.1 (k = 2). Let us consider all the basic graphs for k = 2 and
compute F2(x, y). From the conditions (5.1) and (5.5), we have

rsp + ssp ≤ 2,

a1 + a2 + b1 + b2 + c+ d+ e = rsp + ssp + 1.

As a result, the possible combinations of numbers of special points are (rsp, ssp) =
(1, 0), (0, 1), (1, 1), (2, 0), (0, 2). We compute JB for each of these cases. For in-
stance, the calculation procedure is described below for the case of (rsp, ssp) =
(1, 0). First, consider the numbers of cycles, paths and edges that make up
the basic graphs. The following should be obvious. By using

a1 + a2 + b1 + b2 + c+ d+ e = 2,

we have (a1, a2, b1, b2, c, d, e) = (2, 0, 0, 0, 0, 0, 0). As a result, the basic graph
is a combination of two α1-cycles. This is the upper left graph in Figure 4.
We define this basic graph as B1. Note that basic graphs are unlabeled.

Next, let us compute the number of graph automorphism gB1
. We label

each of the vertices appropriately. For the labeled basic graph, there are 2!
ways to arrange the two α1-cycles. There are two possible ways to label the
vertices of each α1-cycle: 1 → 2 → 3 → 4 → 1 with the special point as 1, or
in reverse 1 → 4 → 3 → 2 → 1. Therefore gB1 = 2! × 22 = 8. Consequently,
from (1.12) we obtain

JB1
(x, y) =

T 3
xT

4
y

8(1− TxTy)2
.

We can derive the others by the same calculation. Therefore,∑
B∈BG2

JB(x, y) =
T 3
xT

4
y

8(1− TxTy)2
+

T 4
xT

3
y

8(1− TxTy)2
+

T 4
xT

5
y

8(1− TxTy)3

+
T 2
xT

3
y

12(1− TxTy)3
+

T 5
xT

4
y

8(1− TxTy)3
+

T 3
xT

2
y

12(1− TxTy)3

+
T 4
xT

4
y

6(1− TxTy)3
+

T 3
xT

3
y

2(1− TxTy)2
+

T 4
xT

4
y

4(1− TxTy)3

=
W 2(2 + 3W )

24(1−W )3
Z +

W 3(6−W )

12(1−W )3

=F2(x, y),

where the nine terms correspond to the nine basic graphs in Figure 4, respec-
tively. Hence, the result of the calculation by using basic graphs is consistent
with F2(x, y) = f2(Z,W ).
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Figure 4. Basic graphs for k = 2

5.2. Proof of Theorem 1.7

From (1.11), (1.12) and (5.5), we see that

Fk(x, y) =
1

(1− TxTy)3(k−1)

∑
B∈BGk

1

gB
T rB
x T sB

y (1− TxTy)
pB , (5.11)

where rB = rsp + a1 + 2a2 + b2 + d, sB = ssp + 2a1 + a2 + b1 + d, and

pB = 3(k − 1)− (a1 + a2 + b1 + b2 + c+ d)

= 2(k − 1)− (rsp + ssp) + e

=
∑

v∈special points

(deg(v)− 3) + e

≥ 0. (5.12)

Note that there are some basic graphs B ∈ BGk such that pB = 0. For
example, we can construct a basic graph B̃ with rsp = 2(k − 1), a1 = 2,
b1 = 3k − 5 and other constants vanishing as follows: we label all 2(k − 1)
special points in V1, say, r1, r2, . . . , r2(k−1). We attach an α1-cycle to each of
r1 and r2(k−1), and then connect r2j−1 with r2j (j = 1, 2, . . . , k− 1) by a β1-
path and r2j with r2j+1 (j = 1, 2, . . . , k−2) by two β1-paths. Then, we obtain

B̃. Remark that in the case of k = 2, B̃ corresponds to the top-right graph
in Figure 4. Clearly, ssp = e = 0 holds for all k ≥ 2, and the calculation in
(5.12) gives pB̃ = 0. From this observation, the numerator of the right-hand
side of (5.11) turns out to be a polynomial of the following form

Q(x, y) =

m∑
i=1

Cix
aiybi +

m+n∑
i=m+1

Cix
aiybi(1− xy)pi ,

for some positive integersm and n. Here ai, bi are non-negative integers, pi is a
positive integer and Ci > 0 for all i. If Q(x, y) has a factor 1−xy, plugging y =
x−1 in both sides yields 0 =

∑m
i=1 Ci > 0, which is a contradiction. Hence,
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Q(x, y) does not have the factor 1− xy, which implies that the numerator of
the right-hand side of (5.11) does not have a factor 1 − TxTy.

We will prove (1.13). Assume B = (V1, V2, E). We have the following
lemma.

Lemma 5.2. For any B ∈ BGk,
∣∣|V1| − |V2|

∣∣ ≤ k − 1.

Proof. Since deg(v) ≥ 2 for every vertex v in a basic graph B, we see that

|E| − |V | −
∣∣|V1| − |V2|

∣∣ = |E| − 2max(|V1|, |V2|) ≥ 0.

On the other hand, |E| − |V | = k− 1 since B is connected and k is the Betti
number. Therefore,

∣∣|V1| − |V2|
∣∣ ≤ k − 1. □

For B = (V1⊔V2, E) ∈ BGk, there exists a unique basic graph B′ = (V ′
1⊔

V ′
2 , E

′) ∈ BGk such that V ′
1 = V2, V

′
2 = V1, and E

′ = E. Let π : BGk → BGk

be a mapping defined by π(B) = B′. Then π is an involution, and we have

gπ(B) = gB, rπ(B) = sB, sπ(B) = rB, pπ(B) = pB, (5.13)

where rB = |V1|, sB = |V2|. From this involution with (5.13), the numerator
of (5.11) turns out to be∑
B∈BGk

1

gB
T rB
x T sB

y (1− TxTy)
pB

=
∑

B∈BGk
rB>sB

(TxTy)
sB

gB
(T qB

x + T qB
y )(1− TxTy)

pB +
∑

B∈BGk
rB=sB

(TxTy)
rB

gB
(1− TxTy)

pB ,

(5.14)

where qB = rB − sB. Since T
qB
x + T qB

y is a polynomial of Z of degree qB with
coefficients being polynomials of W , so is the right-hand side of (5.14) but
the degree is equal to maxB∈BGk,rB>sB qB. Now we consider a basic graph

B̂ which has one special point in V2 and k α2-cycles. Clearly, rB̂ = 2k, sB̂ =
k + 1 hold, and hence qB̂ = k − 1. This together with Lemma 5.2 implies
maxB∈BGk,rB>sB qB = k − 1. Since B is a simple graph and has at least one
cycle, we have rB, sB ≥ 2. Then, the right hand side of (5.14) has a factor
(TxTy)

2 =W 2. Thus the proof of (1.13) is completed.

5.3. Combinatorial proof of Theorem 1.1

Finally, we remark on another proof of Theorem 1.1 using a similar argument
in the proof of Theorem 1.6, which is a bipartite version of the combinatorial
argument discussed in [14, Section 5]. We use the same notation as above.
In the preliminary step, we delete leaves and adjacent edges repeatedly. In
this case, by this procedure, we obtain the unique cycle of length, say 2t.
Let r, s ≥ 2 be fixed and V ′′ = (V ′′

1 , V
′′
2 ) be a vertex set. Take t such that

2 ≤ t ≤ min{r, s}, and consider an unlabeled bipartite unicyclic graph whose
length of the cycle is 2t. Clearly, |V ′′

1 | = |V ′′
2 | = t. For each of vertices of

this graph, we attach a rooted tree in a similar way of Step 2 in the proof
of Theorem 1.6. To create 2t rooted trees, we partition (r, s) vertices into 2t
vertex sets, and all of these partitions are in It,t. By this procedure, we obtain
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N(r, s, t, t) labeled connected bipartite (r, s, r+s)-graphs, whereN(r, s, t, u) is
defined in (5.8). For each of the obtained graphs, there are 2t automorphisms
due to the cycle and labels of roots of rooted trees. Let j(r, s) be the number
of labeled connected bipartite (r, s, r + s)-graphs. Then, we have

j(r, s) =
∑

2≤t≤min{r,s}

N(r, s, t, t)

2t
.

Let J(x, y) be the exponential generating function for j(r, s), and we have

J(x, y) =

∞∑
r,s=0

j(r, s)
xrys

r!s!
=

∞∑
t=2

1

2t

∑
t≤r
t≤s

N(r, s, t, t)

r!s!
xrys

=
1

2

∞∑
t=2

(TxTy)
t

t
= −1

2
(log(1− TxTy) + TxTy) = F1(x, y),

which completes the combinatorial proof of Theorem 1.1.

6. Proof of Theorem 1.5

In this section, we prove the asymptotic equality (1.10) for k ≥ 2. In Subsec-
tion 6.1, for each basic graph B ∈ BGk, we find the leading term of JB(x, x)
by a combinatorial argument, where the multigraph B∗ obtained from B by
contraction plays an important role. In Subsection 6.2, we introduce the basic
graphs on complete graphs as discussed in [14] and give a similar discussion
in Subsection 6.1, and in Subsection 6.3, we derive the leading asymptotic
behavior of Nbi(n, k) defined by (1.8). Through the existence of multigraphs,
we will see the correspondence between basic graphs on complete bipartite
graphs and those on complete graphs.

6.1. Basic graphs B and JB(x, x)

Let us recall again Y (x) in (4.14) representing exponential generating func-
tion for labeled rooted trees. From (4.17), Z(x, x) = 2Y (x) and W (x, x) =
Y (x)2. Recall that

Z(x, y) = Tx(x, y) + Ty(x, y), W (x, y) = Tx(x, y)Ty(x, y).

Solving these equations, we have

Tx(x, x) = Ty(x, x) = Y (x). (6.1)

From Theorem 1.6, for k ≥ 2 we have

Fk(x, x) =
∑

B∈BGk

JB(x, x),

where

JB(x, x) =
Y L

gB(1− Y 2)M
, (6.2)

with M = M(B) := a1 + a2 + b1 + b2 + c + d and L = L(B) := M + rsp +
ssp+2a1+2a2− c+ d. These constants are determined by B. In this section,
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we also use the notation a1 = a1(B), rsp = rsp(B), and so on. We easily see
the following.

Lemma 6.1. For B ∈ BGk, there exist unique constants {ai(B)}Mi=1, {bi(B)}Mi=1,

{cj(B)}L−2M
j=0 such that

JB(x, x) =

M∑
i=1

(
ai(B)

(1− Y )i
+

bi(B)
(1 + Y )i

)
+

L−2M∑
j=0

cj(B)Y j . (6.3)

In particular,

aM (B) = 1

gB2M
, bM (B) = (−1)L

gB2M
. (6.4)

Proof. Multiplying both sides of (6.2) and (6.3) by (1−Y 2)M and substituting
Y = ±1 yield (6.4). □

For each B ∈ BGk, we contract its special cycles and paths and ignore
the vertex sets V1 and V2. By this procedure, we obtain a multigraph B∗

from B. Let MGk be the set of all multigraphs obtained from BGk by this
procedure. Define a mapping ϕ : BGk → MGk by ϕ(B) = B∗ and for B∗ ∈
MGk,

ϕ−1(B∗) := {B ∈ BGk : ϕ(B) = B∗}.
All basic graphs which belong to ϕ−1(B∗) have the same number of special
cycles and the same total number of special paths and edges. In what follows
in this section, we only consider basic graphs B ∈ BGk such that M(B) =
3(k − 1) and multigraphs B∗ ∈ MGk obtained from such basic graphs B.
From (5.5), it follows that such a B has no δ-edge, i.e., e(B) = 0 and rsp(B)+
ssp(B) = 2(k − 1) holds. For given B∗ ∈MGk, we divide the set ϕ−1(B∗) by
pairs of (rsp(B), ssp(B)). For i = 0, . . . , 2(k − 1), define

ϕ−1(B∗)(2(k−1)−i,i) := {B ∈ ϕ−1(B∗) : (rsp(B), ssp(B)) = (2(k − 1)− i, i)}.
Then, we have

ϕ−1(B∗) =
⊔

0≤i≤2(k−1)

ϕ−1(B∗)(2(k−1)−i,i). (6.5)

Note that ϕ−1(B∗)(2(k−1),0) and ϕ−1(B∗)(0,2(k−1)) are singletons, and each of
the element is determined by B∗ in a clear way. Indeed, if B∗ has self-loops,
replace them to minimal α1-cycles. Also, if B∗ has single edges or multiple
edges, replace them to β1-paths. Putting all vertices of B∗ in V1 and by
this procedure, we obtain a basic graph B ∈ ϕ−1(B∗)(2(k−1),0). Clearly, the
obtained graph B is unique. In a similar way, we have a unique element in
ϕ−1(B∗)(0,2(k−1)). For the following discussion, we denote by Bid the unique
element in ϕ−1(B∗)(2(k−1),0).

Lemma 6.2. Let B∗ ∈MGk be given. Then, for i = 0, . . . , 2(k − 1),∑
B∈ϕ−1(B∗)(2(k−1)−i,i)

M(B)=3(k−1)

1

gB
=

(
2(k − 1)

i

)
1

gBid

. (6.6)
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Proof. For i = 0, Bid and gBid
are determined by B∗. Clearly, rsp(Bid) =

2(k − 1) holds. We label all 2(k − 1) special points of Bid, and we construct
B ∈ ϕ−1(B∗)(2(k−1)−i,i), i = 0, . . . , 2(k− 1) by the following way. For given i,

we choose
(
2(k−1)

i

)
labeled special points in Bid, and we put these points in V2

without changing the connectivity of the vertices. Here, for each β1-path in
Bid, delete or add a normal point to create γ-path or δ-path from it. Then, we

have
(
2(k−1)

i

)
basic graphs B1, · · · ,B(2(k−1)

i ) from Bid which satisfy (rsp, ssp) =

(2(k − 1) − i, i). Since this procedure does not change the connectivity of

graphs, the numbers of the automorphisms of obtained graphs {Bℓ}
(2(k−1)

i )
ℓ=1

are gBid
. To obtain ϕ−1(B∗)(2(k−1)−i,i), we forget all labels of special points

of {Bℓ}
(2(k−1)

i )
ℓ=1 . Nevertheless each of

(
2(k−1)

i

)
unlabeled graphs may not be

different, we have

∑
B∈ϕ−1(B∗)(2(k−1)−i,i)

M(B)=3(k−1)

1

gB
=

(2(k−1)
i )∑

ℓ=0

1

gBℓ

=

(
2(k − 1)

i

)
1

gBid

.

□

Proposition 6.3. For B∗ ∈MGk,∑
B∈ϕ−1(B∗)

M(B)=3(k−1)

b3(k−1)(B) = 0.

To show Proposition 6.3, from (6.4) it is sufficient to prove that for
B∗ ∈MGk,

2(k−1)∑
i=0

∑
B∈ϕ−1(B∗)(2(k−1)−i,i)

M(B)=3(k−1)

(−1)L(B)

gB
= 0. (6.7)

For the signature of (−1)L(B), we have the following lemma.

Lemma 6.4. Suppose that for given B∗ ∈ MGk, there exists B ∈ ϕ−1(B∗)
such that M(B) = 3(k − 1). Then, for i and B ∈ ϕ−1(B∗)(2(k−1)−i,i),

(−1)L(B) = (−1)k−1+i.

Proof. Recall that for B ∈ BGk, L(B) = M + rsp + ssp + 2a1 + 2a2 − c+ d.
By the assumption, we have

M = 3(k − 1), rsp + ssp = 2(k − 1), (6.8)

which give

(−1)L(B) = (−1)(k−1)−c(B)+d(B).

By the equation (6.8), for any considered B, degrees of each special point in
B are three. In particular, so are that in Bid. It follows that each of special
points v ∈ Bid satisfies one of the following; v has an α1-cycle and a β1-path,
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or a β1-path connected to v1 and two β1-paths connected to v2, or three β1-
paths connected to v3, where vi, i = 1, 2, 3 are different special points of Bid.
Note that each of B is obtained from Bid by putting i special points in V1
into V2 and replacing β1-paths with γ- or δ-paths in the same way as in the
proof of Lemma 6.2. Hence, for any special point v′ ∈ V2 of B, the difference
of the numbers of γ- and δ-paths connected to v′ is odd. Therefore, we have
(−1)(k−1)−c(B)+d(B) = (−1)(k−1)+i, which completes the proof. □

Proof of Proposition 6.3. By Lemmas 6.2 and 6.4, we have

(LHS of (6.7)) =

2(k−1)∑
i=0

(−1)k−1+i
∑

B∈ϕ−1(B∗)(2(k−1)−i,i)

M(B)=3(k−1)

1

gB

=
(−1)k−1

gBid

2(k−1)∑
i=0

(
2(k − 1)

i

)
(−1)i = 0.

Hence, equation (6.7) holds and Proposition 6.3 is proved. □

Proposition 6.3 shows that for any B∗ ∈ MGk,
∑

B∈ϕ−1(B∗) JB(x, x)

does not have the terms of (1 + Y )−3(k−1), and so the leading asymptotic

behavior of Fk(x, x) is determined by the summation of
a3(k−1)(B)

(1−Y )3(k−1) . We give

the exact value of the coefficient of the summation.

Proposition 6.5. Suppose that for given B∗ ∈MGk, there exists B ∈ ϕ−1(B∗)
such that M(B) = 3(k − 1). Then,∑

B∈ϕ−1(B∗)
M(B)=3(k−1)

a3(k−1)(B) =
1

2k−1

1

gBid

,

where Bid ∈ ϕ−1(B∗) is uniquely determined from B∗.

Proof. By (6.4) and Lemma 6.2, we have

∑
B∈ϕ−1(B∗)

M(B)=3(k−1)

a3(k−1)(B) =
1

2M

2(k−1)∑
i=0

∑
B∈ϕ−1(B∗)(2(k−1)−i,i)

M(B)=3(k−1)

1

gB

=
1

2MgBid

2(k−1)∑
i=0

(
2(k − 1)

i

)
=

1

2k−1

1

gBid

,

where we used M = 3(k − 1) in the last equation. □
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6.2. Basic graphs on complete graphs

Now we consider the correspondence of B ∈ BGk to a basic graph with
respect to complete graphs {Kn}n≥1. A basic graph A on {Kn}n≥1 consists
of the following four types of (minimal) special cycle, paths and edge as in
Figure 5. For details, see [14, Section 6]. An example for case k = 2 is shown
in Figure 6.

α′-cycle γ′-path δ′-path δ′-edge

δ′-path

Figure 5. Four types of special cycle and paths of basic graphs
on {Kn}n≥1. The circles denote special points.

α′-cycle α′-cycle α′-cycleα′-cycle
γ′-path

δ′-path

δ′-path

δ′-path

δ′-path

δ′-path

δ′-edge

(a) Basic graph (b) Multigraph

Figure 6. Example of the case k = 2 (cf. [14, Section 7]). The
mapping ψ transfers each of the basic graphs of 6(a) to
each of the multigraphs of 6(b).

Recall that N(n, k) is the number of labeled connected (n, n − 1 + k)-
graphs on Kn, which was introduced in Section 1. Let Wk, k ≥ 1 be the
exponential generating function of N(n, k):

Wk(x) =

∞∑
n=1

N(n, k)
xn

n!
.

Note that W1(x) is the exponential generating function for “unicycles” on
{Kn}n≥1, which corresponds to F1(x, x) for labeled connected bipartite graphs.

Proposition 6.6 ([14]). For k ≥ 1, Wk(x) is expressed by the summation with
respect to basic graphs A:

Wk(x) =
∑

A∈BG′
k

JA(x)
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with

JA(x) =
Y L′(A)

gA(1− Y )M ′(A)
, (6.9)

where BG′
k is the set of basic graphs on complete graphs having k cycles and

M ′(A) ≤ 3(k − 1), L′(A) and gA are constants depending only on A.

Lemma 6.7. For A ∈ BG′
k, there exist unique constants {a′i(A)}M ′

i=1, {c′j(A)}L
′−M ′

j=0

such that

JA =

M ′∑
i=1

a′i(A)

(1− Y )i
+

L′−M ′∑
j=0

c′j(A)Y j , a′M ′(A) =
1

gA
.

Proof. To show the second equation, put θ = 1 − Y in (6.9) and apply the
binomial expansion to the numerator. □

For each A ∈ BG′
k we contract their special cycles and paths and obtain

a multigraph A∗. Define ψ : BG′
k →MGk be the mapping of the contraction.

Note that ψ is not injective, but if ψ(A1) = ψ(A2) = A∗ for some A1,A2,
then the difference of the two graphs is only due to the difference of their
δ′-paths and δ′-edges. Define

BG′
k|3(k−1) := {A ∈ BG′

k :M ′(A) = 3(k − 1)}.

Let ψ|3(k−1) be the restriction to BG′
k|3(k−1) of ψ, then this mapping is

bijective from BG′
k|3(k−1) to MGk i.e, ψ|−1

3(k−1)(A
∗) is a singleton. Indeed, if

A∗ has self-loops, replace them to minimal α′-cycles. Also, if A∗ has single
edges or multiple edges, replace them to γ′-paths or δ′-paths, respectively.
By this procedure, we obtain a unique basic graph A ∈ BG′

k|3(k−1), and then

ψ|−1
3(k−1)(A

∗) = {A}.

6.3. Proof of the asymptotic equality (1.10)

We will prove the asymptotic equality (1.10). Take B∗ ∈ MGk such that
there exists B ∈ ϕ−1(B∗) satisfying M(B) = 3(k − 1). Then, there exist
unique Bid ∈ ϕ−1(B∗) and A = AB∗ := ψ−1|3(k−1)(B∗) ∈ BG′

k. Then, we
have

gBid
= gA, (6.10)

because mappings ϕ and ψ preserve the connectivity between each of vertices
in B and A, respectively. By Proposition 6.5 and (6.10), we have∑

B∈ϕ−1(B∗)
M(B)=3(k−1)

a3(k−1)(B) =
1

2k−1

1

gA
. (6.11)

From Proposition 6.6, the asymptotic behavior of ⟨xn⟩Wk−1(x) is de-
termined by the summation of JA(x) with respect to A such that M ′(A) =
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3(k − 1). Hence, by Lemma 6.7 we have

N(n, k) = ⟨xn⟩Wk(x)

∼ ⟨xn⟩
∑

A∈BG′
k|3(k−1)

JA(x)

∼
∑

A∈BG′
k|3(k−1)

⟨xn⟩

(
a′3(k−1)(A)

(1− Y )3(k−1)

)

=

( ∑
A∈BG′

k|3(k−1)

1

gA

)
tn(3(k − 1)), n→ ∞,

where tn(p) is the tree polynomials defined by (4.19). On the other hand, by
Lemma 6.1, Proposition 6.3, (6.11) and the fact that ψ|3(k−1) is bijective, we
have

Nbi(n, k) = ⟨xn⟩Fk(x, x)

∼ ⟨xn⟩
∑

B∗∈MGk

∑
B∈ϕ−1(B∗)

M(B)=3(k−1)

JB(x, x)

∼
∑

B∗∈MGk

∑
B∈ϕ−1(B∗)

M(B)=3(k−1)

⟨xn⟩
(

a3(k−1)(B)
(1− Y )3(k−1)

)

=

( ∑
B∗∈MGk

∑
B∈ϕ−1(B∗)

M(B)=3(k−1)

a3(k−1)(B)

)
tn(3(k − 1))

=
1

2k−1

( ∑
A∈BG′

k|3(k−1)

1

gA

)
tn(3(k − 1))

∼ 1

2k−1
N(n, k), n→ ∞,

hence the asymptotic equality (1.10) holds.
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