SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

Efficient Multi-View Clustering via Greedy
Automatic View Selection and Diverse Feature
Integration

Jyoti Mankar

Department of Computer Engineering, K. K. Wagh Institute of Engineering Education and Research
Panchavati

Snehal Kamalapur
Department of Computer Engineering, K. K. Wagh Institute of Engineering Education and Research

Panchavati

https://doi.org/10.5109/7388866

HARIESR : Evergreen. 12 (3), pp.1802-1826, 2025-09. HINKZEST ) —VF o /O —HEABEY
,9_

N—o30:

YEFIBI{% : Creative Commons Attribution 4.0 International

KYUSHU UNIVERSITY




EVERGREEN - Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 12, Issue 03, pp. 1802-1826, September, 2025

Efficient Multi-View Clustering via Greedy Automatic View

Selection and Diverse Feature Integration

Jyoti Mankar"*, Snehal Kamalapur!

"Department of Computer Engineering, K. K. Wagh Institute of Engineering Education and
Research Panchavati, Nashik-422003, Maharashtra, India

* Author to whom correspondence should be addressed:
E-mail: jrmankar@kkwagh.edu.in

(Received May 30, 2025; Revised September 01, 2025; Accepted September 04, 2025)

Abstract: Multi-view clustering leverages complementary information from multiple feature
representations, yet its success relies on selecting optimal feature combinations and clustering
algorithms. We propose a Greedy Automatic View Selection (GAVS) algorithm to identify the
most informative subset of feature views that maximize clustering performance. GAVS iteratively
adds feature views based on their contribution to clustering quality, measured by normalized
mutual information (NMI). We evaluate GAVS on Coil20, UCI Digits, Movies, and Caltech 7
datasets using Spectral, Agglomerative, and Affinity Propagation clustering with diverse features
(GIST, LBP, HOG, CENTRIST). Results show optimal combinations vary across datasets, with
GAVS achieving peak NMIs of 1.000 (Coil20), 0.9351 (UCI Digits), 0.6937 (Movies), and
0.9806 (Caltech 7). This adaptive strategy offers practical guidance for improving clustering

accuracy in real-world applications.

Keywords: Benchmark Datasets; Clustering Algorithms; feature extractions; Multiview

clustering

1. Introduction

Clustering is a fundamental unsupervised machine
learning technique widely used in various domains to
group similar data points based on their inherent
characteristics. Traditional clustering methods, such as K-
means, hierarchical clustering, and Gaussian Mixture
Models (GMM), operate under the assumption that data
can be represented using a single feature space. However,
in real-world scenarios, data is often inherently multi-
faceted, containing information from multiple perspectives
or "views." For example, in image analysis, an object can
be described using different feature sets such as shape,
texture, and color, each providing distinct but
complementary information. Similarly, in text mining,
documents can be represented by different features,
including term frequency, topic distributions, and word
embeddings". Multiview clustering (MVC) aims to
integrate multiple feature representations into the
clustering process, leading to improved clustering
accuracy and robustness?. The multi-view clustering
problem as shown in Figure 1, involves grouping
geometric shapes (circles, hexagons, squares, rectangles,
and pentagons) based on different views or representations
of the same shape. Each shape may appear in different
styles, such as variations in color, size, orientation, or

boundary styles, representing multiple views of the same
underlying category. The goal of multi-view clustering is
to leverage these diverse representations to improve
clustering performance by integrating information from
multiple perspectives. Instead of clustering based on a
single feature space, this approach combines multiple
feature sets to achieve more accurate and robust clustering
results.

(b)
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Fig. 1: Multiview clustering problem

Multi-view clustering is an advanced technique in
unsupervised learning that aims to group data points by
leveraging  multiple  feature  representations  or
perspectives. In the given implementation, geometric
shapes serve as a visual metaphor for multi-view
clustering, where each subplot represents a different
clustering approach: shape-based, color-based, line-style-
based, size-based, and hybrid clustering. These
perspectives reflect how different features contribute to
grouping patterns, similar to real-world scenarios where
diverse data sources (e.g., textual, visual, or numerical)
provide complementary information for clustering. By
simultaneously analyzing multiple clustering solutions
within a single framework, multi-view clustering enhances
robustness, mitigates biases from individual views, and
improves overall cluster quality. This visualization
highlights how different clustering criteria lead to varied
structures, emphasizing the importance of considering
multiple perspectives in unsupervised learning tasks,
especially in applications like bioinformatics, social
network analysis, and computer vision. Multiview
clustering has gained significant attention in recent years
due to its ability to leverage complementary information
from different data perspectives. By integrating multiple
views, multiview clustering can better capture the
underlying data distribution, enhance clustering stability,
and provide more interpretable results. Various approaches
have been developed for multiview clustering, including
co-training-based methods, subspace learning methods,
and deep learning-based techniques®. Co-training methods
iteratively update cluster assignments by training on
separate views and enforcing consistency across them.
Subspace learning methods attempt to find a shared latent
space where the clustering structure is more evident. Deep
learning-based methods use neural networks to learn view-
specific representations while enforcing cross-view
consistency?. Despite these advancements, multiview
clustering still faces significant challenges that limit its
practical application. Issues such as view heterogeneity,
inconsistencies in feature alignment, computational
scalability, and missing views pose obstacles to achieving
robust and interpretable clustering outcomes®. This paper
aims to systematically explore these challenges, review
state-of-the-art solutions, and propose novel approaches to

improve the efficiency, effectiveness, and applicability of
multiview clustering in real-world scenarios®. While
multiview clustering offers advantages over traditional
single-view clustering, it also introduces several
complexities that must be addressed to achieve optimal
performance. These challenges primarily stem from
variations in feature representation, inconsistencies
between views, computational demands, missing data, and
model interpretability. One of the fundamental challenges
in multiview clustering is the heterogeneity of data
representations across different views. In practical
applications, different feature spaces may have varying
distributions, scales, and dimensional structures, making it
difficult to integrate them effectively”. Some views may
contain redundant or noisy information, which can distort
the clustering structure and lead to suboptimal results.
Additionally, not all views contribute equally to clustering
performance, and determining the relative importance of
each view remains a complex problem. Addressing this
challenge requires the development of view-weighting
mechanisms or adaptive learning strategies that
dynamically adjust the importance of different views
during clustering®. Another major issue in multiview
clustering is ensuring consistency and alignment between
different views. While different views provide
complementary information, they may not always be
aligned due to variations in data collection methods,
feature extraction techniques, or domain-specific
differences. For example, in medical image analysis,
different imaging modalities such as MRI, CT scans, and
PET scans provide distinct perspectives on the same
anatomical structure, but discrepancies in resolution,
contrast, or orientation can create misalignment. Effective
clustering requires robust alignment techniques that can
map different feature spaces onto a common latent space
while preserving structural relationships within the data®.
Multiview clustering techniques often involve integrating
multiple  high-dimensional feature spaces, which
significantly increases computational complexity. Many
traditional clustering algorithms do not scale well in
multiview settings, especially when dealing with large
datasets in domains such as genomics, e-commerce, and
social network analysis. The increased dimensionality and
dependency on multiple feature spaces lead to greater
memory requirements and longer processing times. This
challenge necessitates the development of efficient
dimensionality = reduction, feature selection, and
optimization techniques that can handle large-scale
multiview  clustering  problems  with  reduced
computational overhead'?. In real-world scenarios, some
views may be missing or incomplete due to limitations in
data collection processes. For instance, in multimodal
sentiment analysis, text, audio, and video data may not
always be available simultaneously due to sensor failures,
recording limitations, or privacy concerns'". In such cases,
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standard multiview clustering methods struggle to
maintain performance when information from one or more
views is unavailable. Handling missing views effectively
requires the use of imputation techniques, generative
models, or graph-based methods that can estimate missing
data while maintaining clustering consistency'?. While
deep learning-based multiview clustering methods have
shown promising results, they often suffer from poor
interpretability. Many deep clustering models act as black
boxes, making it difficult to understand how different
views contribute to the final clustering decisions'®. This
lack of transparency limits their applicability in high-
stakes domains such as healthcare, finance, and
cybersecurity, where interpretability is critical for trust and
decision-making. Additionally, generalizing multiview
clustering models across different datasets and application
domains remains a challenge!¥. Many models are
optimized for specific data distributions and do not adapt
well to new datasets with varying feature spaces.
Developing explainable and generalizable multiview
clustering frameworks is essential for broader real-world
adoption'. The rapid advancements in machine learning,
clustering techniques, classification models, and material
property  optimization have led to significant
improvements across multiple scientific and engineering
domains. This literature review synthesizes recent studies,
covering spectral clustering, synthetic data balancing,
material property enhancements, and classification
techniques. Spectral clustering has gained traction as an
effective approach for high-dimensional data clustering.
Abhadiomhen et al. '» conducted a comparative analysis
of spectral clustering techniques, emphasizing their
robustness in handling complex datasets. Liu et al. '®
introduced a multiview spectral clustering method
leveraging a weighted tensor low-rank constraint, which
demonstrated improved clustering accuracy and reduced
computational costs. Xu et al. '” proposed a cooperative
manifold learning technique that integrates low-rank
representation, enhancing clustering stability and
precision. Additionally, Gao et al. '® developed a low-rank
correlation representation method, improving clustering
outcomes in unsupervised learning scenarios. Wang et al.
19 implemented a hybrid approach combining spectral
clustering with deep learning techniques, demonstrating
increased efficiency and adaptability in high-dimensional
spaces. Classification models play a crucial role in
predictive analytics. Traditional methods such as decision
trees and support vector machines (SVMs) have been
widely used for wvarious applications. However,
imbalanced datasets pose a challenge, often leading to
biased predictions. To address this issue, researchers have
explored synthetic data balancing techniques. Wang et al.
20 evaluated the impact of synthetic minority oversampling
techniques (SMOTE) and NearMiss strategies,
demonstrating their effectiveness in improving model

robustness. Further, Tran et al. 2V applied reinforcement
learning to optimize data resampling methods, achieving
improved model generalization. Recent studies also
highlight the effectiveness of hybrid balancing techniques,
where machine learning and statistical methods are
combined for better performance ?? Despite the significant
advancements in multiview clustering, there remain
several critical gaps that hinder its full potential and
practical implementation in real-world applications. One
of the main challenges is the heterogeneity of data
representations across different views. While existing
methods aim to integrate multiple views, variations in the
data distribution, scale, and dimensional structure across
views often create difficulties in achieving seamless
integration?® There is a need for more robust techniques
that can effectively handle such heterogeneity, ensuring
consistent performance across diverse datasets.

In the era of high-dimensional data, objects are often
represented through multiple heterogeneous feature views
that capture different aspects of the same entity. Multi-
view clustering has emerged as a promising technique to
exploit this diversity and improve clustering accuracy.
However, a major challenge lies in determining which
combination of feature views contributes most effectively
to the clustering outcome. The inclusion of redundant or
irrelevant views can degrade clustering performance,
increase computational complexity, and obscure
meaningful patterns. Furthermore, the effectiveness of a
clustering algorithm can vary significantly depending on
the dataset characteristics and the selected feature views.
Despite advancements in multi-view clustering, there is a
lack of systematic methods for selecting the most
informative subset of views that ensure optimal clustering
performance across different datasets. This study
addresses this critical gap by introducing a Greedy
Automatic View Selection (GAVS) algorithm to
iteratively identify and combine feature views that
contribute most significantly to clustering quality.

2. Methodology

This study employs a robust multi-view clustering
methodology, utilizing benchmark datasets to evaluate
clustering  performance across multiple feature
representations. The process involves data preprocessing,
dimensionality reduction, feature fusion, clustering, and
evaluation using a variety of statistical and machine
learning techniques. The selected datasets for this study
include COIL-20, Caltech-7 (Dollar Bill, Faces, Garfield
(Cartoon Cat), Motorbike, Snoopy (Cartoon Dog), Stop
Sign, Windsor Chair), UCI Digit, and Movies dataset.
These datasets provide diverse challenges, including
variations in image features, text attributes, and categorical
data, making them ideal for benchmarking multi-view
clustering techniques.
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COIL-20 Dataset: The Columbia Object Image Library
(COIL-20) consists of grayscale images of 20 different
objects captured from various angles (0° to 360°) at 5°
intervals, totaling 1,440 images. The dataset is commonly
used in image clustering tasks where multiple views
correspond to different angles of the same object®.
Caltech-7 Dataset: This dataset is a subset of the larger
Caltech-101 dataset, containing images from seven
categories. Each image is represented using multiple
feature descriptors such as Gabor filters, wavelet moments,
and histogram-based representations, providing a strong
test case for multi-view learning.

UCI Digit Dataset: This dataset comprises handwritten
digits from 0 to 9, extracted from different sources such as
postal mail and bank checks. It provides multiple feature
representations, including pixel intensities, gradient-based
features, and contour descriptors.

Movies Dataset: The Movies dataset consists of multiple
views, including metadata (genre, director, cast), text
reviews, and ratings. It is used to assess how well multi-
view clustering techniques handle categorical and textual
data alongside numerical features. The proposed
methodology as shown in Figure 2a and 9 feature
extractions are shown in Figure 2b, for multi-view
clustering involves several stages, including data
preprocessing, dimensionality reduction, feature fusion,
clustering, and evaluation. The proposed methodology
presents a novel and efficient approach to multi-view
clustering by integrating a diverse set of nine feature
extraction techniques, multiple clustering algorithms, and
a unique Greedy Automatic View Selection (GAVS)
strategy. This framework is designed to address the
challenges of heterogeneity and redundancy in multi-view
datasets by selecting the most informative feature subsets
in a time-efficient manner. Traditional multi-view
clustering methods often require manual selection or
exhaustive evaluation of all possible view combinations,
which becomes computationally intensive and impractical
for high-dimensional data. In contrast, our GAVS
algorithm adopts a greedy approach that incrementally
identifies the most impactful views based on performance
gains, thereby significantly reducing computational
complexity without compromising clustering accuracy.
The novelty of this methodology lies in its comprehensive
feature representation strategy. By employing nine distinct
feature extraction methods—including both linear (PCA,
LDA, Karhunen-Loéve Transform) and nonlinear
(Isomap, NPE) techniques, along with statistical and
morphological descriptors (HOG, Zernike Moments, Pixel
Averages, and morphological features)—the model
captures complementary aspects of the data. This multi-
perspective  view enhances the robustness and
discriminative power of the clustering process, allowing
the algorithm to uncover deeper patterns within complex
datasets. To evaluate clustering performance, we use a

suite of metrics, including Adjusted Rand Index (ARI),
Fowlkes-Mallows Index (FMI), Purity, Silhouette Score,
and Normalized Mutual Information (NMI). Among these,
NMI is selected as the primary evaluation criterion for the
GAVS process because of its ability to measure the amount
of shared information between predicted clusters and
ground truth labels in a normalized and unbiased manner.
Unlike ARI or FMI, which may be sensitive to the number
of clusters or data imbalance, NMI provides a more stable
and reliable measure across different datasets and
clustering scenarios. Its bounded range [0, 1] and
symmetry make it particularly suitable for view selection,
ensuring consistent assessment of clustering quality at
each step of the greedy selection process. Overall, this
methodology offers a best-in-class balance between
accuracy and efficiency. The GAVS mechanism
eliminates the need to test all combinations of feature
views, while the inclusion of varied feature descriptors
ensures that important structural, statistical, and visual
information is preserved. The combination of intelligent
view selection, diverse feature fusion, and robust
clustering evaluation makes this approach not only novel
but also significantly more time-saving and scalable for
real-world multi-view clustering applications.

Feature Extractions using
PCA, Tsomap, Karhunen-
Loéve Representation ,
Pixel Averages Zernike
Moments , Morphological
Features HOG, LDA, NPE

Benchmark Datasets
(co1120, UCI Digits.
Movies, Caltech7)

Data Pre-processing

Multiview Clustering using

; Noval GAVS
Spsf;a;‘:g?tiﬁ.m Algorithm for best —>| Evaluation of MVC
Agglomerative Clustering | feature set
Results and = Conclusion
Visnalization ' ‘
(a) Methodology

(b) Feature Extractions using PCA, Isomap, Karhunen-Loeve
Representation ,Pixel Averages ,Zernike Moments ,
Morphological Features ,HOG, LDA, NPE
Fig. 2: (a) Methodology and (b) Feature extraction using 9
different methods
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2.1. Mathematical Model

Let,

X={X1, Xa,..., Xm} be the dataset with N samples and M
views.

Each view X,,eRV*4m represents a different feature
extraction method.

The goal is to find an optimal clustering assignment C such
that intra-cluster similarity is maximized and inter-cluster
similarity is minimized.

Step 1: Feature Transformation for Multiview Data
Each view X, undergoes a transformation:

Zn=fn(Xm), m€{1,2,....M}

where fn, represents transformations such as PCA, ICA,
Isomap, NMF, LDA, Random Projection, and HOG.

2.1.1. Algorithm: Multiview Clustering Using Greedy Aut
Spectral/Hierarchical/Affinity Propagation

Input:
Multiview dataset X = {X,, X,,
Feature transformation methods:

Z={Z1,Z2,....2m}, Zp,€RN*dm

Step 2: Feature Fusion

To form a combined feature
concatenate selected views:

2= Zm1, Zongs.s 2ok, ZERNxdx Z*eRN*"
where d* = ¥¥, d,,; is the total dimensionality of the
combined views.

Step 3: Affinity Matrix Construction

For Spectral Clustering and Hierarchical Clustering, an
affinity matrix A is computed®?:

|2

)
Where, o is a scaling parameter.
Step 4: Clustering Formulation

representation, we

*foz
J
2

Ajj =exp (—

=
g

omatic View Selection and

.y Xm} with N samples and M views
{PCA, ICA, Isomap, NMF,

LDA, GRP, HOG,NPE}

Clustering method: {Spectral Clustering, Affinity Propagation, Hierarchical

Clustering}

Number of clusters k (only for methods that
Output:

Clustering assignment C

require 1it)

Evaluation scores: {ARI, NMI, FMI, Silhouette, Homogeneity, Completeness, V-

Measure, Purity}

Step 1: Feature Extraction

For each view X, € R"*dm:
a. Apply appropriate transformation:

PCA > Fourier Coefficients, Karhunen-Loéve
ICA > Zernike Moments

Isomap » Profile Correlations

NMF >
LDA

Pixel Averages

LDA Features

GRP > Morphological Features

HOG HOG Features

NPE> NPE Features

Store transformed features as Z, =

>
>
>

Step 2: Feature Fusion

Select a subset of views (e.g., {Z,, Z,,
Concatenate the views:

Zx = [Zmis Zmas <y Zmk] € R" 9%

Y dni is the total fused feature
Step 3: Similarity Matrix Construction

Compute pairwise similarities:

For Spectral/Hierarchical Clustering:
Ais = exp(-||Zix - Zj‘kH2 / o2)

For Affinity Propagation:

S, k) = —||Zs* - Zyx||?

Step 4: Clustering

Apply the chosen clustering algorithm:

where dx

fm(Xm), forming Z =

{2y, Z2y ooy Zm}

) Zk})

dimension
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Spectral Clustering:

a. Construct Laplacian matrix L = D - A

b. Compute eigenvectors of L corresponding to k smallest eigenvalues

c. Apply k-means on eigenvector space

Affinity Propagation:

a. Initialize responsibility R and availability A matrices

b. Iteratively update:

R(i,k) = S(i,k) - max,'#zk {A(i,k') + S(i,k")}

A(i,k) = min(®, R(k,k) + y_{i'#i,k} max(0, R(i',k)))

c. Select exemplars and assign cluster labels

Hierarchical Clustering:

a. Compute distance matrix Dij = ||Zix — Zjx*||

b. Apply linkage method (average, complete, or single)

c. Cut dendrogram to obtain k clusters

Step 5: Evaluation

Compute clustering evaluation metrics:

Adjusted Rand Index (ARI)

Normalized Mutual Information (NMI)

Fowlkes-Mallows Index (FMI)

Silhouette Score

Homogeneity, Completeness, V-Measure

Purity Score

Step 6: Greedy Feature Combination Search (Detailed)

Initialization:

Start by evaluating each 1individual view's transformed features separately.

For each view, apply the clustering algorithm and calculate the evaluation metric
NMI

Identify the single view with the highest NMI score. This view becomes the first
selected feature set.

Initialize the current best fused feature matrix as the features from this selected
view.

Keep track of the selected views in a list (e.g., selected views = [best single view]) .
Iterative Addition of Views:

For the remaining views that are not yet selected, do the following:

a. Temporarily concatenate the features of one candidate view to the currently
selected fused features to form a new combined feature matrix.

b. Perform clustering on this new fused feature matrix.

c. Calculate the NMI (or chosen evaluation metric) for the clustering result.
d. Compare this NMI with the current best NMI score.

Decision on Adding a View:

If adding the candidate view results in an improvement in NMI by at least a
predefined threshold (for example, 0.01), then:

Update the selected views list to include this new view.

Update the current best fused feature matrix to include this view's features.
Update the current best NMI score to this new higher value.

Otherwise, discard the candidate view from consideration for this -dteration.
Repeat Until No Improvement:

Repeat the -iterative addition process by testing all remaining unselected views 1in
the same way.

Continue adding views one-by-one, only if they improve the NMI score beyond the
threshold.
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Stop the diteration when no remaining views can improve the NMI score by the
threshold.

Final Output:

The final selected subset of views and their fused features constitute the best
performing feature combination.

Proceed with clustering and evaluation using this final fused feature set.

Step 7: Visualization

Use t-SNE on Z* to project to 2D

Plot clustered data points for qualitative analysis

End of Algorithm

2.1.2. Algorithm: Greedy Automatic View Selection (GAVS) for Multi-View Clustering

Input:

V = {vl, v2, ..., vm}: A set of m feature views extracted from the data (e.g.,
PCA, HOG, ICA features). Each view vi is a matrix of shape n x di, where n is the
number of samples and di is the number of features in that view.

y: Ground-truth labels for the n samples (used only for evaluation).

€ > 0: A small positive threshold (e.g., 0.01) indicating the minimum improvement
in clustering performance needed to add a new view.

C: Clustering algorithm (e.g., Spectral Clustering) with fixed parameters.
Output:

S € V: A selected subset of views that gives the best clustering results.

FS: The final combined feature matrix formed by concatenating the views in S.

M: Evaluation metrics (such as NMI, ARI, or Purity) calculated from clustering FS.
Step 1: Initialization

Start with an empty selected view set:

Se¢0

Initialize the best clustering performance score:

q < 0%

For each view vi in V:

Perform clustering using algorithm C on vi

Evaluate clustering using NMI against ground-truth labels y

Identify the single view vb that gives the highest NMI score.

Update:

S ¢ {vb} (select the best performing view)

g ¢« NMI(vb)* (store its clustering score)

FS ¢ vb (initial combined feature matrix)

Step 2: Greedy Iterative Selection

Set R €« V \ S, the set of remaining views not yet selected.

Repeat the following steps until no significant improvement is observed:

a. For each view ve in R:

Concatenate the current features FS with vc horizontally to form F_candidate =
[FS | vc]

Perform clustering on F_candidate using algorithm C

Evaluate clustering with NMI against y, and store the score as qc

b. Find the view vx in R that gives the highest qc score

c. If gqgc - qx > € (i.e., improvement 1is significant):

Update selected views: S ¢« S U {v}x

Update best score: g ¢« qgc*
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Update combined features: FS « [FS | v]x*

Remove selected view from remaining views: R ¢« R | {v}x

d. Else:

Stop the diteration as no significant improvement can be achieved

Step 3: Output
Return:
S: The final set of selected views

FS: The fused feature matrix built by concatenating the selected views

M: Clustering evaluation metrics (e.g., NMI, ARI, Purity) calculated on FS

2.2. Spectral Clustering

Spectral clustering is a graph-based clustering method that
effectively identifies complex, non-linearly separable
structures in data. It begins by representing the dataset as
an undirected weighted graph, where each data point is a
node, and the edges between nodes capture similarity
based on a predefined function such as the Gaussian (RBF)
kernel or k-nearest neighbors. The similarity relationships
are stored in an adjacency matrix A, which is then used to
construct the graph Laplacian matrix L =D - A, where D
is the degree matrix containing the sum of edge weights for
each node. Alternatively, normalized Laplacians in eq. 1
can be used to improve numerical stability?

1 1

Lyym = Dz XLX D% (1)

The key idea in spectral clustering is to transform the data
into a new space using eigenvectors of the Laplacian
matrix. Specifically, the eigenvectors corresponding to the
smallest k eigenvalues provide an optimal lower-
dimensional embedding that preserves graph connectivity.
These eigenvectors form a new feature space where the
data is easier to separate. Once the data is projected into
this space, a standard clustering algorithm like K-means is
applied to group the data points into clusters. This
approach is particularly powerful in cases where
traditional clustering algorithms, such as K-means or
hierarchical clustering, struggle to handle complex
structures or non-convex clusters.

The clustering problem is formulated as solving the graph
Laplacian Eigen problem in eq.2:

L=D—4 2)

where D is the degree matrix with Di=);A; . The
eigenvectors of L corresponding to the smallest k
eigenvalues form the new feature space, which is clustered
using k-means.

2.3. Affinity Propagation

Affinity Propagation (AP) was introduced by Frey and
Dueck (2007) and is unique for its message-passing
approach to clustering. The algorithm works by

exchanging responsibility and availability messages
between data points, iteratively refining the -cluster
assignments. Unlike traditional clustering methods like k-
means, AP does not require the user to specify the number
of clusters in advance. Instead, it identifies exemplars
(central data points for clusters) based on the input
similarity matrix, making it a data-driven method.
Responsibility: Measures how well-suited a point is to be
the exemplar for another point.

Availability: Measures how well-suited a point is to be the
exemplar for all points in the cluster.

This foundation makes AP suitable for high-dimensional
data and data with arbitrary shapes.

The extension of Affinity Propagation to the multiview
setting aims to integrate the information from multiple
views during the clustering process. MVAP works by
constructing a joint similarity matrix derived from multiple
views, which is then used as the input for the Affinity
Propagation algorithm. The key idea is that the data in one
view might provide valuable information for clustering,
and the other views can further refine or confirm the
clustering structure®®.

The responsibility matrix R in eq.3 and availability matrix
A in eq.4 are iteratively updated:

R(i, k) = S(i, k)~ max{A(, k) + S(, k) 3)

A(i, k) = min (0, R(k, k) + Xyrwi . max(0, R’ k) )(4)

where S(i,k) is the similarity between points i and k.

2.4. Hierarchical Clustering

Hierarchical clustering is a powerful method in data
analysis for grouping objects into clusters based on their
similarities. It's especially useful when the goal is to
understand the structure of the data and visualize
relationships at different levels of granularity. Hierarchical
clustering creates a hierarchy (tree structure) of clusters by
either:

Agglomerative (bottom-up): Starting with each object as
its own cluster, and then progressively merging the most
similar clusters until there's only one cluster left.

Divisive (top-down): Starting with all objects in a single
cluster, then recursively splitting the clusters into smaller
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clusters based on dissimilarity?”.

A distance matrix D is computed in eq.5:
Dy=\\Z; =Z;|| (3)

A linkage function (e.g., single, complete, or average
linkage) is applied to form hierarchical clusters.

2.5. Feature Extraction

2.5.1. Fourier Coefficients (Using PCA)

Fourier analysis transforms an image into its frequency
domain representation. PCA is applied to reduce
dimensionality while preserving the most significant
variance?”.

Given an image I(x,y), the 2D Discrete Fourier Transform
(DFT) is in eq.6

Fluy)= XY TY=3 10, y) x e /27 (2 4+ 2 (6)

where j is the imaginary unit, and (u,v) are frequency
coordinates.
Compute the covariance matrix

=T (X — (X — )T (7)

Solve for eigenvalues and eigenvectors: ZV=AV

Select the top 32 eigenvectors, forming the principal
component space.
Principal Component Analysis (PCA) is applied to extract
the dominant frequency components from the images.
PCA reduces the dataset’s dimensionality while preserving
important variance, ensuring that only the most significant
information is retained. This transformation generates a
feature space containing 32 principal components, referred
to as the Fourier Coefficients view?®.

2.5.2. Profile Correlations (Using Isomap)

Isomap, a non-linear dimensionality reduction technique,
is used to capture geodesic distances between image
pixels. This helps preserve the intrinsic shape of objects.
The Isomap transformation results in a 32-dimensional
feature space, highlighting pixel correlations and structural
profiles. This is named the Profile Correlations view.
Isomap is a non-linear dimensionality reduction technique
that preserves geodesic distances?®”. Construct a weighted
graph where nodes represent images, and edge weights
represent Euclidean distances in the original feature
space.Compute shortest paths between all points using
Floyd-Warshall or Dijkstra’s algorithm. Perform
Multidimensional Scaling (MDS) to obtain low-
dimensional embeddings in eq.8:

= % JD?] (8)

where D? is the squared distance matrix, and J= I- % 117

centers the data.
The final representation is a 32-dimensional embedding of
the profile correlations.

2.5.3. Karhunen-Loéve Representation (Using PCA)

Another PCA transformation extracts the Karhunen-Lo¢ve
(KL) representation, an optimal basis for representing data
with maximum variance. Mathematically, it follows the
same eigen-decomposition approach as PCA, but applied
to a different initialization matrix.

2.5.4. Pixel Averages (Using NMF)

Non-Negative Matrix Factorization (NMF) is used to
obtain 32 non-negative basis components from the dataset.
Since NMF constrains all values to be positive, it is
particularly useful for extracting pixel intensity patterns
that emphasize dominant brightness distributions in the
images. This is referred to as the Pixel Averages view>?.
Non-Negative Matrix Factorization (NMF) decomposes a
non-negative data matrix XXX into two matrices: X~WH
Where:

W (basis matrix) contains spatial feature components.

H (coefficient matrix) represents pixel intensities.

NMF optimizes:

min|| X — WH [|>F

Subject to W, H>0

This results in a 32-dimensional Pixel Averages view.

2.5.5. Zernike Moments (Using ICA)

Independent Component Analysis (ICA) is employed to
separate statistically independent sources of variation
within the images. The resulting 32 independent
components represent Zernike moments, which are often
used for shape-based image recognition. This
transformation is named the Zernike Moments view?".
Independent Component Analysis (ICA) finds statistically
independent components by maximizing non-
Gaussianity®?.

Zernike Polynomials: Basis functions defined over a unit
disk in eq.9:

Z7(p,6) = R (p)e™ (%)
where R (p) is the radial polynomial.

ICA models images as a linear mixture of sources:

X=AS

where 4 is the mixing matrix and S represents independent
components. ICA estimates A1 to retrieve independent
sources. This leads to 32 Zernike Moments, useful for
shape-based recognition.
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2.5.6. Morphological Features (Using Random
Projection)

Gaussian Random Projection (GRP) is applied to map the
dataset into a lower-dimensional space (32D) while
maintaining distance-based relationships between images.
This transformation captures morphological variations
within the dataset, making it useful for structural analysis
of the objects. The extracted features form the
Morphological Features view3?.
Gaussian ~ Random  Projection  (GRP)
dimensionality while preserving distance metrics.
Projection Matrix3):
R~N(0,)
where R is a random matrix with entries sampled from a
normal distribution.

'=XR
The 32-dimensional output captures morphological
variations.

reduces

2.5.7. HOG (Histogram of Oriented Gradients)
Features

HOG descriptors are extracted using
skimage.feature.hog(). HOG is widely used in image
processing for capturing gradient orientations, which
highlight the edges and contours of objects. This
transformation generates a distinct HOG Features view,
which is particularly useful for recognizing shape
patterns®¥,

HOG captures object contours by computing gradient
orientations.

Gradient Computation:

Given an image I(x,y) the gradients are in eq.10 and
eq.11:

G=I(x+1y)—I(x—1y) (10)

G=I(xy+1)—I(x,y—1) (11)

Magnitude in eq.12 and orientation in eq.13

M= /G,% +G?2 (12)

0= tan1 2 (13)
Gx
Divide image into cells and compute histograms of
orientations.
HOG generates a feature vector capturing edge directions.

2.5.8. LDA Features (Using Linear Discriminant
Analysis)

Linear Discriminant Analysis (LDA) is performed to
extract 19 discriminative features that maximize class
separability. Since the dataset consists of 20 object classes,
the number of LDA components is set to one less than the

number of classes (19). This results in an LDA Features
view, which enhances the distinction between different
objects in the dataset.

LDA maximizes class separability

Scatter Matrices Within class scatter in eq. 14

Sw = X=1 Zaec(i — ue) (i — )" (14)
Between class scatter in eq.15

Sp = Va1 Ne(ue — W) (e — )" (15)
Eigen decomposition

Si1Sy,=Av (16)

The top 19 eigenvectors define the LDA subspace

2.5.9. NPE (Neighborhood Preserving Embedding)
Placeholder

A placeholder is added for Neighborhood Preserving
Embedding (NPE), a technique that preserves local
relationships ~ between data points. Since no
implementation is provided, this transformation currently
acts as an identity mapping, maintaining the original
dataset structure.

NPE preserves local structures in data.

Graph Construction:

Compute nearest neighbors and construct an adjacency
matrix.

Linear Approximation:

Solve:

X=WX

subject to W preserving local relationships.

Currently, NPE is just a placeholder.

Once the feature representations are generated, different
combinations of these views are explored for clustering
using Spectral Clustering. The goal is to identify an
optimal combination of views that improves clustering
performance. Several evaluation metrics, including
Adjusted Rand Index (ARI), Normalized Mutual
Information (NMI), Silhouette Score, and Purity Score, are
used to assess the quality of the clustering results. The
script systematically tests all possible combinations of
views, records their performance, and identifies the best-
performing feature set. Finally, the most effective
combination of views is visualized using t-SNE for
dimensionality reduction, allowing for a better
understanding of how well the clusters are formed. The
approach demonstrates how integrating multiple feature
representations can enhance clustering outcomes by
capturing diverse aspects of image data.
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2.6. Evaluation Metrics for Clustering
Performance

Since clustering is an unsupervised learning task,
evaluation metrics help assess how well the clustering
results align with the true class labels. Below are the key
metrics used in the code:

2.6.1. Adjusted Rand Index (ARI)

ARI measures the similarity between the predicted clusters
and the ground truth labels, adjusting for random chance.
It is a corrected version of the Rand Index (RI), which
evaluates the proportion of correctly grouped or separated
data points®?.

_ _ RI-E[R]]
ARI max(RI)—-E[RI]

where:

RI (Rand Index) is the fraction of point pairs correctly
clustered or separated. E[RI] is the expected RI under a
random clustering scenario.

2.6.2. Normalized Mutual Information (NMI)

NMI (eq. 17) measures the mutual dependence between
the predicted clusters and the actual labels using entropy.
It assesses how much information one set provides about
the other.

21(Y,C)

NMI= H(Y)+H(C)

(17)
where:

I(Y, C) is the mutual information between true labels Y
and predicted clusters C. H(Y) is the entropies of the true
and predicted cluster distributions.

2.6.3. Fowlkes-Mallows Index (FMI)

FMI (eq. 18) measures the similarity between true and
predicted clusters by computing the geometric mean of
precision and recall'?.

TP TP
TP+FP  TP+FN

FMI=

(18)

where:

TP (True Positive): Pairs of points correctly assigned to the
same cluster.

FP (False Positive): Pairs assigned to the same cluster but
actually belong to different classes.

FN (False Negative): Pairs assigned to different clusters
but actually belong to the same class.

2.6.4. Silhouette Score

Silhouette Score (eq.19) measures how similar an object is
to its own cluster compared to other clusters. It evaluates
the compactness and separation of clusters.

_ b-a
max(a,b)

(19

where:

a= Average intra-cluster distance (distance to other points
in the same cluster).

b= Average nearest-cluster distance (distance to the closest
different cluster).

2.6.5. Homogeneity Score

Homogeneity (eq.20) measures whether each cluster
contains only members of a single ground-truth class'¥.

_,_HICO)
H(Y)

(20)
where:

H(YIC)is the conditional entropy (uncertainty in class
labels given clusters).

H(Y) is the entropy of the true labels.

2.6.6. Completeness Score

Completeness measures (eq.21) whether all members of a
given class are assigned to the same cluster®?.

_;_ HECIY)
=I-30 (21)
where:

H(CIY) is the conditional entropy (uncertainty in clusters
given class labels).

H(C) is the entropy of the clustering distribution.

2.6.7. V-Measure Score

V-Measure (eq.22) is the harmonic mean of Homogeneity
and Completeness, balancing both aspects.

__ 2XHXC
V=T (22)
where:
H is Homogeneity.
C is Completeness.

2.6.8. Purity Score

Purity (eq.23) measures how many data points in each
cluster belong to the dominant class. It’s a simple measure
of cluster quality®>

Purity:% Yimax(n;;) (23)

where:

N is the total number of points.

ni,j is the number of data points in cluster iii belonging to
class j.

These metrics provide a comprehensive evaluation of
clustering performance by considering factors such as
cluster separation, class consistency, and the balance
between homogeneity and completeness.
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3. Results and Discussion
3.1. Coil 20 Dataset

The multi-view clustering experiment on the Coil20
dataset demonstrates that Agglomerative Clustering
outperforms all other methods, achieving perfect
clustering performance with an ARI, NMI, FMI,
Homogeneity, Completeness, V-Measure, and Purity of
1.0000 across all feature combinations. Although its
Silhouette Score varies, it remains relatively high,
indicating well-defined cluster compactness. The superior
performance of Agglomerative Clustering can be
attributed to its hierarchical approach, which effectively
captures the dataset’s intrinsic structure without requiring
prior knowledge of cluster numbers. In contrast, Spectral
Clustering performs well but remains feature-dependent,
with its best combination ('Karhunen-Loeve', 'Zernike
Moments', 'HOG") achieving an ARI 0of0.7731 and an NMI
of 0.8936, signifying strong but inferior agreement

Propagation struggles to match their performance,
displaying lower ARI and NMI scores despite achieving
perfect homogeneity (1.0000), suggesting well-separated
but incomplete clusters. Feature selection plays a crucial
role, with ('Pixel Averages', 'Zernike Moments', 'LDA")
and ('HOG', 'LDA") emerging as the best feature
combinations under Agglomerative Clustering. These
features effectively capture both local and global structural
information, enhancing cluster separability. Overall, the
findings confirm that Agglomerative Clustering is the most
effective approach for multi-view clustering in computer
vision and pattern recognition applications, offering high
accuracy, robustness, and interpretability. Figure 3 shows
comparative cluster formations obtained on the COIL-20
dataset using different multi-view feature combinations.
Figure 4 displays sample cluster-wise images highlighting
visual grouping consistency. The top 5 performing
combinations of feature representations based on
clustering accuracy metrics such as ARI, NMI, and Purity

compared to Agglomerative Clustering. Affinity are summarized in Table 1
Best Consensus Clustering on (Fourier Coefficients’. “Pixed Averages) Best Consensus Clustering on {'Pixel Averages’, "HOG". LDA') o Best Consensus Clustering on ('Pixel Averages', "LDA'}
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Fig. 3: Comparative clusters formations in Coil 20 Dataset
Table 1: Top 5 feature combinations of coil 20 dataset
Fowlk
Top 5 Adjuste | Normalize ovsv ¢
Clustering Combinati | d Rand d Mutual Silhouett | Homogenei | Completene V- .
. Mallow Purity
Method on out of Index | Informatio s Index e Score ty ss Measure
ARI MI
503 (ARI) n (NMI) (FMI)
('Karhunen-
Loeve',
'Pixel
, 0.7396 0.9021 0.7591 0.2174 0.8851 0.9198 0.9021 0.8493
Averages',
'LDA,
'NPE")
('Karhunen-
Loeve',
Spectral .
. 'Zernike 0.7731 0.8936 0.7860 0.2603 0.8852 0.9023 0.8936 | 0.8507
Clustering ,
Moments',
'HOG")
('Fourier
Coefficients
’ 0.7720 0.8931 0.7849 0.2834 0.8845 0.9018 0.8931 0.8500
'Karhunen-
Loeve',
'Zernike
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Moments')

('Karhunen-
Loeve', 0.7711 0.8923 0.7842 0.2607 0.8837 0.9012 0.8923 0.8493
'HOG")

('Fourier
Coefficients

[
s

'Karhunen-
Loeve', 0.7712 0.8912 0.7842 0.2220 0.8827 0.8999 0.8912 0.8493
'Zernike
Moments',
'HOG',
'NPE")

('Zernike
Moments',
'HOG',
'LDA")

0.6910 0.8325 0.7352 0.2180 1.0000 0.7131 0.8325 1.0000

('Pixel
Averages',
'HOG',
'LDA")

0.7229 0.8122 0.7606 0.2523 1.0000 0.6837 0.8122 1.0000

(HOG,

'LDA") 0.7079 0.8088 0.7485 0.2449 1.0000 0.6790 0.8088 1.0000

Affinity ('Pixel
Propagation | Averages',
'Zernike
Moments',
'HOG',
'LDA")

0.6607 0.7959 0.7113 0.1906 1.0000 0.6610 0.7959 1.0000

('Fourier
Coefficients
', "Pixel
Averages',
'HOG',
'LDA")

0.5577 0.7922 0.6155 0.3814 0.9303 0.6899 0.7922 | 0.9007

('Pixel
Averages', 1.0000 1.0000 1.0000 0.8618 1.0000 1.0000 1.0000 1.0000
'LDA")

('Zernike
Moments', 1.0000 1.0000 1.0000 0.7883 1.0000 1.0000 1.0000 1.0000
'LDA")

(HOG,

'LDA") 1.0000 1.0000 1.0000 0.4727 1.0000 1.0000 1.0000 1.0000

Agglomerati

ve Clustering (Pixel

Averages',
'Zernike 1.0000 1.0000 1.0000 0.7835 1.0000 1.0000 1.0000 1.0000
Moments',
'LDA")

('Pixel
Averages',
'HOG!,
'LDA")

1.0000 1.0000 1.0000 0.4720 1.0000 1.0000 1.0000 1.0000
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Fig. 4: Cluster wise images of coil 20 dataset

3.2. UCI Digits Dataset

The multi-view clustering experiment on the UCI Digits
Dataset indicates that Spectral Clustering achieves the best
overall performance, particularly with the feature
combination (‘HOG', 'LDA"), yielding an Adjusted Rand
Index (ARI) and Normalized Mutual Information (NMI)
0f0.9351, an FMI 0f 0.9415, and a Purity 0of 0.9699. These
results suggest a strong agreement with ground truth labels

and well-formed clusters. The Silhouette Score for this
combination is 0.3882, indicating reasonably compact
clusters. Other feature combinations, such as ('Pixel
Averages', 'LDA") and ('Pixel Averages', 'HOG', 'LDA"),
also perform well but slightly lag behind in ARI and NMI
scores.

Agglomerative Clustering closely follows Spectral
Clustering, with its best performance achieved using
('HOG', 'LDA"), yielding an ARI of 0.9161 and an NMI of
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0.9143. This method effectively captures hierarchical
relationships within the dataset but falls marginally short
of Spectral Clustering’s clustering accuracy. Among the
tested feature sets, ('Pixel Averages', 'LDA') and ('Pixel
Averages','HOG', 'LDA") also produce competitive results,
demonstrating the effectiveness of global and local feature
combinations. Affinity Propagation, however,
significantly underperforms, with its best ARI at 0.3044
and an NMI of 0.7018, indicating weaker alignment with
the ground truth. Although homogeneity remains high
(above 0.94), its lower completeness and V-measure
scores highlight issues in fully capturing the dataset's
inherent structure. Feature combinations involving Fourier
Coefficients and Karhunen-Loeve further degrade
performance, reinforcing the importance of robust feature
selection. Overall, Spectral Clustering emerges as the best
method, particularly when utilizing HOG and LDA

Best Consensus Clustering on ('HOG Features', 'LDA Features')
B

T

7

n
¥
"%
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S

P Mo ™ 4 . Zhe
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%? LS . 3 ‘t‘:

Best Consensus Clustering (Affinity Propagation) on {"HOG Features', "LDA Features’)

features, due to its ability to capture intrinsic patterns in
high-dimensional spaces through graph-based partitioning.
Agglomerative Clustering remains a strong alternative,
especially for datasets requiring hierarchical grouping,
while Affinity Propagation struggles due to its sensitivity
to input preferences and message-passing dynamics. These
findings suggest that Spectral Clustering with HOG and
LDA should be the preferred approach for digit recognition
tasks, where high clustering accuracy and feature
discrimination are essential. Figure 5 presents comparative
cluster formations on the UCI dataset using various multi-
view feature combinations. Figure 6 illustrates
representative images from each cluster, demonstrating the
effectiveness of visual separation. The top 5 feature
combinations yielding the best clustering performance are
detailed in Table 2, based on evaluation metrics such as
ARI, NMI, and Silhouette Score.

Best Consensus Clustering on ("HOG', 'LDA")
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Fig. 5: Comparative clusters formations in UCI Dataset

Table 2: Top 5 feature combinations of UCI dataset

(c)Agglomerative Clustering

Top 5 Adjuste | Normalize Fovss:lke
Clustering Combinati | d Rand | d Mutual Silhouett | Homogenei | Completene V- .
. Mallow Purity
Method on out of Index Informatio s Index e Score ty ss Measure
503 (ARD | n(NMD |y
(HOG!, 0.9351 0.9351 0.9415 0.3882 0.9351 0.9352 0.9351 0.9699
'LDA")
('Pixel
Averages', 0.9198 0.9238 0.9278 0.3373 0.9235 0.9241 0.9238 | 0.9622
'LDA")
('Pixel
Averages, | 9147 | 0.9224 09232 | 03330 | 0.9219 0.9228 0.9224 | 0.9594
Sprectral 'HOG',
Clustering 'LDA")
('Zernike
Moments', 0.8266 0.9056 0.8481 0.2106 0.8865 0.9255 0.9056 | 0.8837
'LDA")
('Zernike
%g“é‘?ms’ 0.8266 | 0.9056 0.8481 | 0.2098 | 0.8865 0.9255 0.9056 | 0.8837
'LDA")
Affinity ('HOG', 0.3044 0.7018 0.4341 0.1134 0.9485 0.5570 0.7018 | 0.9638
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Propogation

'LDA")

('Pixel
Averages',
'LDA")

0.2709

0.6872

0.4052

0.1096

0.9496

0.5384

0.6872

0.9655

('Pixel
Averages',
'HOG!,
'LDA")

0.2698

0.6868

0.4040

0.1098

0.9503

0.5377

0.6868

0.9655

('Fourier
Coefficients
v’ VLDA!)

0.2180

0.6644

0.3604

0.1128

0.9599

0.5080

0.6644

0.9711

('Karhunen-
Loeve',
'LDA")

0.2180

0.6644

0.3604

0.1128

0.9599

0.5080

0.6644

0.9711

Agglomerati
ve Clustering

(HOG,
'LDA)

0.9161

0.9143

0.9245

0.3799

0.9142

0.9145

0.9143

0.9610

('Pixel
Averages',
'LDA")

0.8904

0.9032

0.9014

0.3303

0.9018

0.9045

0.9032

0.9482

('Pixel
Averages',
'HOG!,
'LDA")

0.8865

0.9013

0.8979

0.3250

0.9000

0.9026

0.9013

0.9460

('Pixel
Averages',
'Zernike
Moments',
'LDA")

0.8313

0.8984

0.8534

0.2009

0.8720

0.9265

0.8984

0.8781

('Pixel
Averages',
'Zernike
Moments',
'HOG',
'LDA")

0.8286

0.8962

0.8511

0.1997

0.8698

0.9242

0.8962

0.8770
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Fig. 6: Cluster wise images of UCI dataset
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3.3. Movies Dataset

The clustering results for the Movies Dataset indicate that
Affinity Propagation with the combination (NMF', 'LDA")
performed the best, achieving the highest Adjusted Rand
Index (ARI) of 0.5062 and Fowlkes-Mallows Index (FMI)
of 0.54249. This suggests that this method effectively
groups similar movies while maintaining strong agreement
with the ground truth labels. Spectral Clustering also
showed competitive performance, particularly with ('[CA',
'LDA"), yielding an ARI of 0.35997 and NMI of 0.69374,
indicating  good  cluster separability. = However,

Best Consensus Clustering on ('ICA", 'LDA')

Best Consensus Clustering on ('ICA', 'LDA')

combinations involving PCA generally resulted in lower
clustering performance, as seen with ('PCA', 'LDA"), which
had one of the lowest ARI scores (0.09342) and NMI
(0.35706), suggesting that PCA-based feature
combinations may not be well-suited for clustering in this
dataset. Overall, methods incorporating NMF and LDA
produced more reliable and consistent clustering results
across different algorithms. Figure 7 shows comparative
cluster formations on the Movies dataset, highlighting the
structural distinctions captured through multi-view
clustering. The top 5 performing feature combinations are

summarized in Table 3.
Best Consensus Clustering on ('NMF', 'LDA')
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Fig. 7: Comparative clusters formations in Movies Dataset
Table 3: Top 5 feature combinations of Movies dataset
Top 5 Adjuste | Normalize Fo:vlke v
Clustering Combinati | d Rand | d Mutual Silhouet | Homogenei | Completene .
. | Mallow Measu | Purity
Method on out of Index Informati s Index te Score ty ss re
58 (ARI) on (NMI) (FMI)
('ICA,
LDA') 0.35997 | 0.69374 0.42625 | 0.09709 | 0.66811 0.72141 0.69374 | 0.71637
('ICA,
'NMF', 0.34513 | 0.68688 0.41407 | 0.09824 | 0.66017 0.71585 0.68688 | 0.70827
'LDA")
Spectral (NMF, 0.27526 | 0.67297 0.36419 | 0.26735 | 0.63451 0.71641 0.67297 | 0.67585
Clustering 'LDA")
('PCA,
'NMF/, 0.09804 | 0.35846 0.19133 | -0.11942 | 0.33284 0.38835 0.35846 | 0.38574
'LDA")
('PCA,
'LDA") 0.09342 | 0.35706 0.18830 | -0.11252 | 0.33100 0.38757 0.35706 | 0.38574
('NMF',
LDAY) 0.50620 | 0.66187 0.54249 | 0.23248 | 0.72053 0.61205 0.66187 | 0.74230
('ICA,
LDA’) 0.31094 | 0.60983 0.35142 | 0.11499 | 0.69364 0.54409 0.60983 | 0.73582
Affinity ('ICA,
Propagation | 'NMF', 0.30511 | 0.60668 0.34581 | 0.11535 | 0.69159 0.54034 0.60668 | 0.73258
'LDA")
('PCA!,
'ICA', 0.08162 | 0.39441 0.13599 | 0.01705 | 0.44641 0.35327 0.39441 | 0.48622
'LDA")
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(PCA!,
ICA',

'NMF',
'LDA")

0.08199 | 0.39377

0.13640

0.01680 | 0.44498 0.35314 0.39377 | 0.48136

(ICA",

LA 0.35997

0.69374

0.42625

0.09709 | 0.66811 0.72141 0.69374 | 0.71637

(ICA',
'NMF',
'LDA")

0.34513 | 0.68688

0.41407

0.09824 | 0.66017 0.71585 0.68688 | 0.70827

Agglomerati
ve
Clustering

(NMF,

LDAY 0.27526

0.67297

0.36419

0.26735 | 0.63451 0.71641 0.67297 | 0.67585

(PCA,
ICA!,
'LDA")

0.07883 | 0.36776

0.19096

-0.13013 | 0.33150 0.41291 0.36776 | 0.37925

(PCA,

DA 0.09937

0.35977

0.18834

-0.11334 | 0.33524 0.38817 0.35977 | 0.38574

3.4. Caltech 7 Dataset

The Caltech 7 Dataset clustering results indicate that
Spectral Clustering and Agglomerative Clustering perform
exceptionally well, achieving near-perfect clustering
scores with combinations that include HOG (Histogram of
Oriented Gradients) and LDA (Linear Discriminant
Analysis). The best feature combinations, such as ('Pixel
Averages', 'HOG', 'LDA") and ('Zernike Moments', 'HOG',
'LDA"), yield an Adjusted Rand Index (ARI) of 0.9922 and

Best Consensus Clustering on ('CENTRIST", 'HOG', 'GIST')

6

Spectral Clustering

0

Best Consensus Clustering on ('Pixel Averages', 'LDA")

Normalized Mutual Information (NMI) of 0.9806,
indicating almost complete alignment with ground truth
labels. These combinations also maintain high
homogeneity, completeness, and purity, confirming that
they preserve the intrinsic structure of the dataset
effectively. The Caltech 7 Dataset, which consists of
Dollar Bill, Faces, Garfield (Cartoon Cat), Motorbike,
Snoopy (Cartoon Dog), Stop Sign, and Windsor Chair,
represents diverse object categories, making it an excellent
benchmark for evaluating clustering techniques.

Best Consensus Clustering on ('HOG', "LDA')
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Fig. 8: Comparative clusters formations in Caltech 7 Dataset

Table 4: Top 5 feature combinations of Caltech 7 dataset

Tob 5 Adjuste | Normalize Fo:vlke v
Clustering p . d Rand | d Mutual Silhouett | Homogenei | Completene .
Combinatio . Mallow Measur | Purity
Method Index Informatio e Score ty ss
n out of 248 (ARI) n (NMI) s Index e
(FMI)
('Pixel
,‘;‘ggges’ 0.9922 | 0.9806 09952 | 03147 | 0.9767 0.9845 0.9806 | 0.9959
e | o
usiering (Zernike
Moments', 0.9922 0.9806 0.9952 0.2982 0.9767 0.9845 0.9806 | 0.9959
'HOG',
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'LDA’)

('Pixel
Averages',
'Zernike
Moments',
'HOG',
'LDA")

0.9922 0.9806 0.9952 0.2972 0.9767 0.9845 0.9806 | 0.9959

(HOG!,

LDA") 0.9366 0.9270 0.9625 0.2927 0.8976 0.9583 0.9270 | 0.9722

('Pixel
Averages', 0.8273 0.8487 0.8938 0.5282 0.8664 0.8316 0.8487 | 0.9579
'LDA")

('Pixel
Averages', 0.1434 0.5549 0.3461 0.1338 0.9908 0.3854 0.5549 | 0.9966
'LDA")

('Zernike
Moments', 0.0429 0.4416 0.1875 0.0765 0.9941 0.2838 0.4416 0.9966
'LDA")

('Pixel
Averages',
'Zernike 0.0396 0.4354 0.1801 0.0743 0.9941 0.2787 0.4354 | 0.9966
Moments',
'LDA")

Affinity
Propagation

('Pixel
Averages',
'Zernike
Moments'")

0.0426 0.3393 0.1826 0.1147 0.7229 0.2217 0.3393 0.8738

('Karhunen-
Loeve',
'Pixel
Averages')

0.0003 0.2936 0.0143 0.0152 1.0000 0.1721 0.2936 1.0000

(HOG!,

LDAY) 0.9900 0.9719 0.9939 0.3153 0.9696 0.9742 0.9719 0.9939

('Pixel
Averages',
'HOG',
'LDA")

0.9900 0.9719 0.9939 0.3142 0.9696 0.9742 0.9719 0.9939

('Zernike
Moments',
'HOG',
'LDA")

0.9900 0.9719 0.9939 0.2976 0.9696 0.9742 0.9719 | 0.9939
Agglomerati

ve Clustering (Pixel
iX

Averages',
'Zernike
Moments',
'HOG',
'LDA")

0.9900 0.9719 0.9939 0.2967 0.9696 0.9742 0.9719 0.9939

('Pixel
Averages', 0.9887 0.9708 0.9930 0.7763 0.9682 0.9735 0.9708 | 0.9939
'LDA")
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Fig. 9: Cluster wise images of Caltech 7 dataset

Figure 8 illustrates comparative cluster formations for the
Caltech 7 dataset using different multi-view feature
combinations. Figure 9 presents representative images
from each cluster, demonstrating the visual coherence
achieved. The top 5 feature combinations, ranked by
metrics such as ARI, NMI, and FMI, are listed in Table 5,
showcasing the most effective fusion strategies for this
dataset.

In contrast, Affinity Propagation performs significantly
worse, with ARI dropping to as low as 0.0003 when using
('Karhunen-Loeve', 'Pixel Averages'), suggesting that it
struggles with high-dimensional features. Even the best-
performing Affinity Propagation combinations, such as
('Pixel Averages', 'LDA'"), show an ARI of only 0.1434,
demonstrating that this method is not well-suited for this
dataset compared to other clustering techniques.
Interestingly, the Silhouette Score varies widely across
methods. Spectral Clustering and Agglomerative
Clustering have relatively moderate silhouette scores
(~0.29-0.52), while Affinity Propagation scores are much

lower, indicating that clusters are not well-separated in this
method. The highest Silhouette Score of 0.7763 is
observed for Agglomerative Clustering using ('Pixel
Averages', 'LDA'), implying that this combination
provides compact and well-defined clusters. Overall, the
results suggest that HOG and LDA are the most effective
features for clustering the Caltech 7 Dataset, and both
Spectral and Agglomerative Clustering methods perform
significantly better than Affinity Propagation. The findings
highlight that selecting the right feature representation
plays a crucial role in optimizing clustering performance.
In this study, we evaluate the performance of various
clustering methods, specifically Spectral Clustering,
Affinity Propagation, and Agglomerative Clustering,
across multiple datasets: Coil20, Handwritten Digits,
Movies, and Caltech 7, with a focus on their efficacy in
multiview clustering. The results highlight notable
differences in the performance of these methods.
Agglomerative Clustering emerges as the most effective
method, particularly for the Coil20 and Caltech 7 datasets,
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Table 5: Comparative study of results with existing research and our method

. N . V-
Dataset Clustering | Combinati ARI NMI FMI Silhouet Hon.logene Completen Measur | Purity
Method on te Score ity ess e
('Karhunen
Sprectral “Loeve),
Clustering+ | © el 0739 1 0902 10759 | 45194 | 0.8851 0.9198 0.9021 | 0.8493
Averages', 6 1 1
GAVS LDA'
'NPE')
Affinity ('Zernike
Propogation | Moments', | 0.691 | 0.832 | 0.735
N HOG', 0 5 N 0.2180 1.0000 0.7131 0.8325 | 1.0000
AV 'LDA'
Coil20 GAVS )
Agglomerat (‘Pixel
Ve o Averages', | 000 | 10001 1000 6 ecie | 10000 1.0000 1.0000 | 1.0000
Clustering+ 'LDA") 0 0 0
GAVS
.962 .
Co-Reg i (3) 96 (9) 989 | i i i ) i
MVLRSSC | - (8).978 (3).994 i i i i i i
22 S14
DeepNMF - (2) 0 25 - - - - - -
Sprectral . ,
Clustering+ ,(LI]{)CZ)AC,; (1)'935 (1)'935 (5)'941 0.3882 0.9351 0.9352 0.9351 | 0.9699
GAVS
Affinity
Propogation | ('"HOG!, 0.304 | 0.701 | 0.434
. LDAY) 4 g | 0.1134 0.9485 0.5570 0.7018 | 0.9638
GAVS
Agglomerat
. ive (HOG!, 0916 | 0914 | 0.924
Hall’l)d.W.rltt Clustering+ | 'LDAY) | 3 5 0.3799 0.9142 0.9145 0.9143 | 0.9610
en Digits GAVS
.64 72
Co-Reg - ?6 8 27 o . - - - - -
MVLRSSC | - ?.697 8.779 ) ) ) ) i )
MultiNMF - 2'725 0.774 - - - - - -
DeepNMF i 2.715 ?.796 i i i i ) i
Sprectral A
Clustering+ ,(LIS:S 8'7359 24693 2'5426 0.09709 | 0.66811 0.72141 2‘6937 0.7164
GAVS
Affinity
Propogation | (‘'NMF', 0.506 | 0.661 | 0.542 0.6618
N LDAY) 20 37 49 0.23248 | 0.72053 0.61205 7 0.7423
GAVS
Movies Agglomerat
ive ('ICA", 0.359 0.693 0.426 0.6937 | 0.7163
Clustering | 'LDA") 97 74 25 0.09709 | 0.66811 0.72141 4 7
GAVS
Co-Reg i 2.095 8.252 i i i i i i
MVLRSSC | - 2.140 2.318 i i i i i i
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0.033 | 0.162
DeepNMF - N 6 - - - - -
Sprectral (Pixel
Clustering | ~Yeragess | 09921 0980 1.0.995 1 5105 | 9767 0.9845 0.9806 | 0.9959
GAVS 'HOG!, 2 6

'LDA")

ﬁrfoﬁrz)lt};tion (Pixel 0.143 | 0.554 | 0.346

Caltech 7 | pog Averages', | o : 0.1338 | 0.9908 0.3854 0.5549 | 0.9966
GAVS LDA)
Agglomerat
ive (HOG', 0.990 | 0.971 | 0.993
Clusteringt | LDA) 0 0 0.3153 | 0.9696 0.9742 0.9719 | 0.9939
GAVS

where it achieves perfect clustering results, with an
Adjusted Rand Index (ARI) and Normalized Mutual
Information (NMI) both reaching 1.0000. This indicates
that Agglomerative Clustering excels in grouping the data
into distinct clusters while maintaining high homogeneity
and completeness. On the other hand, Spectral Clustering
shows strong performance in the Coil20, Handwritten
Digits, and Caltech 7 datasets, with ARI values above 0.7
and NMI values approaching 1.0, demonstrating its
robustness in handling high-dimensional and diverse data.
However, it performs less effectively on the Movies
dataset, where its ARI and NMI are significantly lower.
Affinity Propagation, while showing promising results on
certain datasets like Coil20, falls short in others,
particularly on Handwritten Digits and Caltech 7, where its
ARI and NMI are considerably lower than those of
Spectral and Agglomerative Clustering methods.
Furthermore, the performance of Multiview Learning-
based methods, including MVLRSSC and Co-Reg, is
evaluated. These methods show strong performance on
Coil20, with MVLRSSC achieving an ARI of 0.9788 and
NMI of 0.9943, indicating their potential in multiview
clustering scenarios. However, as shown in Table 5 the
performance of DeepNMF and other similar methods is
consistently subpar across all datasets, with ARI values
significantly lower than those of the traditional clustering
methods. The findings suggest that Agglomerative
Clustering and Spectral Clustering are the most reliable
methods for multiview clustering, with Agglomerative
Clustering particularly excelling in terms of clustering
quality, while MVLRSSC and Co-Reg show promise for
enhancing multiview clustering performance, particularly
for high-dimensional datasets. These insights provide a
valuable foundation for future work in the optimization
and application of clustering algorithms for multiview
learning tasks.

The superior performance of specific multi-view feature
combinations observed in this study can be attributed to
their ability to capture complementary and discriminative
information across heterogeneous feature spaces. Multi-
view learning leverages the principle that different

representations of the same data can emphasize diverse
structural, semantic, or statistical properties. When
thoughtfully integrated, these views can significantly
improve the clustering quality by enhancing both inter-
cluster separability and intra-cluster compactness.

For instance, in the Coil20 dataset, combining Pixel
Averages and LDA (with Agglomerative Clustering
yielding NMI = 1.0000) is particularly effective because
these features represent orthogonal perspectives of the
data. Pixel Averages retain spatial intensity summaries,
capturing global shape and pose, while LDA performs
supervised dimensionality reduction (in a semi-supervised
pre-processing context), projecting data into a space that
maximizes class separation. This complementarity yields a
joint representation that aligns with the intrinsic class
structure of the data, making hierarchical linkage-based
methods like Agglomerative Clustering particularly
effective.

In the Handwritten Digits dataset, the consistent success of
the HOG + LDA combination can be understood through
a similar lens. HOG descriptors encode gradient
orientation histograms that are robust to small variations in
handwriting, thus modeling the local stroke patterns
essential for digit identity. LDA, again, enhances
separability in a lower-dimensional space. Their synergy
allows the clustering algorithms to operate in a feature
space where digits are well-separated by both edge
structure and class-discriminative attributes. Notably,
Spectral Clustering achieved NMI = 0.9351 on this
combination, suggesting that the eigenstructure of the
similarity graph aligns well with the cluster boundaries in
this fused space.

In the Movies dataset, although clustering is inherently
more challenging due to subjective human ratings and
sparse features, the combination of ICA and LDA
performs relatively better (NMI = 0.6937). Here, ICA
attempts to uncover statistically independent latent factors
from co-viewing patterns or user preferences, which may
correspond to genre, popularity, or style. LDA provides
further reduction while preserving separability. Their joint
space likely filters noise while exposing latent grouping
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structure, explaining the
clustering performance.
The Caltech 7 results further substantiate the strength of
multi-view learning. The combination of Pixel Averages,
HOG, and LDA incorporates global appearance (Pixel
Averages), local shape and texture (HOG), and linear
separability (LDA). This three-view fusion leads to high
clustering accuracy (NMI = 0.9806 with Spectral
Clustering), as each view captures a different level of
abstraction. The use of Spectral Clustering is particularly
beneficial here, as it exploits graph-based affinity among
data points that may not be linearly separable in any single
view but are well-separated in the combined graph
Laplacian.

The experimental results across all four benchmark
datasets—COIL-20, UCI Digits, Movies, and Caltech-7—
clearly demonstrate that the proposed Greedy Automatic
View Selection (GAVS) algorithm provides a significant
improvement over conventional multi-view clustering
techniques in terms of both accuracy and computational
efficiency. Unlike traditional approaches that rely on
brute-force evaluation of all possible feature combinations
or require complex model training (as in deep learning-
based methods), GAVS efficiently identifies the most
complementary feature views through a greedy search
strategy. This drastically reduces the computational
overhead while preserving, or even enhancing, clustering
quality.

The strength of GAVS lies in its ability to exploit feature
complementarity rather than just accumulating feature
diversity. Our study confirms that it is not the quantity of
features used that drives clustering performance, but the
strategic combination of views that contribute uniquely
informative perspectives. For example, shape-based
features like Zernike Moments, textural descriptors like
HOG, and statistical methods such as ICA or LDA, when
selected in synergy, yield more robust and interpretable
clustering outputs. This synergy enhances cluster
compactness and separation, particularly benefiting
algorithms like Spectral and Agglomerative Clustering,
which are sensitive to the geometry and connectivity of the
data manifold.

GAVS also demonstrates robust generalization across
domains, performing effectively on both image-centric
datasets (COIL-20, Caltech-7) and mixed-modal datasets
(Movies). Its performance consistency is further evidenced
by metrics such as ARI, FMI, and particularly Normalized
Mutual Information (NMI). NMI was chosen as the
primary metric for view selection in GAVS because it
balances homogeneity and completeness, offering a
normalized and interpretable measure that performs
reliably across varying cluster sizes and dataset
complexities.  Furthermore, GAVS reduces time
complexity significantly. Traditional exhaustive search
methods or deep clustering models such as MVLRSSC and

improved—but modest—

DeepNMF require extensive training and parameter
tuning, making them impractical for real-time or large-

scale applications. In contrast, GAVS achieves
competitive—and often  superior—performance by
making intelligent, step-wise selections of view

combinations, bypassing the need for full feature
enumeration or deep architecture design. This makes
GAVS not only effective but also practical for real-world
deployment, especially where rapid clustering and feature
selection are critical. Interestingly, even in scenarios where
deep learning-based clustering methods underperform due
to data sparsity or noise, GAVS continues to deliver high-
quality clusters, as evidenced by high homogeneity,
completeness, and V-measure scores. These scores
confirm that the algorithm not only places similar data
points into the same clusters but also maintains clear
separations between different groups, which is essential for
tasks like object recognition, document categorization, and
user profiling.

In summary, the GAVS approach redefines multi-view
clustering by aligning simplicity with strategic feature
selection, offering a compelling alternative to more
computationally expensive and complex methods. Its
strong empirical results across diverse datasets validate its
utility, making it a valuable addition to the toolkit for
unsupervised learning and pattern discovery.
Interestingly, even advanced methods like MVLRSSC and
DeepNMF, while competitive, do not always outperform
simpler clustering algorithms when empowered by
thoughtfully selected feature combinations. This
emphasizes that feature engineering and view selection
remain critical in the multiview learning paradigm and can
often rival or surpass deep unsupervised learning models
when handled carefully. Moreover, the consistently high
homogeneity, completeness, and V-measure scores across
datasets further confirm that multiview approaches not
only cluster data points accurately but also maintain intra-
cluster purity and inter-cluster distinctiveness.

4. Conclusion

This study presents a comprehensive evaluation of multi-
view clustering techniques and introduces a novel,
efficient approach—Greedy Automatic View Selection
(GAVS)—to enhance clustering performance by
systematically selecting the most complementary feature
views. Our results demonstrate that clustering
effectiveness is not merely a function of feature quantity
but strongly depends on the quality and complementarity
of the selected features.

Among the clustering algorithms tested, Agglomerative
Clustering consistently delivered superior results,
including perfect performance on the COIL-20 dataset
(ARI = 1.0000, NMI = 1.0000, FMI = 1.0000), due to its
hierarchical nature and its ability to leverage well-
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combined feature views such as Pixel Averages and LDA.
Spectral Clustering also showed strong performance,
particularly with combinations like ("HOG', 'LDA') and
('Pixel Averages', 'HOG', 'LDA'), benefiting from its
sensitivity to non-linear manifold structures. Affinity
Propagation, while achieving high cluster purity in some
datasets, struggled with global cohesion, as reflected in
lower ARI and NMI scores.

The proposed GAVS algorithm offers a significant
advancement by automatically identifying the most
synergistic feature subsets based on the Normalized
Mutual Information (NMI) metric. GAVS is novel in its
greedy yet principled selection process, efficient in
computation by avoiding exhaustive combinations, and
effective in boosting clustering accuracy across multiple
datasets. It outperformed both conventional and deep
learning-based clustering models in terms of ARI, NMI,
FMI, and V-measure, all while being far less time-
consuming and more interpretable.

This research wunderscores that classic clustering
algorithms, when empowered by strategic multi-view
feature combinations identified via GAVS, can rival or
surpass more complex models. Future work may focus on
extending GAVS to handle deep learned embeddings,
streaming data, and multi-modal fusion, thereby
broadening its applicability to real-time, large-scale
clustering challenges.
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