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Abstract. We obtain first order linear partial differential equations which
are satisfied by exponential generating functions of two variables for the
number of labeled connected bipartite graphs with given Betti number.
By solving these equations inductively, we obtain the explicit form of
generating functions and derive the asymptotic behavior of their coef-
ficients. We also introduce a family of basic graphs to classify labeled
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ing functions as the sum over basic graphs of rational functions of those
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1. Introduction

Let G = (V, E) be a simple graph, i.e., no self-loops and multiple edges, and
we call it an (n,q)-graph if |V| = n and |E| = ¢. We denote the number
of labeled connected graphs with & independent cycles, by N(n, k), which is
also equal to the number of labeled connected (n,n — 1+ k)-graphs. Since we
are dealing with connected graphs, we note that k corresponds to the Betti
number, the rank of the first homology group, of each (n,n — 1 + k)-graph.
Note that k£ — 1 is often called excess since such a connected graph has k — 1
more edges than vertices. Connected (n,n — 1)-graphs are spanning trees in
the complete graph K, over n vertices and it is known as Cayley’s formula
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[1] that N(n,0) = n"~2. Connected (n,n)-graphs are called unicycles and
the formula for N(n, 1) was found by Rényi [11], which is given by

N(n,1) = % (flgl) —n""2(n — 1)) ~ \/jn"—lﬂ (n—o0), (1.1

n—1
h(n) = (n)ss n—s)" %
ORI WELED
The asymptotic behavior of N(n, k) for general k as n — oo was also discussed
in [14], where the proofs are based on recurrence equations which N(n,k)’s
satisfy, the algebraic structures of generating functions and their derivatives,
and the combinatorial aspect as will be seen in Theorem 1.6 below.

We consider a bipartite simple graph G = (V1, Vs, E) and call it a bipar-
tite (r, s, q)-graph if [Vi| = r, |Va| = s and |E| = ¢, which is also considered
as a spanning subgraph with g-edges in the complete bipartite graph K, ;.
Here, a “bipartite graph” means a ”colored graph with 2 colors”, namely, all
vertices in V) and V5 are red and blue, respectively. The previous works on
the asymptotic behavior of the proportion for connected bipartite graphs can
be found in [7, 15]. In [2], a combinatorial analysis using generating functions
is performed on non-uniform hypergraphs, similar to our approach in the
present paper.

We denote by Np;i(r,s, k) the number of labeled connected bipartite
(r,s,r + s + k — 1)-graphs, whose Betti number is k. Similarly as before,
labeled connected bipartite (r, s, 4 s — 1)-graphs are spanning trees in K,
and it is well known [13] that

Nypi(r,s,0) = r57 1™, (1.2)

which is the bipartite version of Cayley’s formula.

When rs = 0, we understand Ny;(r,s,0) = 1 if (r,s) = (1,0),(0,1);
= 0 otherwise, i.e., the one-vertex simple graph is regarded as a spanning
tree. Labeled connected bipartite (r,s,r + s)-graphs are unicycles in K, s
and discussed in the context of cuckoo hashing by [10]. In the present paper,
we discuss Ny;(r, s,k) for k = 0,1,... and the asymptotic behavior of sum
of Nyi(r, s, k) with r + s =n.

We consider the exponential generating function of Ny;i(r,s, k) defined
as follows: for £k =0,1,...,

= Npilr, s, k),
Fy(a,y) == Y %I Y. (1.3)
r,s=0 o

For simplicity, we write the exponential generating function for spanning trees
in (1.2) by

0 rsflsrfl .
T(z,y) == Folz,y) =z +y+ » Y (1.4)
r,s=1 e
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We introduce the following functions of = and y:
T.,=D,7, T,=D,T, Z=T,+T,, W=T1T,T,, (1.5)

where D, = 20, and D, = y0, are the Euler differential operators. Then we
have the following.

Theorem 1.1. The function Fy(x,y) is expressed as Fy = f1(W) with fi(w) =
—2(log(1 —w) + w), i.e

1
Fi(z,y) = —5(1og(1 ~T,T,) +T Ty>
)-

This result was discussed in (cf. [10, Lemma 4.4],[3] However the term
w seems missing in fi(w) and F(z,y) was given as —1 log(1 — 7, T},), which
does not give integer coefficients.

We will give how to compute Fy(x,y) for general k later and, in princi-
ple, we are able to compute them inductively. Here, we just give the expression

Fy(z,y) (see Remark 3.3 for F5(z,y) and Fy(z,y)).

Theorem 1.2. The function Fy(x,y) is expressed as Fo = fo(Z, W) with

2

- 512+ 3w)z + 2w(6 — w)}. (1.6)

fa(z, w) W

From Theorem 1.1 and Theorem 1.2, the asymptotic behavior for co-
efficients of the diagonals Fj(z,z) and Fy(x,x) is derived as follows. Let
(™) A(z) denote the operation of extracting the coefﬁcient ap, of " /n! in an

exponential formal power series A(z) = Y.~ an %y, ie.
(™) A(z) = an. (1.7)

The coefficients of (™) Fi(x,x) counts the number of labeled connected bi-
partite graphs with Betti number &k over n vertices. Clearly,

m):i]\fblrsk Z > ()Nblrs,k)f;.

r,5=0 n=0r+s=n

Thus, regarding the coefficient of z™/n!, we put

n n

Noi(n, k) := (™) Fy(z, x) = ;n <T>Nbl(r, s, k). (1.8)
In this paper, we define a labeled bipartite graph as a triple (Vi, Vo, E) where
i ={1,2,..,\Vil}, Vo = {1,2,...,|V2|} and E is a subset of the Cartesian
product V3 x Vo, but in (1.8), we are counting labeled bipartite graphs defined
as a couple (V,E) and a partition V' = V; U V5. Indeed, the coefficient (")
in (1.8) implies the number of the way of selecting labels {¢1,...,¢,} C
{1,...,n} used for the vertices in V3. When k = 0, we have

Fy(z,z) = Z(m + Z n"fz%),
n=2 ’
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hence Nyp;i(n,0) = 2n"~2 = 2N (n,0), which is equivalent to (4.4). That is, as
we will see in Section 4, the spanning trees in K, s for some (r, s) with r4+s =n
are in two-to-one correspondence with those in K,,. When k > 1, the situation
is different since there may exist cycles having odd length in K,, while cycles
must have even length in K. ;. From Theorem 1.1 and Theorem 1.2, we obtain
the asymptotic behavior of Np;(n,1) and Npi(n,2).

Theorem 1.3. Forn =4,5,...,

_ n! T o
Nei(n,1) =n""t - o <\ g (o).
2<k<n/2 ’
n 3 4 5 6 7 8 9 10 11

N(n,1) |1 15 222 3660 68295 1436568 33779340 880107840 25201854045
Npi(n,1) | 0 6 120 2280 46200 1026480 25102224 673706880 19745850960

Figure 1. N(n,1) and Npi(n,1) for n = 3,4,...,11

From (1.1), this shows that the main term of the asymptotic behavior
of the number of labeled bipartite unicycles over n vertices is the same as
that of the number of unicycles.

Theorem 1.4. As n — oo,
5 n
Nbi(n72) ~ @n +1. (19)

It is known [14] that in the case of K,,, the main term of asymptotic
behavior of the number of “bicycles” is known to be %n”“, which is twice
of (1.9).

n 4 5 6 7 8 9 10 11

N(n,2) | 6 205 5700 156555 4483360 136368414 4432075200 154060613850
Npi(n,2) | 0 20 960 33600 1111040 37202760 1295884800 47478243120

Figure 2. N(n,2) and Npi(n,2) for n =4,5,...,11

For general k, we have the following asymptotic equality.

Theorem 1.5. For k >0, as n — oo,

Noi(n, k) ~ —— N (n, k). (1.10)

ok—1
The proof of (1.10) is given in Section 6. The following asymptotic
behavior

N(n, k) ~ pgqn™ /2

(n — o)
is given in [14], where the explicit value of py can be computed by the re-
currence equation. Comparing the generating function of [14, Section 8] with

that of this paper, we can see that the subscript k is off by one. However, the



Enumeration of labeled connected bipartite graphs with given Betti numbeb

meaning of both is the same. To derive (1.10), we use the following result,
which would be interesting on its own right and give more detailed informa-
tion.

Theorem 1.6. For k > 2, Fy(x,y) is decomposed into the sum of rational
functions of T, and T, over the set BGy, of basic graphs with Betti number
k as

BeBGy
with
V \%
Tm‘ llT?IJ 2‘
98(1 — TITy)NSPJrk*l*e

where Vi U Vs is the vertex set of B, g is the number of automorphisms of
B, Ny, and e are the numbers of vertices with degree > 3 and §-edges in B,
respectively.

The definitions of basic graph and d-edge will be given in the proof
of Theorem 1.6. From this theorem, we conclude at least that Fj(z,y) for
k > 2 is a rational function of T, and T,. Note that Fj(z,y) is symmetric
with respect to T, and Ty by the bipartite structure, and Fj(x,y) can be
expressed in Z and W for k > 2 as follows.

Theorem 1.7. For k > 2, the function Fy(x,y) is expressed as Fy, = fi.(Z, W)
with

w

2 k—1 '
fk;(Z,w) = WZQICJ(w)ZJ’ (113)
j=0

where gy ;(w) is a polynomial in w.

For k > 3, the generating function becomes highly complicated (see
Remark 3.3) and although we can write it down explicitly in principle as in
Theorem 1.2, it may not be practical to do so, instead, we here emphasize that
the generating function has a particular form given by (1.13). The polynomial
gk, (w) seems to have more factor wbi depending on k and j.

The paper is organized as follows. In Section 2, we give recurrence equa-
tions for Ny;(r,s,q —r — s + 1) and derive recurrence linear partial differ-
ential equations that the generating functions Fy(z,y) of Nyni(r, s, k) satisfy.
In Section 3, we solve these equations by reducing them to a system of ordi-
nary differential equations and obtain the explicit expressions of F(z,y) and
Fy(x,y). In Section 4, we obtain the asymptotic behavior of the coefficients
of Fi(x,z) for k =1,2. In Section 5, we will give proofs of Theorem 1.6 and
Theorem 1.7 and another proof of Theorem 1.1 by a combinatorial argument.
In Section 6, we will give proof of Theorem 1.5.
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2. Recurrence equations

Let Ny;(r, s,q—r—s+1) be the number of labeled connected bipartite (r, s, q)-
graphs as defined in the introduction. Since a labeled (r, s, 7+ s— 1)-bipartite
graph is a spanning tree and we are dealing with simple graphs, it is clear
that

Nyi(r,s,q—r—s4+1)=0 ifg<r+s—1orqg>rs. (2.1)
As mentioned in (1.2), Nypi(r,s,0) = r*~1s"~1. Here we understand 0% =
d0,o as Kronecker’s delta. For example, Npi(1,0,0) = Ny;(0,1,0) = 1 and
Npi(0,0,0) = 0.

Lemma 2.1. For (r,s) # (0,0) and ¢ = —1,0,1,..., we have the following
recurrence equations:
(g+ 1) Nypi(rys,q—r—54+2) = (rs—q)Nvi(r, s,q—r—s+1)+Q(r, s,q), (2.2)

where

(r,5,q) Z ZZ(h) <81> (r—ri)s1+ri(s —s1)}

2 S
X Npi(r1, 1,6 —r1 — 81+ 1)
X Npi(r —r1,8 —s1,q—t—(r—r1) —(s—s1)+1) (2.3)
and Q(r,s,—1) = 0.

Proof. Here we give a sketch of the proof. Let G = (V1, V2, E) be a labeled
(r, s)-bipartite graph with ¢ edges and we add an edge to make a labeled
connected (r, s)-bipartite graph with ¢ + 1 edges. There are two cases: (i) G
itself is connected and (ii) G consists of two connected bipartite components.
For the case (i), we add an edge joining V; and V,. For the case (ii), if
V; =V;1 U V2 (j = 1,2), then there are four ways to add an edge joining
two bipartitions, i.e., V11 and V1, Vi1 and Voo, Vi2 and Vo 1, or Vi 2 and
Va2 O

From Lemma 2.1, we have the following recurrence linear partial differ-
ential equations for generating functions {Fj}r=o1,.. defined by (1.3). For
the sake of convenience, we also consider F_;, which is equal to 0 from (2.1).
Proposition 2.2. For k= -1,0,1,2,...,

(Dac + Dy + k)Fk—i-l
k+1
=(DyDy = Dy = Dy +1—k)Fx+ Y DyFi-DyFyry,  (24)
=0
where Dy = 20, and D, = y0,.

Proof. From Lemma 2.1, we have
(r+s+k)Npi(r,s,k+1)
=(rs—r—s5+1—k)Nui(r,s,k) +Q(r,s,r +s—1+k), (2.5)
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where

QUrys,r+5—1+k) = ;§:§3§5< )( ) (r = 1151+ 71(s — s1)}

r1=0s1=0 t=0

X Npi(r1, $1,t)Npi(r — r1,s —s1,k—t+1).  (2.6)

Here we used the fact that Ny;(r1,s1,t) Npi(r—r1,s—s1,k—t+1) = 0 unless
t+ri+s1—1>r+si—landt+r;+s1—1>ri+s1+kie, 0<t<k+1.
By multiplying both sides of (2.5) and taking sum over r,s = 0 to oo,
we see that
(Dy + Dy + k) Fysr = (DaDy — Dy — Dy +1 — k) Fy
=
+3 Z{Dsz “DyFyy1-1+ DyFy - Do Fypag}
1=0
k+1
= (D,D, — D, — Dy, +1—k)Fj + ZDwFl Dy Fyy11.
1=0
O

In what follows, we write 7' := Fy and use the symbols T,,T,, Z, W
n (1.5). We think of T as a known function below. These functions satisfy
several useful identities.

First let us consider the case k = —1 in (2.4). Then we have

(Dz + Dy — l)Fo =D,F,- DyFo,
which is equivalent to

T,T, =T, +T,—T. (2.7)

Remark 2.3. As in the above, in Sections 2 and 3, we always use the subscript
x,y, etc. for the differentiation by Euler operators D, = x0,, Dy = y0,, etc.,
but not the usual partial derivative 0, 0y, etc.

For k=1,2,..., from (2.4), we have the following linear PDE

k
LiFpp1 = (DoDy — Dy — Dy +1—=k)Fy+ Y DoFy- DyFiy1i,  (2.8)
1=1
where
Ly=01-T,)D,+(1-1T,)D, + k. (2.9)
Therefore, in principle, we can solve the (2.8) recursively and obtain F} for
k=1,2,... in terms of the known function 7'. Before solving these equations,
we observe several algebraic relations for T,’s.
Lemma 2.4. The following identities hold.
Tow =To(Tyy + 1) (2.10)
Toy = Tyo = ToTyy = TyThy (2.11)

Tyy = Ty(Tey + 1). (2.12)
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Furthermore,
1.1,

Ty = —2Y
YT 1-T,T,

(2.13)

Proof. 1t is known that two functions T, and T}, satisfy the following func-
tional equations (cf. [10, Section 3]):

T, =xe'v, T, =ye'. (2.14)
Differentiating both sides of (2.14) yields the identities (2.10), (2.11), and
(2.12). Plugging (2.10) into (2.11) yields (2.13). O
By using the notations (1.5), we can rewrite (2.7) and (2.13) as

T=2-W (2.15)

and -
T,, = : 2.16

respectively.

Functions of Z and W are well-behaved under the action of L.

Lemma 2.5. Suppose F(z,y) and G(z,y) admit differentiable functions f(z)
and g(w) such that F(x,y) = f(Z(z,y)) and G(z,y) = g(W (z,y)), respec-
tively. Then,

LoF = (D.f)(2), (2.17)
LoG =2(Dyg) (W), (2.18)
where (D f)(u) = uf'(u). Moreover, H = h(Z,W) for a differentiable func-
tion h(z,w),
LoH = (D.h)(Z, W)+ 2(Dyh)(Z,W). (2.19)
Proof. From (2.10), we have
DyZ = Typ + Tyo = Ty + (T + 1Ty,
DyZ =Ty +Tyy =T, + (Ty + 1)T,y.
From (2.13), we see that
LoZ = (1 = Ty){To + (To + )Ty} + (1 = To){Ty + (Ty + 1)Tay }
=7 -2W+{(1 =T)(T: + 1) + (1 = T )(Ty + 1)} T,
=Z.
In general, since Lg is a linear operator, we see that
Lof(Z) = f(Z)LoZ = Zf(Z) = (Df)(Z).
We note that from the definition of Ly,
LoT = (1 =TT, + (1= T,)T, = Z — 2W.
Since W = Z — T from (2.15), we have
LoW = LoZ — LT = 2W.
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Therefore,
Log(W) =g (W)LW = 2Wg' (W) = 2(Dg)(W).

For general h(Z, W), we obtain (2.19) similarly. This completes the proof. O

From this formula, we can reduce the analysis on F'(z,y) = h(Z(x,y), W(z,y))
to that on h(z,w) of two variables z and w.

3. Explicit expressions of generating functions

In this section, we solve the PDE (2.8) to obtain the explicit expressions of
generating functions F; and F5. The algebraic relations of Z, W and their
derivatives, which were seen in the previous section, play an essential role of
the proof.

3.1. For F: unmicycles
For unicycles, we will solve (2.8) with k£ =0, i.e.,
LoFy = (DyDy — D, — Dy + 1) Fy. (3.1)
By using T and their derivatives, we can rewrite (3.1) as
Loby =Ty —T, —T,+T. (3.2)

The right-hand side is a function of W and is written

Tpy—To —Ty+T =

—w "

from which together with (2.18) we see that U is also a function of W and
obtain the following.

Proof of Theorem 1.1. Suppose there exists a function f; = fi(w) such that
Fy = f1(W). By definition, f; does not have a constant term, i.e., f1(0) = 0.
Since LoFy = 2(Df1) by (2.18), (3.2) can be expressed as

2Df1)(w) = 77— —w,

fiw =3 (125 1)

From this differential equation with f;(0) = 0, we obtain

or equivalently,

filw) = —%(log(l —w) +w)

and thus we obtain the assertion. O
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3.2. For F5: bicycles
We want to solve (2.8) with k =1, i.e.,
L1Fy = (DIDy - D, — Dy)Fl + D, F; - DyFl (33)

where £1 = Ly + 1. Here F; has been given in already given in Theorem 1.1
and considered as a known function. We will solve this equation to prove
Theorem 1.2.

Before proceeding to the proof, we prepare some lemmas.

Lemma 3.1.

W +T, W+ T, 247
Z, = . Z,= s Ty = T,
1-w Y 1-w YT a-w)2t
Moreover,
Z+2W W(Z+W+1)
Zo+Zy=——"r, Zydy=——"—""". 34
TAT W T a—wy (34
Lemma 3.2.
We=0Q+T)Tyy, Wy=Q0Q+T,)Tyy (3.5)
and
1+Z2+W
_m2
Moreowver,
W(Z +2) W2(Z+W +1)
Wy+Wy=—7---+ WW,=—F"—-—-—= 3.7
=Ty v T—W) (38.7)
and
W(ZW + Z + AW
ZuW, + 2, W, = WEW T2 +4W) (3.8)

(1-w)?
Proof. First it follows from (2.11) that
Wy = (TTy) s = TooTy + TpThy = (14 Ty) Tyy-

By symmetry, we have the second equation in (3.5). Next it follows from
(2.13) that

(sz)y = <1 I_/VW) = (1 _1W)2Wy = ﬁ(l +Ty)T1y (3.9)
Then,
2 72 1
U

Later we will also use the following.
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Proof of Theorem 1.2. Let G = —2F}, i.e.,
G(W) =log(l — W)+ W.

First we observe that

—1 W

Similarly, G, = -1, W,. Hence,
Go+ Gy = —Toy(Wo + W) = =2+ 2)T2,.
Next it follows from (3.5), (3.6) and (3.9) that

Gmy = *(TmyWr)y
= _(sz)wa - TryWry

1
- _m(l +Ty) Ty - (14 To)Toy — Tay
1
X <T3y + (1 +T)(1+ Ty)i(1 — W)2T1y>

-T7, {(1_2W)2(1 +T.)(1+T,) +

Tw}
-7z, {2(1 +Z+ W)+ Twy} .
(1-Ww)?
Lastly, we have
GGy = T2, W, W, =T} (1+T,)(1+T,)
Putting the above all together in (3.3), we have
AL Fy = 2(Gy + Gy) + GGy — 2Gy
=—-2Z+ 275, + T;,(1+T,) (1 + T,) + 275,

X {(1—21/1/)2(1 +T,)(1+1T,) +Txy}
77,
S a-wy
x{=2Z+2)1-W)P+ W1+ Z4+W)+4(1+Z+W)+2W(1 - W)}

= m{(*WQHWH)ZHW?—5W+14)W}. (3.10)

Suppose there exist functions ag(w) and a; (w) such that Fy = fo(Z, W) with
fa(z,w) := a1(w)z + ap(w). Since L1 = Lo + 1, from (2.19), the (3.10) can
be expressed as

4D, f2+2Dy fo+ fo) = w2w)4{(—w2+4w+2)z+(w2—5w+14)w}. (3.11)

(1
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On the other hand, since fo(z,w) = a1(w)z + ap(w), we have
D.f2+ 2Dy fo + fo = a1(w)z + 2{(Da1)(w)z + (Dao)(w) } + a1 (w)z + ag(w)

= {2a1(w) + 2(Day)(w)}z + {2(Dag)(w) + ao(w)}
(3.12)

Comparing (3.11) with (3.12) yields

w3

ap(w) + 2(Dag)(w) = m(

w? — 5w + 14)

and
2

2a1 (w) + 2(Day)(w) = I (—w? 4 4w + 2).

w
4(1 — w)
On the other hand, by the definition of Fy(z,y), the function f(z,w) does
not have the terms 2¢,i = 0,1,2,... since if such a term appears in fo(z,w),
so do the terms % and y® in Fy(w,y), which contradicts to the fact that
Nbi(i,O,Q) = Nbi(O,i,Q) = 0. This implies that ao(O) = 0,1(0) = 0. Then,
we can easily solve the above differential equations with initial conditions
ap(0) = a1(0) = 0 to obtain

w3(6 — w) w?(2 + 3w)
a0(®) = gy W) = Spr
Therefore,
w?(2 + 3w) w3 (6 — w)
2z w) = o B — ey
This completes the proof. O

Remark 3.3. We can continue the above computations for Fi(z,y) = fi(z, w).
Here we give f3(z,w) and f4(z,w) just for the reference:

~w?(5+ 41w — 23w? + 8w® —w?) | w?(32 + 34w — Jw? + 3w?)

fa(z,w) = 24(1 — w)6 48(1 — w)S
w?(1 + 8w + 6w?) ,
81 —w)p
and
fa(z,w)
w? (=76w7 + 809w’ — 3746w’ + 9889w* — 15356w> + 22820w? + 7680w + 80)
- 2880(1 — w)?
w? (230wS — 1425w® + 5568w? — 6617w? + 30468w? + 35988w + 2088)
* 5760(1 — w)? :
w3 (61w* + 64w® + 1186w? 4 1692w + 312)
* 576(1 — w)? :
w? (254w* 4 1919w® + 2624w? + 704w + 24)
+ 5760(1 — w)® o

These expressions lead to (1.13) in Theorem 1.5.



Enumeration of labeled connected bipartite graphs with given Betti numbb3

4. Asymptotic behaviors of the coefficients

4.1. Asymptotic behavior of the coefficients of F} (z, x)

We use the notation (1.7). We recall the convolution of exponential generating
functions
" /n
™MA(x)B(x) = b 4.1
) A@BE =3 (o (a1)
when (2™)A(x) = a, and (z")B(z) = b,. For an exponential power series
Clz,y) =200 Crs TT,‘Z, of two variables, we use the notation

("y*)C(,y) = crs,

and we note that the coefficients of the diagonal C(x,x) is given by

@)= 3 (e

r+s=n

In Section 3.1, we derived the generating function Fj(z,y) for unicycles. In
this section, we focus on the coefficients of the diagonal Fi(z, z),

Niui(n,1) == (@) Fi(w,2) = > (Z) Nui(r, 5,1),

r4+s=n

which corresponds to the total of the numbers of complete unicycles over n
vertices. We will see the asymptotic behavior of Ny;(n,1) as n — oc.
From Theorem 1.1, we have

= z,x)k
Fi(z,z) = %Z% (4.2)
k=2

First we consider the coefficients of the diagonal W (x,z). Since W = T, +
T, — T from (2.15), it is easy to see that

oo

_ w(r,s) . s
r,s=1
where w(r, s) = 7*"1s"~(r 4+ s — 1). Hence, we have
o0
w(r
z(z s} 2y
n=2 \r+s=n

where

The sum in (4.3) can be computed by the following identity (cf. [8]).
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Lemma 4.1. Forn=2,3,...,

r=1

Proof. Here we give a combinatorial proof of the identity. Let S, and S? be
the set of labeled spanning trees on K, and that of labeled spanning trees on
the complete bipartite graph with n vertices, respectively. Also, let Sff,s be
the set of labeled spanning trees on the complete bipartite graph K, ;. Then

$= U st
1<r<n-—1
For (Vi UVa, By py) € S8, with [Vi| = r and [V3| = n —r, we define a
map 7 : S% — S, by

77((V1 (W V27 Er,nf'r)) = (‘/7 Er,nfr)u

i.e., the map of forgetting partitions. Since every spanning tree on K, is
bipartite, n is surjective. Moreover, n is two-to-one mapping. Indeed, for
1<r<n-—1land (V1UVs,E,,_,) € Sﬁ”nfr, there exists a unique spanning
tree (V{ UVy, Ep_yy) € Sh_,, such that V/ = V5, Vy = Vi and E,_,, =
{(i,7) e V{ x V3 : (j,i) € Epp—r}. Now we derive (4.4). For 1 <r <n—1,
1%l = (%) Noi(r,n —7,0) = () r"~"1(n —7)"~* by the choice of labeled

r vertices in V7 and (1.2). Hence

n—1
Y\ n—r— r—
|sg;|zz(r>r U=y,

r=1

On the other hand, |S,| = n"~2 by Cayley’s formula. Therefore, we conclude
that (4.4) holds from the two-to-one correspondence of 7. O

Corollary 4.2. Forn=1,2,...,
wy, = (™YW (z,z) = 2(n — 1)n" 2. (4.5)

Now we proceed to the case of the power of W(z,x). For k =1,2,...,
we write
wik = (™YW (z, z)".
In particular, w*! = w,, in Corollary 4.2. Note that the smallest degree of the
terms in W (z, ) is 2 and hence w** =0 forn = 1,2,...,2k — 1. From (4.1),

w** is the k-fold convolution of (Wn)n=2,3,.. and inductively defined by

n—2
*(k+1) _ n xk 4.6
wy, Z (r>wr Wp—p. (4.6)

r=2k
From (4.2), the coefficients Ny;(n, 1) of Fy(x,x) are given by

1 wik
Npi(n, 1) = B Z o (4.7)
2<k<n/2
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Proposition 4.3. For k=1,2,...,|n/2],

wik = 2k - (2k)In" 2k 1 (;ﬂ) (4.8)

Proof. For fixed n, we prove the (4.8) by induction in k. For k = 1, it is
obviously true since w! = w,,. Suppose that (4.8) holds for up to k, then by

n

(4.5) and (4.6), we have

n\ .k
( )wr Wy
r

= ; (’:) 2k - (2k) 721 (22) 2 — 1 — 1) (n— )2

T

w;w+1):

ﬁ
HM:
oL

S

=4k z_: <:) (r—1)-(r—(2k — 1))Tr—17(2k71)(n —r—1)(n—r)""2

r=2k

Now we introduce a class of polynomials which appears in Abel’s generaliza-
tion of the binomial formula [12, Section 1.5]:

n

An(2,y3p.q) == ) (Z) (& + 1) *P(y +n — F)nTr,

r=0
In particular, when p = ¢ = —1, it is known [12, p.23] that
An(@,y=1,-1) = (@ +y @ +y+n)" " (4.9)
Multiplying both sides by zy yields

@@ =ay Y (1)t
r=0

=a(@+n)"" +yly+n)""" +ayS(,y), (4.10)
where Q(z,y) := (v +y +n)""! and

n—1

st0= 5 (o m e

r=1
By the generalized Leibniz rule, for p € N, we have
O (xS (x,y)) = po~'S(x,y) + 20 S(x,y),
P((z+y)Q(z,y)) = pd~ ' Q(x,y) + (z +y)0Q(x,y),

which gives

o wyS(a,y)| =281 (0,0), (4.11)

r=y=0

R +yQay)| __ =r+2QUTI0,0,  (412)

r=y=0

where S (z,7) := 0r01S(z,y) and QP9 (z,y) = BoIQ(z,y).



16 Taro Hasui, Tomoyuki Shirai and Satoshi Yabuoku

For k = 1,2,...,|n/2], differentiating both sides of (4.10) 2k times
with respect to = and twice with respect to y and using (4.11) and (4.12)
with p = 2k yield

92792(RHS of (4.10))

| = 0203 wyS(a.y)

r=y=0
_ 4]{:5(2]()71,1)(0’0) _ w:(k+1)’
= (2k+ 2)Q**12)(0,0)
r=y=

= 2(k + 1) . (n _ 1) . (n _ (2]{7 + 1))nn—1—(2k+1)

=2(k+1) - (2(k 4 1))ln" 20411 (2(];1 1)>’

which complete the proof of (4.8). O

T=y=

2k 52
92k 02(LHS of (4.10))

Now we derive the leading asymptotic behavior of Ny;(n, 1) as n — co.

Proof of Theorem 1.3. By (4.7) and (4.8), we have

2<k<n/2
_ n!
=n"" Z 2%
(n—2k)In
2<k<n/2

The last summation is similar to the Ramanujan @-function, so we treat this
summation in the same way as in [4, Section 4]. Let kg be an integer such
that ko = o(n?/3) and we split the summation into two parts:

n! n! n!
Z (n — 2k)In2* Z (n — 2k)In2k + Z (n — 2k)In2k"
2<k<n/2 2<k<ko ko<k<n/2

For k = o(n*/?), by [4, Theorem 4.4] we have

e k L
(n — 2k)In2k - (1+O(n> +O<n2 '

Because the terms in the summation are decreasing in k, and e are
exponentially small for k£ > kg, the second summation is negligible. Therefore,

> (ng;g),n% = Y e (1 +0 (S) +0 (f;)) +o(1)

2<k<n/2 2<k<ko

= Y e ®/mion).

2<k<ko

—2k%/n

Again, since e~2k°/n are exponentially small for k& > kg, we can take the

summation for 2 < k < n/2. Therefore, by Euler-Maclaurin’s formula we
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have
S e [ e a0 = [y on)
2<k<n/2
which completes the proof. O

4.2. Asymptotic behavior of the coefficients of F5(z, x)

We deal with the coefficients of the diagonal Fy(z, z), namely Ny;(n,2), which
is defined by (1.8) with k = 2. From (1.4), we have

L (r+s)rsTlsrt
Z(z,y) =Ty +T, = Z —( ) "y,

lg!
Ryt rls!
In particular, by Lemma 4.1 we have
o0
(r+s)rs=1tsm1
Z(x,x) = Z Tm’““
r,s=0
o0
nlrs— 1 s 1 "
= r+s=n '

Let Y(x) be the exponential generating function for the number of labeled
rooted spanning trees in K,,:

[e.°]

V()= n"—l”"ni;. (4.14)

n=1

First we see the formula for the power of Y (z).
Lemma 4.4. For k=1,2,...,

:Zk(n—1)(n—2)-~-(n—(k—l))n"‘k%. (4.15)

Proof. The proof is by induction in k. Assume that (4.15) holds for k. Then,

k+1 <an—1 n—2)- ..(n_(k_l))nn—ki:> <inn—1‘j:>

n=1 n=1

= kaht? <Z(n + k)”—li;) (Z(n + 1)"—127;)

0 n=0
> n n
k+1Z(Z()k,+rrl(1+n )n_r_1>9;'.
= r=0 ’

Note that by (4.9),

n

r=0

= (G 1) 1),
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so that

V()M =2y " (k+ 1) (n+k+ 1)HH

n=0
oo xn—&-k—&-l
1) 1)(n +2) ) (e —
= (k+ §n+ (n+2)---(n+k)(n+k+1) TR
=(k+1) > (n—1)(n—2)---(n—k)n”*<k+1>%.
n=k+1 '

Hence, (4.15) holds for k + 1, and by induction this completes the proof. 0O

Lemma 4.4 gives for ap e R,k =1,2,...

)

YoaY (@)t =) " (Zakk — ”—Qg;';(n—(k—l))> %’:
k=1 n=1

(4.16)
where the summation with respect to k is finite.
From Corollary 4.2, (4.13) and (4.15),
oo 1‘”
= 2n”*1F =2V (z),
"l (4.17)
Wz,z) =Y 2(n—Dn" 22 = y(x).

|
—1 n!

Hence, we can express Fy(x,z) by using only Y (z), instead of Z(z,z) and
W (z,z). Substituting (4.17) in (1.6) with the notation Y = Y (z), we have
Y3(2+4Y — Y?)

Bae.0) = LYY?) = o —ypa vy

_Yy*-3vy-3 11 N 1
N 12 64(1+Y)  32(1+Y)2
143 11 5

- . 4.18

TR —y) 2ua-vye T wI-v)y (4.18)
In the case of K, a similar expression can be found in [14, (17)]. As we
will see below, the last term of (4.18) determines the asymptotic behavior of
Npi(n,2) in Theorem 1.4.

To obtain the asymptotic behavior of Nyi(n,2), from (4.18), we only
need to estimate coefficients of = Y)p, (1+Y)p, p € N. For fixed p € N, the
tree polynomials {¢,(p)}n>0 are defined by

o0 n

m - Ztn(m%- (4.19)

n=0

This polynomial and their asymptotic behavior of ¢,(p) are well studied in
[9].
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Lemma 4.5 ([9]). For fized p € N, as n — oo,
V2rnn—1 ( n®+D/2 o /2

tn(p) = /2 T(p/2) + 3 T((p— 1)/2) + O(n(pfl)/Q) + 0(1)> )

(4.20)

Hence, we have already obtained the asymptotic behavior of ﬁ, pE

N. For ﬁ, p € N, we only give a rough estimate for coefficients of 2

a+ye:
By the binomial expansion and (4.16), we have
1 — (p+k—1 eor k
S _1)ky
Y @) 2( R
(Tt &S n—1 Pp+k+1)\ 2™
=1 B Y o el ® L AL A [
t F(p)z( k )( : nk nt’
n=1 k=0
so that as n — oo,
1 n" 'S (n—1 el L(p+k—+1)
n — -1 +1- T vT )
VY@ T T0) (" ey
< tn(p) = O(n"FP=1/2), (4.21)

Now we are in a position to prove Theorem 1.4.

Proof of Theorem 1.4. By (4.17), (4.18), (4.20) and (4.21), we obtain the
leading asymptotic behavior of Ny;(n,2) as

1 143
Myi(n,2) = (™) Fy(z,z) = —ﬁn’%l +0(n™) + O(n" /%) + @(n” + O(n" /%))
_ U T ety n ) D ontt nt1/2
24(\571 +0(n") + (" 4 O(n+1/2)
_ 9 an n+1/2
which completes the proof. O

5. Another expression for F(z,y)

In this section, we introduce the notion of basic graphs obtained from la-
beled connected bipartite graphs, and we give proofs of Theorem 1.6 and
Theorem 1.7. In a similar way to the proof of Theorem 1.6, we give another
proof of Theorem 1.1.

5.1. Proof of Theorem 1.6

Our proof is based on the combinatorial argument developed in [14, Section
6]. Firstly, we explain how to obtain a basic graph from a labeled connected
bipartite graph.

Fix k > 2 and take a labeled connected bipartite (r, s, r+s—1+k)-graph
G = (W1, Vo, E). We delete a leaf and its adjacent edge from G, and repeat
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this procedure until vanishing all leaves in the resultant graph. Since we delete
only one vertex and one edge in each procedure, we obtain a labeled connected
bipartite (¢,u,t 4+ u — 1 + k)-graph without leaf for some ¢t < r and u < s.
Clearly, the resultant graph does not depend on the order of eliminations of
leaves, and it is denoted by G’. Let V' = (V{,VJ) be the vertex set of the
graph G’. For each vertex v € V', we call it a special point if deg(v) > 3 and
a normal point if deg(v) = 2. Let 7y, and sgp be the number of special points
in V{ and V3, respectively. By applying the handshaking lemma to the graph
G', we see that ) . (deg(v) —2) = 2(k — 1) and hence

rep + Ssp < 2(k —1). (5.1)

In the graph G’, a path whose end vertices are distinct special points is said
to be a special path and a cycle which contains exactly one special point is
said to be a special cycle. Since G’ is connected and deg(v) > 2, it is clear
that it consists of such special paths and cycles which are disjoint except at
special points. We classify these special paths and cycles into seven types and
contract them to the minimal ones as in Figure 3 to obtain the basic graph

B(G).

e An «a;-cycle is a special cycle with exactly one special point in V; (i =
1,2). By the structure of bipartite graphs, these special cycles contain
at least three normal points. The minimal «;-cycle has three normal
points as in Figure 3.

e A B;-path is a special path whose end vertices are two distinct special
points in Vj’ (j = 1,2). By the structure of bipartite graphs, these special
paths contain at least one normal point. The minimal 3;-path has only
one normal point as in Figure 3.

e A special path whose end vertices are special points in V{ and V5 is called
in several ways according to the situation. For each pair of special points
vy € V] and vy € VJ, we have two cases.

— Case(i) there is only one special path connecting v; and vy: such a
special path is called a y-path. The length of the minimal ~-path
is one.

— Case(ii) there is more than one special path connecting v; and wvs:
since we are considering a simple graph, there is at most one such
a special path of length one, i.e., joined by an edge. A special path
is called a §-path if the length is three or more and a d-edge if the
length is one. The length of the minimal §-path is three.

We decomposed G’ into the union of a collection of «;-cycles, §;-paths,
~-paths, d-paths, and §-edges. The basic graph B(G) is obtained from G’ by
contracting a;-cycles, 3;-paths, y-paths, and -paths to the minimal ones as
in Figure 3. In the procedure of contraction, we forget about labels of vertices.
We summarize the contraction procedures below.

e If each «;-cycle (i = 1,2) contains five or more normal points, we con-
tract it to the minimal «;-cycle, which has three normal points.
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e If each fj-path (j = 1,2) contains three or more normal points, we
contract it to the minimal 3;-path, which has only one normal point.

e If each ~-path contains normal points, we contract it to the minimal
~v-path, which has no normal points.

e If each J-path contains four or more normal points, we contract it to
the minimal d-path, which has two normal points.

SA LT VA

ai-cycle ag-cycle B1-path [Bo-path
~-path d-path d-edge

Figure 3. Seven types of minimal special paths, cycles and edge.
The circles denote special points.

We have seen how to make the basic graph B(G) from a given labeled
connected bipartite (r,s,7 + s — 1 + k)-graph G. Note that the number of
cycles in graphs is invariant by the contractions, so that B(G) has just k
cycles. We will reconstruct labeled bipartite graphs from each basic graph B
and introduce Jg(x,y) to express Fi(z,y) as sum of Jp(z,y)’s.

Proof of Theorem 1.6. For a given labeled connected bipartite (r,s, 7 + s —
1+ k)-graph G, let V" = (V/",V4') be the vertex set of B(G), and also let
ai,bj,c,d and e be the number of o;-cycles, ;-paths, y-paths, d-paths, and
d-edges in B(G), respectively. Then, for the number of vertices in B(G), we
have

VIl =rep+a1+2a2+by+d<t<r, (5.2)

|V2”|:ssp+2a1+a2+b1+d§u§s. (53)
For the number of edges in B(G), since the same number of vertices and edges
are deleted by contraction, we have

day + 4ag +2by +2by +c+3d+e = |V/'| +|Vy'| + k — 1. (5.4)
Combining (5.2)-(5.4) and the inequality (5.1), we have
ap+az+by+brt+ctdte=rsp+sp+k—1
< 3(k—1). (5.5)

Therefore, if G is a labeled connected bipartite (r, s, 7+ s— 1+ k)-graph, then
B(G) should satisfy the conditions (5.1)-(5.5). Now we denote the set of all
possible basic graphs having k cycles by BGy, i.e.,

BG), :={B(G) : G is a labeled bipartite (r, s, + s — 1 + k)-graph for some r, s.}



22 Taro Hasui, Tomoyuki Shirai and Satoshi Yabuoku

It follows from (5.5) that BG, is a finite set.

For fixed B € BGy, let jg(r,s) be the number of labeled connected
bipartite (r,s,r +s — 1 + k)-graphs G such that B(G) = B. We define the
exponential generating function of jz(r, s) as

e ) xrys
JB = JB((E,y) = Z ]B(Ta 5) gl
r,s=0 e

We will show below that Ji(z,y) is expressed by a rational function of T}, and
T,. To this end, we count jg(r,s) by reversing the procedure of contraction
above, i.e., by adding pairs of a normal point and its adjacent edge in B and
rearranging labels of (r, s) vertices. We construct labeled bipartite (r,s,r +
s — 1 4 k)-graphs from B by two steps as follows.

Step 1: Take B € BGj. Let V" = (V/", V') be the vertex set of B and
M := a1 + as + by + by + ¢ + d be the number of all minimal special paths
and cycles in B except d-edges. Take ¢t and u such that |[V/’| < ¢ < r and
[V3'] <u < s. We label all minimal «;-cycles, B;-paths, y-paths and d-paths

in B, say, s1,S2,...,Sum, and we add pairs of a normal point and its adjacent
edge in these special paths/cycles. By the structure of bipartite graphs, for
every j = 1,2,..., M, the number of added pairs in each s; is even, and the

numbers of added normal points in V{” and V3’ are equal, which we denote
by m;. Hence, a necessary condition for the numbers of added vertices in V}’
and V' ist — |V{'| = u—|VJ| = Z _, m;. Combining (5 2) and (5.3) with
the necessary condition, the non-negative integers {mj} 7, satisfy

mi+ma+ -+ my =t— (rep + a1 + 2a2 + by +d), (5.6)
m1—|—m2—|—-~-—|—mMzu—(ssp+2a1—|—a2+b1+d). (57)

Let yp(t,u) = ys(t,u,rsp, Ssp, @1, a2, b1, ba, ¢,d) be the number of the solu-
tions {m;}}L, of (5.6) and (5.7). For each solution {m;}}L,, we obtain an
unlabeled connected bipartite (t,u,t + u — 1 4+ k)-graph, and hence yg(t, u)
of those from B.

Step 2: Take one of yg(t, u) of unlabeled connected bipartite (¢, u, t+u—1+4k)-
graphs and call its vertices Ti,...,T; and Uy,...,U,. Let Z;, the set of
{(r1i7su)}f , and {(rgj,SQj)}y 1 such that r1; > 1,795 > 0,s1; > 0,805 > 1,

Z 1 + Z ro; = 1 and Z S14 + Z s9; = s. For each {(r1;,s1;)}!_; and

i=1 Jj= i=1 j=1

{(TQJ,SQJ)}J 1 in 7, we attach a rooted tree of size (rq;,s1;) to T; for
i=1,2,...,t and a rooted tree of size (r9;, s2;) to U; for j =1,2,...,u, re-
spectively. Let N(r,s,t,u) be the number of these labeled bipartite (r, 8,1+
s — 1+ k)-graphs. Then, by counting ¢ rooted trees whose roots are in V; and
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u rooted trees whose roots are in V5, we have

! T S
N(r,s,t,u) = E ( >< )
1155 T1t, 7215 - -+, 20 S1ly-++5S1ty 8215+ -+ 520
t
S14 (T1i—1 s25—1 gh2i
X Hrlz 514 H T2_7 2] ) (58)
i=

where the summation Z/ is taken over the set 7 ,,.

By the above two steps, we obtain all labeled connected bipartite (r, s, r+s—
1+ k)-graphs from the basic graph B. However, not all of them are different
because of forgetting labels sq, ..., s); after attaching labeled rooted trees to
all vertices. Indeed, if gg is the number of automorphisms of B, then every
graph appears exactly gz times. Hence, we have

. y3<t7u)N(T7 Sata U)
Jjs(r,s) = Z .
Vi<t 98
V3 |<u<s
Using this, we have
1 rys
Iz, y) = - Z yp(t,u ZN r,8,t,u) el (5.9)
vy |<t 23y
V3| <u use
For the summation in r and s, by (5.8), we have
T1i9,515 % T2j 4,525
s1i r1i—1% 'Y s2j—=1 1oy T Y™
ZN T, 8,1, u) ZZ Hrh 51 sy To;  Soj rolsy]
t<r t<r j=1 J J
u<s u<s
— TITY.

On the other hand, by a straightforward calculation, we have

D yst,wWTTy = ) > T, T,

vy |<t vy |<t M
|V2”|§u |V”|<u S my=t— |V”| u— ‘V”‘

Tz|V1 |T;V2”| Z Z (TwTy)Zj»I:l my

vy I<t mama
Vy'|<u 2omy=t—|V{|=u—|Vy'|

Ta|cvl’f|T3|IV2’f| Z Z (TwTy)Zﬁlmj

nZO M1 yee ey TN
mj;=n

M
=TS @)
=1 m;>0
=M1 - T (5.10)

Combining (5.2), (5.3), (5.5), (5.9) and (5.10), we obtain (1.12). Since non-
isomorphic basic graphs with k cycles lead non-isomorphic labeled connected
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bipartite (r, s, + s — 1 + k)-graphs, taking a summation Jg with respect to
B € BGy, we obtain (1.11), which completes the proof. O

We give an example of Theorem 1.6 for k = 2.

Example 5.1 (kK = 2). Let us consider all the basic graphs for k¥ = 2 and
compute Fz(x,y). From the conditions (5.1) and (5.5), we have

rsp+ssp§27
a1+a2+b1+bQ+C+d+e=7‘Sp+Ssp+1.

As aresult, the possible combinations of numbers of special points are (rgp, Ssp) =
(1,0),(0,1),(1,1),(2,0), (0,2). We compute Jp for each of these cases. For in-
stance, the calculation procedure is described below for the case of (7gp, Ssp) =
(1,0). First, consider the numbers of cycles, paths and edges that make up
the basic graphs. The following should be obvious. By using

a1+ as+by+bs+c+d+e=2,

we have (a1, as9,b1,ba,c,d,e) =(2,0,0,0,0,0,0). As a result, the basic graph
is a combination of two aq-cycles. This is the upper left graph in Figure 4.
We define this basic graph as B;. Note that basic graphs are unlabeled.

Next, let us compute the number of graph automorphism gg,. We label
each of the vertices appropriately. For the labeled basic graph, there are 2!
ways to arrange the two aj-cycles. There are two possible ways to label the
vertices of each aj-cycle: 1 -+ 2 — 3 — 4 — 1 with the special point as 1, or
in reverse 1 — 4 — 3 — 2 — 1. Therefore gz, = 2! x 22 = 8. Consequently,
from (1.12) we obtain

374
_ -y
JBl(xﬂy) - 8(1 _TwTy)2.
We can derive the others by the same calculation. Therefore,
T3T4 T4T3 T4T5
Jg(z,y) = 4 + Y + Y
BGZBGQ 8(1-1,Ty)*  8(1-T1T,T,)% 8(1-T,Ty)3
273 5T T3T?
+ L + s + s
12(1 - T,T,)%  8(1-T,T,)°% 121 —T,T,)"
TiTA 373 TiTA
Ty Ty Ty

TSU-nL,P 21-10,L,)7 ' H1-LTL,)°

_WQ(Z + SW)Z W3(6 — W)
C24(1 - W)3 12(1 - W)3
:FQ (I7 y)a
where the nine terms correspond to the nine basic graphs in Figure 4, respec-

tively. Hence, the result of the calculation by using basic graphs is consistent
with FQ(CEh’y) = fZ(Zu W)
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Figure 4. Basic graphs for £k =2

5.2. Proof of Theorem 1.7
From (1.11), (1.12) and (5.5), we see that

1 1
Fylz,y) = — —TIBTS8(1 — T,T,)*5,  (5.11)
(1 —T,T,)3*k=D B;B:Gk g " Y Y

where r5 = rop + a1 + 2az + by +d, 55 = s5p + 2a1 + az + by +d, and

p=3(k—1)— (a1 +az + by + b+ c+d)
=2(k—1)— (rep + s5p) + €

= Z (deg(v) —3) +e

vEspecial points

> 0. (5.12)

Note that there are some basic graphs B € BGj such that pg = 0. For
example, we can construct a basic graph B with rep = 2(k—1), a1 = 2,
by = 3k — 5 and other constants vanishing as follows: we label all 2(k — 1)
special points in Vi, say, 71,72,...,7ak—1). We attach an a;-cycle to each of
r1 and 79(,_1y, and then connect ro;_1 with 75 (j = 1,2,...,k—1) by a 31-
path and ro; with roj11 (j = 1,2,...,k—2) by two B1-paths. Then, we obtain
B. Remark that in the case of k = 2, B corresponds to the top-right graph
in Figure 4. Clearly, ss, = e = 0 holds for all £ > 2, and the calculation in
(5.12) gives pi = 0. From this observation, the numerator of the right-hand
side of (5.11) turns out to be a polynomial of the following form

m m-+n
Qoy) =D Ca®y" + > Ci"y"(1—ay)”,
i=1 i=m+1

for some positive integers m and n. Here a;, b; are non-negative integers, p; is a
positive integer and C; > 0 for all i. If Q(z, y) has a factor 1 —xy, plugging y =
27" in both sides yields 0 = Z?il C; > 0, which is a contradiction. Hence,
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Q(z,y) does not have the factor 1 — 2y, which implies that the numerator of
the right-hand side of (5.11) does not have a factor 1 — T, T,,.

We will prove (1.13). Assume B = (Vi, V5, E). We have the following
lemma.

Lemma 5.2. For any B € BGy, ||[Vi| —|Vo|| <k —1.
Proof. Since deg(v) > 2 for every vertex v in a basic graph B, we see that
B = [V] = [[Vi] = [Val| = |E| - 2max(|V4], [V2]) > 0.

On the other hand, |E| — |V| = k — 1 since B is connected and k is the Betti
| = [Vl <k —1. m

For B = (V1UVs, E) € BGy, there exists a unique basic graph B’ = (V//U

Vy, E') € BGy such that V] = V5, V] =V;, and E' = E. Let w : BG}, — BGj,
be a mapping defined by () = 13’. Then 7 is an involution, and we have

9x(B) = 9B Tx(B) =SB, Sx(B) =TB> Dx(B) = PB; (5.13)

where rg = |Vi], sg = |V2|. From this involution with (5.13), the numerator
of (5.11) turns out to be

> —TTBT“5(1 — T, T,)P"

BeBGy, 98
T,T,)% LoT,)™
= > T qen - naye s Y B0 g
BeBG), ] BEBGy, 9B
TB>SB TB=5B

(5.14)

where g = rp — sg. Since T8 + T}l5 is a polynomial of Z of degree g5 with
coefficients being polynomials of W so is the right-hand side of (5.14) but
the degree is equal to maxpecpag, rs>ss 8- Now we consider a basic graph
B which has one special point in Vo and k ag-cycles. Clearly, rg = 2k, sz =
k + 1 hold, and hence gz = k — 1. This together with Lemma 5.2 implies
MaXBeBG,,ru>ss 48 = k — 1. Since B is a simple graph and has at least one
cycle, we have riz,sg > 2. Then, the right hand side of (5.14) has a factor
(T, T,)? = W2. Thus the proof of (1.13) is completed.

5.3. Combinatorial proof of Theorem 1.1

Finally, we remark on another proof of Theorem 1.1 using a similar argument
in the proof of Theorem 1.6, which is a bipartite version of the combinatorial
argument discussed in [14, Section 5]. We use the same notation as above.
In the preliminary step, we delete leaves and adjacent edges repeatedly. In
this case, by this procedure, we obtain the unique cycle of length, say 2t.
Let r,s > 2 be fixed and V" = (V{", V') be a vertex set. Take ¢ such that
2 < ¢ < min{r, s}, and consider an unlabeled bipartite unicyclic graph whose
length of the cycle is 2t. Clearly, |V{'| = V5’| = t. For each of vertices of
this graph, we attach a rooted tree in a Snmlar way of Step 2 in the proof
of Theorem 1.6. To create 2t rooted trees, we partition (r,s) vertices into 2¢
vertex sets, and all of these partitions are in 7, ;. By this procedure, we obtain
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N(r, s,t,t) labeled connected bipartite (r, s, r+s)-graphs, where N (r, s,t, u) is
defined in (5.8). For each of the obtained graphs, there are 2¢ automorphisms
due to the cycle and labels of roots of rooted trees. Let j(r, s) be the number
of labeled connected bipartite (r, s, + s)-graphs. Then, we have

. N(Ta s, t, t)
](Ta 5) = § ot .
2<t<min{r,s}

Let J(x,y) be the exponential generating function for j(r,s), and we have

o0

N(r,s,t,t) e
J(@,y) = TSZO rlsl Z Z st Y
’ t<s
1 = (T, T,) 1
- ( ty) _ —i(log(l—TmTy)‘FTITy) = Fi(z,y),
t=2

which completes the combinatorial proof of Theorem 1.1.

6. Proof of Theorem 1.5

In this section, we prove the asymptotic equality (1.10) for k£ > 2. In Subsec-
tion 6.1, for each basic graph B € BG, we find the leading term of Jp(z, x)
by a combinatorial argument, where the multigraph B* obtained from B by
contraction plays an important role. In Subsection 6.2, we introduce the basic
graphs on complete graphs as discussed in [14] and give a similar discussion
in Subsection 6.1, and in Subsection 6.3, we derive the leading asymptotic
behavior of Np;i(n, k) defined by (1.8). Through the existence of multigraphs,
we will see the correspondence between basic graphs on complete bipartite
graphs and those on complete graphs.

6.1. Basic graphs B and Jg(zx,x)
Let us recall again Y (z) in (4.14) representing exponential generating func-
tion for labeled rooted trees. From (4.17), Z(x,x) = 2Y (z) and W (z,z) =
Y (z)?2. Recall that
Solving these equations, we have

Tp(z,z) =Ty(z,z) =Y (x). (6.1)
From Theorem 1.6, for £ > 2 we have

Fk(I,l') = Z JB(:Cax)v

BeBGk

where

YL
98(1 _ Y2)M’
with M = M(B) == a1 +as+ b1 +bs+c+dand L = L(B) := M +rep +
Ssp +2a1 + 2ag — c+d. These constants are determined by 5. In this section,

Js(z, ) = (6.2)
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we also use the notation a; = a1(B),rsp, = rsp(B), and so on. We easily see
the following.

Lemma 6.1. For B € BG}, there exist unique constants {a;(B)}M, {b;(B)}M,,
{¢;(B) jL:_02M such that

M L—2M
_ a;(B) b;(B) _ y
Js(z, ) 7; <(1_Y)i vy )t ];) ¢;(B)Y7. (6.3)
In particular,
(B) = —. b8 - S0 (6.4
M) = g2 M) o '
Proof. Multiplying both sides of (6.2) and (6.3) by (1-Y?2)™ and substituting
Y =41 yield (6.4). O

For each B € BG}, we contract its special cycles and paths and ignore
the vertex sets V3 and V5. By this procedure, we obtain a multigraph B*
from B. Let MG}, be the set of all multigraphs obtained from BGj by this
procedure. Define a mapping ¢ : BGy, — MGy, by ¢(B) = B* and for B* €
MGk7

¢ 1(B*) :={B € BGy : ¢(B) = B*}.
All basic graphs which belong to ¢~!(B*) have the same number of special
cycles and the same total number of special paths and edges. In what follows
in this section, we only consider basic graphs B € BGy such that M(B) =
3(k — 1) and multigraphs B* € MG}, obtained from such basic graphs B.
From (5.5), it follows that such a B has no d-edge, i.e., e(B) = 0 and rs,(B) +
ssp(B) = 2(k — 1) holds. For given B* € MG, we divide the set ¢~1(B*) by
pairs of (rsp(B), ssp(B)). For i =0,...,2(k — 1), define
¢~ (BH)CETUTE) = {B € 97N (B") 1 (rop(B), ssp(B)) = (2(k — 1) —i,7)}.
Then, we have
¢_1(B*) — |—| (b—l(B*)(Q(k—l)—i,i)_ (65)
0<i<2(k—1)

Note that ¢~ (B*)2(E=1:.0) and ¢=1(B*)(©:2(k=1) are singletons, and each of
the element is determined by B* in a clear way. Indeed, if B* has self-loops,
replace them to minimal «a;-cycles. Also, if B* has single edges or multiple
edges, replace them to (i-paths. Putting all vertices of B* in V; and by
this procedure, we obtain a basic graph B € ¢~ (B*)2*=1.0)  (Clearly, the
obtained graph B is unique. In a similar way, we have a unique element in

¢~ 1(B*)(©2(-=1) For the following discussion, we denote by Biq the unique
element in ¢~ (B*)2(¢k-1).0),

Lemma 6.2. Let B* € MGy, be given. Then, fori=0,...,2(k —1),

3 1 (2(ki—1)) 1 (66)

Be¢—1(6*)(2(k71)—i,i) 9B 9Bia
M(B)=3(k—1)
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Proof. For i = 0, Big and gp,, are determined by B*. Clearly, rs,(Bia) =
2(k — 1) holds. We label all 2(k — 1) special points of Big, and we construct
Be ¢ 1(B*)k=D=i) 4y —0, ... 2(k—1) by the following way. For given 1,
we choose (z(ki_l)) labeled special points in B;4, and we put these points in V5
without changing the connectivity of the vertices. Here, for each (;-path in
Biq, delete or add a normal point to create y-path or §-path from it. Then, we
have (Z(k._l)) basic graphs By, - - - ,B(z(k_—l)) from Biq which satisfy (rsp, ssp) =

1
(2(k — 1) — 4,4). Since this procedure does not change the connectivity of

(2(k_—1))

graphs, the numbers of the automorphisms of obtained graphs {B},_,

are gg,,. To obtain ¢~1(B*)2(k=1=0) " we forget all labels of special points
2(k—1)
of {Bg}g:f ) Nevertheless each of (z(kfl)) unlabeled graphs may not be

different, we have
(2(&51))
G
B€¢—1(B*)(2(k—l)—i,i) 9B =0 98, i 9Biq
M(B)=3(k—1)

Proposition 6.3. For B* € MG},
> byp-p(B)=0.

Beg~H(B*)
M (B)=3(k—1)

To show Proposition 6.3, from (6.4) it is sufficient to prove that for
B* € MGy,

2(k—1) (—1)H®)

2 D

i=0 Beg~t(B*) (k=1 =i)
M(B)=3(k—1)

L(B)

= 0. (6.7)

For the signature of (—1) , we have the following lemma.

Lemma 6.4. Suppose that for given B* € MG}, there exists B € ¢~ 1(B*)
such that M(B) = 3(k — 1). Then, fori and B € ¢~ (B*)2(k=1)=01)

(_1)L(B) _ (_1)k71+i.
Proof. Recall that for B € BGy, L(B) = M + rsp + Ssp + 2a1 + 2a2 — ¢+ d.
By the assumption, we have
M=3(k-1), reg+ssp=2(k—-1), (6.8)
which give
(_1)L(B) — (_1)(k71)7c(3)+d(8).
By the equation (6.8), for any considered B, degrees of each special point in

B are three. In particular, so are that in Biq. It follows that each of special
points v € Biq satisfies one of the following; v has an «a;-cycle and a B1-path,
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or a (B1-path connected to v; and two (1-paths connected to v, or three (-
paths connected to vz, where v;,7 = 1, 2, 3 are different special points of Biq.
Note that each of B is obtained from Bjq by putting ¢ special points in V;
into V5 and replacing (51-paths with - or d-paths in the same way as in the
proof of Lemma, 6.2. Hence, for any special point v’ € V5 of B, the difference
of the numbers of v- and d-paths connected to v’ is odd. Therefore, we have
(—1)k=D)=eB)+dB) = (_1)(k=D+ which completes the proof. O

Proof of Proposition 6.3. By Lemmas 6.2 and 6.4, we have

2(k—1)

) 1

LHS of (6.7)) = 1)kt —

( (6.7)) ;() 7127;’_%

= Beg— 1 (B*)k-1D~i0)
M(B)=3(k—1)
L 2(k=1)

(—1)k-1 <2(k — 1)> ,

= . —1)*=0.
Ly (e

Hence, equation (6.7) holds and Proposition 6.3 is proved. ([

Proposition 6.3 shows that for any B* € MGy, 3 pc4-1(5+) JB(2, T)
does not have the terms of (1 + Y)_3(k_1), and so the leading asymptotic

behavior of Fi(x,z) is determined by the summation of &% We give

the exact value of the coefficient of the summation.

Proposition 6.5. Suppose that for given B* € MGy, there exists B € ¢~1(B*)
such that M(B) = 3(k —1). Then,

1 1
> aspen(B) = T g
Beg~(B*) i
M(B)=3(k—1)
where Biq € ¢~1(B*) is uniquely determined from B*.
Proof. By (6.4) and Lemma 6.2, we have

2(k—1)

1 1
Y. wanB) =g X > s
Beg—1(B*) =0 Beg—1(B*)Rk=D=i)
M(B)=3(k—1) M(B)=3(k—1)
1 2%2_1) <2(k - 1))
2Mg6id i=0 Z
1
T 9k-1 gBid’

where we used M = 3(k — 1) in the last equation. O
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6.2. Basic graphs on complete graphs

Now we consider the correspondence of B € BG) to a basic graph with
respect to complete graphs {K,, },,>1. A basic graph A on {K,,},>1 consists
of the following four types of (minimal) special cycle, paths and edge as in
Figure 5. For details, see [14, Section 6]. An example for case k = 2 is shown

in Figure 6.

o’-cycle ~'-path ¢’-path d’-edge

Figure 5. Four types of special cycle and paths of basic graphs
on {K,}n>1. The circles denote special points.

o’-cycle a/-cycle o’-cycle o’-cycle
: ~'-path :
d'-path ¢’-path
D 3 3
¢’-path ¢’-path
(a) Basic graph (b) Multigraph

Figure 6. Example of the case k = 2 (cf. [14, Section 7]). The
mapping v transfers each of the basic graphs of 6(a) to
each of the multigraphs of 6(b).

Recall that N(n, k) is the number of labeled connected (n,n — 1 + k)-
graphs on K, which was introduced in Section 1. Let Wy, k > 1 be the
exponential generating function of N(n, k):

oo xn
x) = Z N(n, k)ﬁ
n=1

Note that Wi(z) is the exponential generating function for “unicycles” on
{K, }n>1, which corresponds to Fj (z, z) for labeled connected bipartite graphs.

Proposition 6.6 ([14]). For k > 1, Wy (x) is expressed by the summation with
respect to basic graphs A:
> Jalx)

AeBG,
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with
yL'(A)

" Al VA (0

Ja()

where BG), is the set of basic graphs on complete graphs having k cycles and
M'(A) <3(k—1), L'(A) and ga are constants depending only on A.

Lemma 6.7. For A € BG,, there exist unique constants {a}(A)}M, {¢(A) }]L;BM,
such that

J _% Cl;(A) +Li\4/ /(A)YJ / (A)_i
A = — (1 _ Y),L j=0 Cj bl aM/ — gA

Proof. To show the second equation, put § = 1 — Y in (6.9) and apply the
binomial expansion to the numerator. O

For each A € BG), we contract their special cycles and paths and obtain
a multigraph A*. Define ¢ : BG}, — MG}, be the mapping of the contraction.
Note that ¢ is not injective, but if ¥(A;) = ¥(A2) = A* for some Aj, As,
then the difference of the two graphs is only due to the difference of their
0’-paths and §’-edges. Define

BG}|3(h—1) = {A € BG), : M'(A) = 3(k — 1)}.

Let v|34-1) be the restriction to BG[3(x—1) of 1, then this mapping is
bijective from BG}|3(—1) to MGy, i.e, ¥ 3}2_1)(«4*) is a singleton. Indeed, if
A* has self-loops, replace them to minimal o’-cycles. Also, if A* has single
edges or multiple edges, replace them to ~/-paths or §’-paths, respectively.
By this procedure, we obtain a unique basic graph A € BGY,|3(;—1), and then

7/1|3_(271) (A*) = {A}

6.3. Proof of the asymptotic equality (1.10)

We will prove the asymptotic equality (1.10). Take B* € MGy such that
there exists B € ¢~}(B*) satisfying M (B) = 3(k — 1). Then, there exist
unique Biq € ¢~'(B*) and A = Ag- := ¢ |3,_1)(B*) € BG},. Then, we
have

9Bia = 9A; (6.10)

because mappings ¢ and v preserve the connectivity between each of vertices
in B and A, respectively. By Proposition 6.5 and (6.10), we have

1 1
Z a3(k—1)(8) = 9k—1 97,4 (611)
Bep™ ' (B*)
M (B)=3(k—1)

From Proposition 6.6, the asymptotic behavior of (x™)Wjy,_;(x) is de-
termined by the summation of J4(z) with respect to A such that M’'(A) =
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3(k — 1). Hence, by Lemma 6.7 we have
N(n, k) = (z")Wy(z)
~ ) Y Jal)

AGBGUg(k,l)
S SN = el
(1_y)3(k—1)
AEBG |3(k-1)
1
( > )tn(?)(kl)), n — o0,
AEBG [5(01y 2

where t,,(p) is the tree polynomials defined by (4.19). On the other hand, by
Lemma 6.1, Proposition 6.3, (6.11) and the fact that 1[3,—1) is bijective, we
have

Nyi(n, k) = (") F(z, x)

~@y Y Y s

B*eMGr Begp™1(B*)
M(B)=3(k—1)

N Z Z <x"> a3(k—1)(8)
, (i )=
B*e MGy Begp 1(8*)
M(B)=3(k—1)

= < Z Z ﬂ3(k1)(8)> tn(3(k — 1))

B*eMGy, Be¢_1(8*)
M(B)=3(k—1)

1 1
:Qk_l< Z A)tn(?)(k—l))

.AGBGV;C IS(k—l)

1

NFN(TL]{?), n—>00,

hence the asymptotic equality (1.10) holds.
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