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Abstract
In this paper, we consider the self-affinity of planar curves. It is regarded as an 
important property to characterize the log-aesthetic curves which have been studied 
as reference curves or guidelines for designing aesthetic shapes in CAD systems. We 
reformulate the two different self-affinities proposed in the development of log-aes-
thetic curves. We give a rigorous proof that one self-affinity actually characterizes 
log-aesthetic curves, while another one characterizes parabolas. We then propose a 
new self-affinity which, in equiaffine geometry, characterizes the constant curvature 
curves (the quadratic curves). The family of curves determined by two self-affinities 
are captured by the proposed self-affinity.

Keywords  Industrial design · Planar curves · Self-affinity · Quadratic curves · Log-
aesthetic curves · Equiaffine geometry · Similarity geometry

Mathematics Subject Classification  53A04 · 93B51 · 65D18

1  Introduction

In the field of computer aided design (CAD), control over the visual language [1] 
such as the impressions received from the components and outlines of a shape 
is highly dependent on the expertise of designers. Using spline curves such as 
Bézier curves, B-Spline curves, and non-uniform rational B-spline (NURBS) 

 *	 Shun Kumagai 
	 s-kumagai@hi-tech.ac.jp

	 Kenji Kajiwara 
	 kaji@imi.kyushu-u.ac.jp

1	 Institute of Mathematics for Industry, Kyushu University, 744 Motooka, 819‑0395 Fukuoka, 
Japan

2	 Faculty of Engineering, Hachinohe Institute of Technology, 88‑1 Obiraki Myo, 
Hachinohe 031‑8501, Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s13160-025-00718-1&domain=pdf
http://orcid.org/0000-0003-4615-434X


	 S. Kumagai et al.

curves, one can design shapes interactively in a way that is suitable for generating 
in CAD systems [2]. To design visually desirable shapes in CAD systems, these 
basic tools require some sort of reference curves or guidelines.

In 1995, inspired by the analysis of curves appearing in the shapes of designed cars, 
Harada, Mori, and Sugiyama [3] suggested that a sort of self-affinity (the Harada self-
affinity, the HSA) is important to characterize aesthetic shapes. They formulated it by 
the linearity of the logarithmic curvature histogram (LCH, also known as logarith-
mic distribution diagram of curvature, LDDC). Curves such as logarithmic spirals and 
clothoids, which have been classically considered beautiful, give linear LCHs indeed. 
Harada, Yoshimoto, and Moriyama [4] classified planar curves into five types accord-
ing to visual language in terms of LCH gradients. Curves sampled from several arti-
facts and natural structures were investigated using this classification [5, 6].

In 2005, Miura [7] reformulated the above self-affinity (the Miura self-affinity, 
the MSA) using the logarithmic curvature graph (LCG) [8] which is the continuous 
limit of LCH. He introduced log-aesthetic curves (LACs) [9] as a class of curves 
whose LCG is a line of prescribed slope. It is generated by applying the fine-tuning 
method [10] to clothoids, by which they are deformed to curves with linear LCGs 
whose gradients are arbitrarily controlled. LACs have been studied as reference 
curves for designing shapes in CAD systems [11–14]. As other important characteri-
zations, LACs are known as critical points of the fairing energy functional [15] and 
invariant curves of integrable evolution in similarity geometry [16].

In this paper, we consider characterizations of curves in terms of self-affini-
ties which have not been dealt with mathematically. We present rigorous proof of 
the claim [9] that the MSA characterizes LACs. On the other hand, the HSA has 
not been studied well. Despite Harada’s original discussion on the relationship 
between the HSA and the linearity of LCG, we show that it is not the case and 
that the HSA actually characterizes parabolas. We recall that parabolas are zero 
curvature curves in equiaffine geomerty, while special LACs, circles and loga-
rithmic spirals are the zero curvature curves and the constant curvature curves, 
respectively, in similarity geometry. In view of this, we propose a new extendable 
self-affinity (the ESA) that integrates the HSA and the MSA in terms of geom-
etries in Klein’s Erlangen program [17]. The main theorems are stated as follows.

Theorem 1.1  (Theorem 3.7) A curve possesses the MSA if and only if it is either a 
circle, a line, or a LAC.

Theorem 1.2  (Theorem 3.10) A curve possesses the HSA if and only if it is either a 
line or a parabola.

Theorem  1.3  (Theorem  4.2) In equiaffine geometry, a curve possesses the ESA if 
and only if it is a constant curvature curve (a quadratic curve; either a parabola, an 
ellipse, or a hyperbola).

Theorem 1.3 generalizes Theorem 1.2 in terms of the ESA in equiaffine geom-
etry. In the case of logarithmic spirals and circles, Theorem 1.1 implies that the ESA 
in similarity geometry is equivalent to having a constant curvature. In other words, 
the HSA and the MSA intersect as the ESA that characterize constant curvature 
curves in corresponding geometries.
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This paper is organized as follows. In Sect.  2, we present the basics of planar 
curves that will be referred to. In Sect. 3, we introduce the HSA and the MSA and 
prove Theorem 1.1 and Theorem 1.2. In Sect. 4, we define the ESA as a generaliza-
tion of the MSA and the HSA, and prove Theorem 1.3. Section 5 is devoted to some 
concluding remarks implicating the connection among the main results.

2 � Preliminaries

2.1 � Basics on planar curves

This subsection refers to [18]. Throughout this paper, we consider a parametric 
planar curve (simply, a curve). It is a smooth function �(t) ∶ I → ℂ on an interval 
I = I𝛾 ⊂ ℝ . Once a curve � is given, let us assume a fixed base point at � = �� ∈ I . 
In other words, we regard a curve as the triplet (I, �(t), �) as above. As an additional 
assumption, we impose a regularity on a curve � such that the derivative d�(t)∕dt is 
non-vanishing. We identify the complex number field ℂ with the plane ℝ2 naturally.

Definition 2.1  A reparametrization between two curves �i ∶ Ii → ℂ, i = 1, 2 is a 
smooth homeomorphism t ∶ I1 → I2 such that 

(1)	 t(��1) = ��2 and
(2)	 �1(t1) = �2◦t(t1) for any t1 ∈ I1.

If a reparametrization t ∶ I1 → I2 is given, we shall denote

Remark that the inverse map of a reparametrization t2 = t2(t1) is denoted by 
t1 = t1(t2).

Lemma 2.2  For any curve � ∶ I → ℂ , there uniquely exists a globally increasing 
reparametrization s = s𝛾 ∶ I → J ⊂ ℝ such that 

(1)	 s(�� ) = 0,
(2)	 | d�(s)

ds
| = 1,

(3)	 d2�(s)

ds2
=
√
−1 �(s)

d�(s)

ds
,   �(s) = �� (s) ∶=

d

ds
arg

(
d�(s)

ds

)
.

We use the notation s = s� for the above arc length parameterization of a curve � . 
We introduce the Euclidian frame ΦE ∶= (�s,

√
−1 �s) . Then, the (Euclidian) curva-

ture � = �� reproduces the input curve � in the following sense.

Proposition 2.3  (Fundamental theorem of curves) For a given non-negative, smooth 
function �(s) ∶ I → ℝ , the Frenet formula

�2(t1) ∶= �2◦t(t1) = �1(t1), t1 ∈ I1,

�1(t2) ∶= �1◦t
−1(t2) = �2(t2), t2 ∈ I2.
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has a unique solution �(s) ∶ I → ℂ such that �� (s) = �(s) up to the congruent trans-
formation group GE ∶= {z ↦ Az + b ∣ A ∈ O(2), b ∈ ℂ}.

We call the reciprocal � = �� = 1∕�� the curvature radius of a curve � . As a con-
sequence of Proposition 2.3, it follows that the curvature radius �� (s0) is the radius 
of the unique osculating circle that approximates �(s) at s = s0 in quadratic order. In 
the following, we denote s-differential by (⋅)�.

Proposition 2.4  Let �(s) ∶ I → ℂ be a curve. Then, for any matrix A ∈ GL(2,ℝ) , it 
follows that

Proof  We use the formula [18] of curvature radius

where t is an arbitrary parameter. Let t ∶= s� be the arc length parameter of � , then 
we have �� (t) = det(�t, �tt) . Applying (2.3) to A�(t) yields

Since det(A�t,A�tt) = det(A(�t, �t)) = detA det(�t, �tt) = detA∕�� , we have

which is (2.2). 	�  ◻

2.2 � Logarithmic curvature histogram and graph

Let �(s) ∶ [0, sall] → ℂ be a curve where sall > 0 is the total length. We will consider 
the length histogram of � against the logarithmic curvature radius X = log � . For fixed 
M,N ∈ ℕ , let {Ri}

M
i=1

 be the M subdivisions of the range of X of equal length and 
{�j}

N
j=1

 be the curvature radius of N division points on � with equal arc length. That is,

(2.1)ΦE
s
= ΦE

(
0 −�

� 0

)

(2.2)�A� (s) =
|A� �(s)|3
detA

�� (s).

(2.3)�� (t) =
|�t(t)|3

det(�t(t), �tt(t))
,

(2.4)�A� (t) =
|A�t(t)|3

det(A�t(t),A�tt(t))
.

(2.5)�A� (t) =
|A�t(t)|3
detA

�� (t),

(2.6)Ri ∶=
{
x ∈ ℝ ∣

i

M
≤ x −minX

maxX −minX
<

i + 1

M

}
, i = 0, ...,M,
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The logarithmic curvature histogram (LCH) [3, 4] of � is the histogram ΓM,N(�) 
defined by counting the logarithmic value

against each domain Ri (or its representative Xi ∶= minRi ) with 
#{j ∣ log �j ∈ Ri} ≠ 0 . We note that the idea of taking logarithmic coordinates can 
be observed in the area of allometry [19] in natural structures.

Harada et al. pointed out in [3, 4] that the LCHs of “aesthetic" curves drawn by 
professional car designers and modelers, and the keyline curves of actual cars have 
a linear tendency. Based on this observation, they proposed the following property.

Definition 2.5  (the Harada self-affinity, see also Definition 3.8, and Figure 6 in [4]) 
A curve possesses the Harada self-affinity (the HSA) if its arbitrary subcurve coin-
cides with the image of an affine deformation of the whole curve.

We will show that the linearity of LCHs and the HSA are actually different; the 
linearity of LCHs should not be thought of as a self-affinity in the Euclidian plane 
of curves but that in the plane of LCHs. Miura [9] proposed an alternate self-affinity 
(the Miura self-affinity, Definition 3.4) that is regarded as a self-affinity in the loga-
rithmic curvature graph (LCG) of �(s) ∶ [0, sall] → ℂ defined by

We now show that the continuous limits of LCHs are LCGs. This fact is mentioned 
in [20] but we give a mathematically rigorous proof. For LCH, we define

Then, we have:

Proposition 2.6  Let � be a curve such that �(s) is smooth and monotonous. Then, the 
distribution �M,N(dX) =

∑
fM,N(X) dX of ΓM,N(�) strongly converges to the distribu-

tion �(dX) = eYdX of Γ(�) as M,N → ∞ . In particular, the LCH plot converges to 
the LCG plot pointwise almost everywhere as M,N → ∞.

Proof  By the assumption, there exists a reparametrization s = s(X) of �(s) . The line 
element is given by ds(dX) = |||

ds(X)

dX

||| dX = eYdX = �(dX).
We show that the values of arbitrary [a, b) ⊂ ℝ measured by �M,N(dX) and ds(dX) 

are asymptotically equal as M,N → ∞.

(2.7)�j ∶= ��

(
j

N
⋅ sall

)
, j = 0, ...,N.

(2.8)Yi = log
Δsi

ΔXi

∶= log
#
{
j ∣ log �j ∈ Ri

}
⋅ sall∕N

|Ri| , i = 0, ...,M,

(2.9)Γ(�) ∶=

{
(X, Y) =

(
log �(s), log

||||
ds

d log �(s)

||||
)||| s ∈ [0, sall]

}
.

(2.10)fM,N(X) =

{
eYi if X ∈ Ri and Yi ≠ −∞,

0 otherwise.
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For X = a, b , let iX , jX be the largest integers less than X−X0

XM−X0

,
Ns(X)

sall
 , respectively. 

We have �M,N([a, b)) =
(jb−ja−1)sall

N
 by definition of LCH. For any 𝜀 > 0 , one can take 

sufficiently large M, N so that

Then, the error between ds([a, b)) and �M,N([a, b)) is estimated by

By applying ds to (2.14), we have

Applying �M,N to (2.14) gives

Since each curve segment is of length sall
N

 , we have

as shown in Fig. 1.
On the other hand, for any i = 0, ...,M , from (2.13) and we have

(2.12) and (2.17) yield

The triangle inequality yields

(2.11)ia + 1 < ib,

(2.12)
sall

N
<

𝜀

4M
,

(2.13)
XM − X0

M
max

X ∈ Ri, 0 ≤ i ≤ M
eY(X) <

𝜀

4
.

(2.14)
ib⨆

i=ia+1

Ri ⊂ [a, b) ⊂

ib+1⨆
i=ia

Ri.

(2.15)−ds(Ria
) < ds([a, b)) −

ib∑
i=ia

ds(Ri) < ds(Rib+1
).

(2.16)−𝜇M,N(Ria
) < 𝜇M,N([a, b)) −

ib∑
i=ia

𝜇M,N(Ri) < 𝜇M,N(Rib+1
).

(2.17)−
sall

N
< ds(Ri) − 𝜇M,N(Ri) <

sall

N
,

(2.18)0 ≤ ds(Ri) <
XM − X0

M
max

X ∈ Ri, 0 ≤ i ≤ M
eY(X) <

𝜀

4
.

(2.19)0 ≤ 𝜇M,N(Ri) < ds(Ri) +
sall

N
<

(
1

4
+

1

4M

)
𝜀 <

2𝜀

4
.
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We have from (2.20) by using (2.15) and (2.16)

Applying (2.12), (2.18) and (2.19) to (2.21), we conclude that

Thus we have a strong convergence. The relation to graph plot refers to [21]. 	�  ◻

For example, Fig. 2 shows LCHs and the LCG of a parabola. In general, the 
limit of LCH ΓM,N(�) as M,N → ∞ is regarded as the sum of LCG segments 
{Γ(��Ik ) ∣ I =

⨆
Ik, �� �Ik : monotonous}.

In the next section, we will discuss another self-affinity of curves character-
izing the linearity of LCGs, and curves characterized by the Harada self-affinity.

(2.20)

|ds([a, b)) − �M,N([a, b))| ≤
+

ib∑
i=ia

||ds(Ri) − �M,N(Ri)
|| +

||||||
�M,N([a, b)) −

ib∑
i=ia

�M,N(Ri)

||||||
.

(2.21)||ds([a, b)) − 𝜇M,N([a, b))
|| < max

i
ds(Ri) +

Msall

N
+max

i
𝜇M,N(Ri).

(2.22)||ds([a, b)) − 𝜇M,N([a, b))
|| < 𝜀

4
+

𝜀

4
+

2𝜀

4
= 𝜀.

Fig. 1   LCH, LCG, and curve: �
M,N (Ri

) counts the number of curve segments whose X-values at initial 
points belong to R

i
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3 � The Miura and the Harada self‑affinties

3.1 � Log‑aesthetic curve and the Miura self‑affinity

Miura [9] pointed out that a clothoid curve does not possess the HSA, while it has 
a linear LCG. He also defined the following class of curves with linear LCG con-
structed from the fine-tuning method [10].

Definition 3.1  (Log-Aesthetic Curve) A log-aesthetic curve (LAC) of slope � is a 
curve defined by

(3.1)�(s) =

{
(�s + �)

1

� (� ≠ 0),

e�s+� (� = 0),

Fig. 2   LCH and LCG of parabola �(t) = 5t +
√
−1 t2 , t ∈ [0, 5] for M = 10, 30, 80 and N = 120, 240, 1000 . 

LCG is represented by X(t) = 3

2
log(4t2 + 25) − log 10 , Y(t) = 1

2
log(4t2 + 25) − log

12t

4t2+25
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restricted to {s ∣ �s + � ≥ 0} , where � ∈ ℝ ⧵ {0} , �, � ∈ ℝ . The equation (3.1) deter-
mines a unique curve up to congruent transformations by Proposition 2.3.

Example 3.2  Fig. 3 illustrates the following examples of LACs. 

(1)	 A logarithmic spiral curve �(t) = e(a+
√
−1 b)t , a +

√
−1 b ∈ ℂ : observe that 

 It is a LAC with � = 1.
(2)	 A clothoid curve �(t) = ∫ t

0
e
√
−1 at2dt , a ≠ 0 : observe that 

 It is a LAC with � = −1.
(3)	 A circle and also a line have constant curvatures. They are regarded as the limit 

of a family of LACs as � → ±∞ [11]. Actually, for any constants �, �, �0 ∈ ℝ 
with (�, �) ≠ (0, 0) , we have 

One can see that the LCG gradient dY/dX of a LAC is the constant � by (3.1) and 
the formula [8] that follows from (2.9):

s(t) =

�
1 +

�
b

a

�2

(eat − 1), �(t) =
1

b

√
a2 + b2eat =

�
a

b
s(t) +

√
a2 + b2

b

�1

.

s(t) = t, �(t) =
1

|2at| = (2as(t) + 0)−1.

(3.2)lim
�→±∞

(��
0
(�s + �))

1

� = �0,

(3.3)lim
�→±∞

(
s

��

) 1

�

= 0.

Fig. 3   LAC: a logarithmic spiral ( � = 1 , left) and a clothoid curve ( � = −1 , right)
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We now discuss the self-affinity of LACs. Miura [7] showed that logarithmic spi-
rals and clothoids possess self-affinity with respect to the following �-shift mapping 
which shifts the parameters of curves with their domains and base points accord-
ingly. Namely:

Definition 3.3  For any 𝜀 > 0 , we define the �-shift mapping Λ� on the set of curves by 

(1)	 IΛ��
= I� − �,

(2)	 Λ��(t) = �(t + �) for any t ∈ IΛ��
,

(3)	 �Λ��
= �� + �,

for each curve � = (I, �(t), �) . We denote Λ�F� ∶= FΛ��
 for any function F� of �.

In particular, from the setting of arc length parametrization in Lemma 2.2, the �
-shift of s yields

Definition 3.4  (the Miura self-affinity) We say that a curve �(s) ∶ I → ℂ possesses 
the Miura self-affinity (the MSA) if there exist 𝜇, 𝜈 > 0 and a reparametrization 
t(s) ∶ I → J such that for any 𝜀 > 0,

Remark 3.5  Definition 3.4 implies that a curve � with the MSA has the following 
geometric property: take any subcurve �1 . Let �1

a,b
 be a curve obtained by apply-

ing arbitrary scale change (�(t), s(t)) ↦ (a�(t), bs(t)) to �1 . Then there exists another 
subcurve �2 congruent to �1

a,b
 by choosing b = b(a, �) appropriately.

Similarly, the geometric description of the HSA can be stated as follows: take 
any subcurve �1 . Let �1

a,b
 be a curve obtained by applying arbitrary scale change 

(Re �1(t), Im �1(t)) ↦ (aRe �1(t), b Im �1(t)) . Then there exists another subcurve �2 
affine equivalent to �1

a,b
.

Remark 3.6  Note that (3.6) defined by using the map Λ� holds for specific parametri-
zation t(s).

For example, we will next show that a logarithmic spiral, whose curvature radius 
is given by �(s) = �s + � , possesses the MSA. However, (3.6) does not hold for 
t(s) = s . In fact, the �-shift of just s yields the following equation different from 
(3.6):

The appropriate parametrization will be demonstrated in the proof of Theorem 3.7.

(3.4)
dY

dX
(s) = 1 −

�(s)���(s)

�(s)�2
.

(3.5)Λ�s(t) = s(t + �) − s(� + �).

(3.6)Λ�(s� (t), �� (t)) = (��s� (t), �
��� (t)), ∀t ∈ J.

(3.7)Λ�(s, �(s)) = ((s + �) − (0 + �), �(s + �) + �) = (s, �(s) + ��).
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Theorem 3.7  A curve � ∶ I → ℂ possesses the MSA if and only if � is it is either a 
circle, a line, or a LAC.

Proof  First, we consider a LAC with � ≠ 0 , �(s) = (�s + �)
1

� . As mentioned in [9], 
we take a reparameterization t so that s = �

�
(e�t − 1) for an arbitrary fixed constant 

� ≠ 0 . Then, for any 𝜀 > 0 , we have

Also, (3.1) implies that

Thus the curve posseses the MSA with � = e� and � = e
�

�.
Second, we consider a LAC with � = 0 , �(s) = e�s+� . We take a reparameteriza-

tion t = �

�
s for an arbitrary fixed � ≠ 0 . One can easily check that Λ�s(t) = s(t) and 

Λ��(t) = e����(t) , which imply the MSA with � = 1 and � = e��.
Third, for a circle �(s) = �0e

√
−1 s∕�0 , take a reparametrization t so that 

s(t) = C(e�t − 1) for an arbitrary fixed C, � ≠ 0 . Then we have the MSA with � = e� 
and � = 1.

Fourth, a straight line possesses the MSA with arbitrary �, � ≥ 0.
Conversely, if a curve �(t) possesses the MSA, then there exist 𝜇, 𝜈 > 0 such that

for any 𝜀 > 0 . Then, taking �-differential of the first components of both sides of 
(3.10) at � = 0 and applying (3.5), we have:

By solving ṡ(t) − ṡ(0) = s(t) log𝜇 , we obtain

The function �(t) is determined by similar procedure from the second components of 
(3.10) as

(3.8)Λ�s(t) = s(t + �) − s(�) =
�

�
(e�(t+�) − e��) = e��s(t).

(3.9)Λ��(t) = �(t + �) = (�s(t + �) + �)
1

� = (�
�

�
(e�(t+�) − 1) + �)

1

� = e
�

�
�
�(t).

(3.10)Λ�(s(t), �(t)) = (��s(t), ���(t)),

(3.11)lim
𝜀→0

Λ𝜀s(t) − s(t)

𝜀
= lim

𝜀→0

s(t + 𝜀) − s(𝜂 + 𝜀) − s(t) + s(𝜂)

𝜀
= ṡ(t) − ṡ(0),

(3.12)lim
�→0

�� − 1

�
s(t) = s(t) log�.

(3.13)s(t) =

{
ṡ0

log𝜇
(𝜇t − 1) if 𝜇 ≠ 1,

ṡ0t if 𝜇 = 1.

(3.14)lim
𝜀→0

Λ𝜀𝜌(t) − 𝜌(t)

𝜀
= lim

𝜀→0

𝜌(t + 𝜀) − 𝜌(t)

𝜀
= 𝜌̇(t),
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so that we have

Thus we obtain

If � ≠ 1 , and hence � is a LAC with � = log� � . Otherwise, we obtain a circle or a 
straight line by Proposition 2.3. 	�  ◻

3.2 � The Harada self‑affinity

Definition 2.5 is formulated as follows.

Definition 3.8  We say that a curve �(s) ∶ I → ℂ posseses the the Harada self-affin-
ity (the HSA) if for any subinterval J ⊂ I (homeomorphic to I), there exists a pair 
(�J ,FJ) of a reparametrization �J ∶ I → J and an affine map FJ ∶ z ↦ AJz + bJ in 
Aff(ℂ) such that

For geometric description of the HSA compared with the MSA, we refer to 
Remark 3.5.

Remark 3.9  Let �(s) = x(s) +
√
−1 y(s) ∶ I → ℂ be a curve with the HSA. Then, the 

following holds for any subinterval J ⊂ I . 

(1)	 The arc length parameterization of the curve FJ�(�J(s)) ∶ J → ℂ is given by 
�J ∶= �−1

J
∶ J → I . For two possible �J = �

(1)

J
, �

(2)

J
 , since both of their inverse 

functions are arc length parameters FJ� , we have (�(1)

J
)−1(s) = ±(�

(2)

J
)−1(s) + � 

for some � ∈ ℝ . In this sense, �J is uniquely determined by J.
(2)	 An affine map FJ  is unique up to set-wise automorphisms (not giv-

ing pointwise correspondence but curve-to-curve correspondence) in 
Aut(�(I)) ∶= {G ∈ Aff(ℂ) ∣ G�(I) = �(I) as sets} . We assume that J ↦ (�J ,FJ) 
is well-defined modulo half-translations and Aut(�(I)).

(3)	 For any G ∈ Aff(ℂ) , one can see that the curve G� posseses the HSA by replacing 
FJ with GFJG

−1 . Considering curves modulo Aff(ℂ) , the parameter s does not 
work as an arc length parameter. We use the variables t, u = �J(t) to represent 
parameters in I, J, respectively. Up to scaling and translation, we can regard u 
lying on [0, 1] without loss of generality.

(3.15)lim
�→0

�� − 1

�
�(t) = �(t) log �,

(3.16)�(t) =

{
�0�

t if � ≠ 1,

�0 if � = 1.

(3.17)𝜌(t) = 𝜌0𝜈
t = 𝜌0𝜇

t log𝜇 𝜈 =

(
𝜌
log𝜈 𝜇

0

log𝜇

ṡ0
s(t) + 𝜌

log𝜈 𝜇

0

) 1

log𝜈 𝜇

.

(3.18)�(�J(t)) = FJ�(t), ∀t ∈ I.
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(4)	 The affine map FJ acts on the gradient z(t) ∶= dy

dx
(t) =

dy(t)∕dt

dx(t)∕dt
 by injective Möbius 

transformation

 where we assume detAJ ≠ 0 . If �(s) is not a line, there exists a point such that 

 does not vanish. Thus z is locally injective by the inverse function theorem, 
and should be so in the whole I by the HSA. In particular, if a curve has a non-
trivial winding index (like LACs) for which �(s) = arctan z(s) is not injective, 
then it no longer possesses the HSA.

We now establish the following theorem.

Theorem 3.10  A curve possesses the Harada self-affinity if and only if it is either a 
line or a parabola.

Fig. 4 shows the HSA of lines and parabolas. In the figure, each subcurve is the 
image of the affine map defined by the bounding parallelograms. The bounding par-
allelogram of y = x2 , a ≤ x ≤ b is spanned by b − a + 2

√
−1 ab and 

√
−1 (a + b)2.

In order to prepare for the proof, we consider the following setting for a techni-
cal reason. We first separate the interval into two subintervals and observe equi-
libria for the affine transformation FJ associated with subinterval J.

Definition 3.11  Let �(u) ∶ [0, 1] → ℂ possess HSA. For any fixed p ∈ I , let 
Ǐ ∶= [0, p] ⊂ I and denote by 𝜎̌, 𝜏, F̌, Ǎ, b̌ the corresponding ones sǏ , tǏ ,FǏ ,AǏ , bIp , 
respectively. We define Î ∶= [p, 1] and 𝜎̂, 𝜏, F̂, Â, b̂ in the same way.

(3.19)MAJ
(z) =

a + bz

c + dz
, AJ =

(
a b

c d

)
,

(3.20)z� =
x�y�� − x��y�

x�2
=

�

x�2

Fig. 4   the Harada self-affinity
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We note that an arbitrary subinterval J = [a, b] is represented by

where a� = �−1
[0,b]

(a) . We can deal with the HSA by considering the above setting 
without loss of generality.

By definition (3.18), we have

Substituting t = 0, 1 into (3.22) and (3.23) respectively, we have

which gives

Lemma 3.12  The following hold.

Proof  (3.28) follows by subtracting (3.27) from (3.26). We obtain (3.29) by add-
ing (3.26) to (3.27). (3.30) and (3.31) follow from (3.24), (3.26) and (3.25), (3.27), 
respectively. 	�  ◻

Corollary 3.13  If −�(0) = �(1) = 1 ∈ ℝ , the following hold. 

(1)	 (Ǎ − Â) ⋅ 1 = 𝛾(p) = b̌ + b̂

(2)	 (Ǎ + Â) ⋅ 1 = 1

(3.21)�[0,b]◦�[a�,1]([0, 1]) = [a, b],

(3.22)𝛾(𝜎̌(t)) = Ǎ𝛾(t) + b̌, 𝜎̌(0) = 0, 𝜎̌(1) = p,

(3.23)𝛾(𝜎̂(t)) = Â𝛾(t) + b̂, 𝜎̂(0) = p, 𝜎̂(1) = 1.

(3.24)𝛾(0) = Ǎ𝛾(0) + b̌, 𝛾(p) = Ǎ𝛾(1) + b̌,

(3.25)𝛾(p) = Â𝛾(0) + b̂, 𝛾(1) = Â𝛾(1) + b̂,

(3.26)𝛾(p) − 𝛾(0) = Ǎ(𝛾(1) − 𝛾(0)),

(3.27)𝛾(1) − 𝛾(p) = Â(𝛾(1) − 𝛾(0)).

(3.28)(Ǎ − Â)
𝛾(1) − 𝛾(0)

2
= 𝛾(p) +

𝛾(1) + 𝛾(0)

2
,

(3.29)(Ǎ + Â − I)
𝛾(1) − 𝛾(0)

2
= 0,

(3.30)Ǎ
𝛾(1) + 𝛾(0)

2
+ Â

𝛾(1) − 𝛾(0)

2
= −b̌,

(3.31)Ǎ
𝛾(1) − 𝛾(0)

2
+ Â

𝛾(1) + 𝛾(0)

2
= b̂.
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(3)	 b̌ = −Â ⋅ 1 =
1

2
(𝛾(p) − 1) , b̂ = Ǎ ⋅ 1 =

1

2
(𝛾(p) + 1)

Proof  Substituting �(1) − �(0) = 2 , �(1) + �(0) = 0 into Lemma 3.12, we get (1), 
(2), b̌ = −Â ⋅ 1 and b̂ = Ǎ ⋅ 1 . By (3.22) and (3.23), we have

This completes the proof. 	�  ◻

Differentiating (3.22) and (3.23) by t, we have

Proposition 3.14  If a curve �(u) ∶ [0, 1] → ℂ posseses the HSA and either � �(0) or 
� �(1) is parallel to �(1) − �(0) , � is a line segment whose image is [−1, 1].

Proof  We may assume that −�(0) = �(1) = 1 ∈ ℝ modulo Aff(ℂ) . If � �(1) is paral-
lel to �(1) − �(0) = 2 , one can denote � �(1) = v ∈ ℝ . Then, by substituting t = 1 and 
𝜎̌(1) = p to (3.34), we have

by Corollary 3.13. If 𝜕𝜎̌(t)
𝜕t

|||t=1 = 0 , then we have �(p) = −1.
Otherwise, taking gradients (the ratio of x- and y-coordinates) of both sides, we 

obtain

which implies

where �(p) = x +
√
−1 y = x(p) +

√
−1 y(p) and C is an arbitrary constant. Substi-

tuting p = 1 , we get C = 0 . Conversely, the line segment [−1, 1] obviously satisfies 
the assumption of the proposition. 	�  ◻

Hereafter we assume that −�(0) = �(1) = 1 , � �(1) =
√
−1 modulo Aff(ℂ) . By 

Corollary 3.13, we may define 𝛼̌(p), 𝛽(p), 𝛼̂(p), 𝛽(p) ∈ ℝ so that

(3.32)𝛾(p) + 1 = [𝛾(𝜎̌(t))]1
0
= [Ǎ𝛾(t) + b̌]1

0
= 2Ǎ ⋅ 1,

(3.33)1 − 𝛾(p) = [𝛾(𝜎̂(t))]1
0
= [Â𝛾(t) + b̂]1

0
= 2Â ⋅ 1.

(3.34)𝛾 �(𝜎̌(t))
𝜕𝜎̌(t)

𝜕t
= Ǎ𝛾 �(t),

(3.35)𝛾 �(𝜎̂(t))
𝜕𝜎̂(t)

𝜕t
= Â𝛾 �(t).

(3.36)𝛾 �(p)
𝜕𝜎̌(t)

𝜕t

|||t=1 = Ǎ𝛾 �(1) = Ǎv =
v

2
(1 + 𝛾(p))

(3.37)
dy

dx
(p) =

y(p)

x(p) + 1
,

(3.38)|y(p)| = C|x(p) + 1|,
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Taking gradients of each sides of (3.34) and (3.35), denoting z(t) = dy

dx
(t) , we have

Substituting t = 0, 1 , we have

In addition, we have

which implies 𝛼̂(p) = 0 by � �(1) =
√
−1.

Proof of Theorem 3.10  Suppose that � possesses the HSA and is not a line. Proposi-
tion 2.4 yields

Substituting t = 0, 1 into (3.46) and (3.47), we have

(3.39)Ǎ =

(
1

2
(1 + x(p)) 𝛼̌(p)
1

2
y(p) 𝛽(p)

)
, Â =

(
1

2
(1 − x(p)) 𝛼̂(p)

−
1

2
y(p) 𝛽(p)

)
.

(3.40)z(𝜎̌(t)) =
y(p)x�(t) + 2𝛽(p)y�(t)

(1 + x(p))x�(t) + 2𝛼̌(p)y�(t)
= MǍz(t),

(3.41)z(𝜎̂(t)) =
−y(p)x�(t) + 2𝛽(p)y�(t)

(1 − x(p))x�(t) + 2𝛼̂(p)y�(t)
= MÂz(t).

(3.42)z0 ∶= z(0) = MǍz(0) =
y(p) + 2𝛽(p)z0

1 + x(p) + 2𝛼̌(p)z0
,

(3.43)z(p) = MǍz(1) =
y(p)x�(0) + 2𝛽(p)y�(0)

(1 + x(p))x�(0) + 2𝛼̌(p)y�(0)
=

𝛽(p)

𝛼̌(p)
,

(3.44)z(p) = MÂz(0) =
−y(p) + 2𝛽(p)z0

1 − x(p) + 2𝛼̂(p)z0
.

(3.45)z(1) = MÂz(1) =
−y(p)x�(0) + 2𝛽(p)y�(0)

(1 − x(p))x�(0) + 2𝛼̂(p)y�(0)
=

𝛽(p)

𝛼̂(p)
,

(3.46)𝜅𝛾 (𝜎̌(t)) =
detǍ

|Ǎ𝛾 �(t)|3 𝜅𝛾 (t),

(3.47)𝜅𝛾 (𝜎̂(t)) =
detÂ

|Â𝛾 �(t)|3 𝜅𝛾 (t).

(3.48)𝜅𝛾 (0) =
detǍ

|Ǎ𝛾 �(0)|3 𝜅𝛾 (0),
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Here we have used 𝛼̂(p) = 0 . First, we show that none of the following occurs: 

(1)	 Ǎ ∉ GL(2,ℝ) for any p ∈ I.
(2)	 Â ∉ GL(2,ℝ) (equivalently 𝛽(p) = 0 or x(p) = 1 ) for any p ∈ I.
(3)	 �� (0) = 0.
(4)	 �� (1) = 0.

We show that any of the above implies that � is a line segment, which contradicts the 
assumption.

It follows from (1) that z(p) = 𝛽(p)∕𝛼̌(p) = y(p)∕(x(p) + 1) , and the discussion in 
the proof of Proposition 3.14 works. If (2) holds, then (3.35) at t = 1 implies that 
� �(p) = 0 for any p. If (3) ((4), respectively) holds, then (3.50) ((3.49), respectively) 
implies that �� (p) = 0 unless (1) ((2), respectively).

Next, it follows from (3.51) and �� (1) ≠ 0 that

which yields

Note that we used the fact that sign(𝛽(p)) equals to sign(1 − x(p)) which follows 
from (3.52). Compared with (3.44), if x(p) ≠ 1 we have

or

Solving (3.55) by a standard technique, we obtain

(3.49)𝜅𝛾 (p) =
detǍ

�Ǎ𝛾 �(1)�3 𝜅𝛾 (1) =
𝛽(p)(1 + x(p)) − 𝛼̌(p)y(p)

2�𝛼̌(p) +
√
−1 𝛽(p)�3

𝜅(1),

(3.50)𝜅𝛾 (p) =
detÂ

|Â𝛾 �(0)|3 𝜅𝛾 (0),

(3.51)𝜅𝛾 (1) =
detÂ

|Â𝛾 �(1)|3 𝜅𝛾 (1) =
𝛽(p)(1 − x(p))

2|𝛽(p)|3 𝜅(1).

(3.52)
detÂ

|Â𝛾 �(1)|3 =
𝛽(p)(1 − x(p))

2|𝛽(p)|3 = 1,

(3.53)𝛽(p) = 𝛽(x(p)) ∶=

⎧⎪⎨⎪⎩

−

�
1

2
(x(p) − 1) if x(p) > 1,�

1

2
(1 − x(p)) if x(p) ≤ 1.

(3.54)z(p) =
−y(p) + 2z0𝛽(p)

1 − x(p)
,

(3.55)
dy

dx
+

y

1 − x
=

2z0�(x)

1 − x
.
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where C+,C− are arbitrary constants. Figure 5 shows the graph of (3.56).
We remark that these two parabolas arise from (3.53) separately, and so that each 

parabola possesses the HSA independently. The combined curve does not possess 
the HSA. For any isolated p with x(p) = 1 , we have �(p) = (1, 0) by taking limits of 
(3.56) as x → 1.

Thus a curve with the HSA should be either a line or the parabola up to affine 
deformations.

Conversely, the parabola P(t) = (t, t2) (0 ≤ t ≤ 1) posseses the HSA. In fact, for 
any 0 ≤ t0 ≤ t1 ≤ 1 , consider

Then, � = �(t) runs monotonously through [t0, t1] . The trivial formula

yields that the curve P[t0,t1]
(�) = (�, �2), � ∈ [t0, t1] is a subcurve of P(t) and an aff-

ine deformation of P(t). Thus the parabola P possesses the HSA.
The description of parabolas as quadratic curves [22] shows that an arbitrary 

parabola is an affine deformation of the parabola P, so that it possesses the HSA by 
Remark 3.9. The claim for lines is obvious. This completes the proof. 	�  ◻

(3.56)y(x) =

�
−2

√
2z0

√
x − 1 + C+(x − 1) if x(p) > 1,

2
√
2z0

√
1 − x + C−(1 − x) if x(p) < 1,

(3.57)�(t) ∶= (t1 − t0)t + t0, t ∈ [t0, t1].

(3.58)
(
�

�2

)
=

(
t1 − t0 0

2t0(t1 − t0) (t1 − t0)
2

)(
t

t2

)
+

(
t0
t2
0

)

Fig. 5   the parabolas obtained from the HSA
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4 � Extendable self‑affinity

The result in Sect. 3.2 may suggest that the other quadratic curves are characterized 
by some sort of self-affinity. We will discuss this point in the following. We first 
introduce a new self-affinity that generalizes the MSA and the HSA.

Definition 4.1  A curve �(s) ∶ [0, sall] → ℂ possesses the extendable self-affinity (the 
ESA) with respect to a reparametrization t = t(s) and a Lie group G if there exists a 
supercurve 𝛾̃(s) ∶ [0, s̃all] → ℂ of � and a differentiable map F� ∶ ℝ → G such that 
for any t, � with t, t + 𝜀 ∈ t([0, s̃all]),

The MSA 3.4 can be regarded as the ESA with respect to the group of transition 
maps between the original curve and the curve whose curvature and line element are 
deformed by (�(t), ds(t)) ↦ (a�(t), b ds(t)) , a, b > 0 . In fact, the transition map is 
given by the collection of homeomorphisms on ℂ of the form p ↦ �a,b

(
b�−1

1,1
(p)

)
 , 

where

It is expected that the collection of �a,b plays a role of G in the definition of the ESA, 
but to clarify the structure of Lie group is yet to be done.

The HSA (3.18) is the ESA with respect to a subgroup in Aff(ℂ) . In the latter 
part of the proof of Theorem 3.10, the fact that the parabola segment P[t0,t1]

(�) is 
an affine deformation of the parabola P(t) is true not only for 0 ≤ t0 < t1 ≤ 1 but for 
arbitrary t0 < t1 . In other words, we can define a unique extension of P(t), t ∈ [0, 1] 
under the HSA.

Next, as a generalization of the HSA, we prove that the ESA characterizes the 
constant curvature curves in the equiaffine geometry [17]. We say that a reparametri-
zation t of a curve is equiaffine parameterization if det(�t, �tt) = 1.

We introduce the equiaffine frame ΦSA ∶= (�t, �tt) ∈ SL(2,ℝ) of an equiaffine 
parametrized curve �(t) . The fundamental theorem of curves in equiaffine geom-
etry [17] states that for a given smooth function �SA(t) ∶ I → ℝ , the equiaffine 
Frenet formula

has a unique solution �(t) ∶ I → ℂ up to the equiaffine transformation group 
GSA ∶= {z ↦ Az + b ∣ A ∈ SL(2,ℝ), b ∈ ℂ}.

Theorem 4.2  A curve possesses the ESA with respect to the equiaffine parameteriza-
tion and the equiaffine transformation group GSA if and only if it is either a parab-
ola, an ellipse, or a hyperbola.

(4.1)𝛾̃(t + 𝜀) = F𝜀𝛾̃(t).

(4.2)�a,b(s) = ∫
s

b

0

exp

�√
−1 ∫

s

b

0

a�
�
s

b

�
ds

�
ds ∶ [0, bsall] → ℂ.

(4.3)ΦSA
t

= ΦSA

(
0 −�SA

1 0

)
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Proof  Let a curve � possess the ESA with respect to GSA . Then, there exists a repara-
metrization t and F� ∶ ℝ → GSA such that for any t, �,

Differentiating by t, we have

Taking �-differentials at � = 0 , we have the following:

which implies that

where F =
d

d�
F� ∣�=0 . Compared with (4.3), we have

Differentiating by t and applying (4.9) yields

from which we obtain

By the assumption of equiaffine parameterization t that Φ is regular, we conclude 
that the equiaffine curvature �SA is constant. By solving (4.3) for constant �SA , we 
see that �(t) is either a parabola ( �SA = 0 ), an ellipse ( 𝜅SA > 0 ), or a hyperbola 
( 𝜅SA < 0).

Conversely, it follows from the addition theorem that

(4.4)�(t + �) = F��(t).

(4.5)�t(t + �) = F��t(t),

(4.6)�tt(t + �) = F��tt(t).

(4.7)lim
�→0

(
�t(t + �) − �t(t)

�
,
�tt(t + �) − �tt(t)

�

)
= lim

�→0

F� − I

�
ΦSA(t),

(4.8)ΦSA
t

= FΦSA,

(4.9)Φt = Φ

(
0 −�SA

1 0

)
= FΦ

(4.10)Φ

(
0 −�SA

t

0 0

)
+ FΦ

(
0 −�SA

1 0

)
= FΦ

(
0 −�SA

1 0

)
,

(4.11)Φ

(
0 −�SA

t

0 0

)
= 0.

(4.12)
(
A cos(t + �)

B sin(t + �)

)
=

(
cos � −

A

B
sin �

B

A
sin � cos �

)(
A cos t

B sin t

)
,

(4.13)
(
A cosh(t + �)

B sinh(t + �)

)
=

(
cosh �

A

B
sinh �

B

A
sinh � cosh �

)(
A cosh t

B sinh t

)
,
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which implies the ESA of ellipses and hyperbolas, respectively. Together with Theo-
rem 3.10, the above completes the proof. 	�  ◻

We note that Theorem 3.7 in the case � = 1 implies that the ESA characterizes 
logarithmic spirals. They are the constant curvature curves in the similarity geom-
etry [15, 16]. Therefore, the results in this paper may be summarized as follows: the 
constant curvature curves in similarity geometry and equiaffine geometry are cap-
tured by the common self-affinity as shown in Table 1.

5 � Concluding remarks

In this paper, we have given rigorous definitions of the HSA and the MSA for pla-
nar curves, which have been proposed as properties to characterize curves that car 
designers regard as aesthetic. Then, we have proved that

•	 a curve with the MSA is either a line, a circle, or a LAC,
•	 a curve with the HSA is either a line or a parabola,
•	 a curve with the ESA in equiaffine geometry is either a parabola, an ellipse, or a 

hyperbola.

With the notion of the ESA, the first two results intersect by one statement that 
a curve with the ESA in similarity geometry or equiaffine geometry has constant 
curvature.

We intend to find a generalization of LACs to spatial curves and surfaces that 
reflects several properties of planar LACs. In addition to the MSA, LACs are known 
to have two other characterizations related to geometric shape generation. It is 
shown in [15, 16] that LACs are formulated by a variational principle and an inte-
grable evolution in similarity geometry. Though there are other generalizations of 
the MSA to spatial curves [23] and surfaces [24], relations to the above characteriza-
tions are yet to be discussed.

The observation in this paper may imply that an alternate class of “aesthetic” 
curves different from LACs can be captured in equiaffine geometry via self-affinity. 
We aim to give further investigations in the forthcoming paper.

Table 1   charactrization of constant curvature curves in similarity geometry and equiaffine geometry by 
self-affinities: the MSA and the HSA are included in the ESA
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