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Abstract: Multi-view clustering leverages complementary information from multiple feature 

representations, yet its success relies on selecting optimal feature combinations and clustering 

algorithms. We propose a Greedy Automatic View Selection (GAVS) algorithm to identify the 

most informative subset of feature views that maximize clustering performance. GAVS iteratively 

adds feature views based on their contribution to clustering quality, measured by normalized 

mutual information (NMI). We evaluate GAVS on Coil20, UCI Digits, Movies, and Caltech 7 

datasets using Spectral, Agglomerative, and Affinity Propagation clustering with diverse features 

(GIST, LBP, HOG, CENTRIST). Results show optimal combinations vary across datasets, with 

GAVS achieving peak NMIs of 1.000 (Coil20), 0.9351 (UCI Digits), 0.6937 (Movies), and 

0.9806 (Caltech 7). This adaptive strategy offers practical guidance for improving clustering 

accuracy in real-world applications. 

Keywords: Benchmark Datasets; Clustering Algorithms; feature extractions; Multiview 

clustering

1. Introduction 

Clustering is a fundamental unsupervised machine 

learning technique widely used in various domains to 

group similar data points based on their inherent 

characteristics. Traditional clustering methods, such as K-

means, hierarchical clustering, and Gaussian Mixture 

Models (GMM), operate under the assumption that data 

can be represented using a single feature space. However, 

in real-world scenarios, data is often inherently multi-

faceted, containing information from multiple perspectives 

or "views." For example, in image analysis, an object can 

be described using different feature sets such as shape, 

texture, and color, each providing distinct but 

complementary information. Similarly, in text mining, 

documents can be represented by different features, 

including term frequency, topic distributions, and word 

embeddings1). Multiview clustering (MVC) aims to 

integrate multiple feature representations into the 

clustering process, leading to improved clustering 

accuracy and robustness2). The multi-view clustering 

problem as shown in Figure 1, involves grouping 

geometric shapes (circles, hexagons, squares, rectangles, 

and pentagons) based on different views or representations 

of the same shape. Each shape may appear in different 

styles, such as variations in color, size, orientation, or 

boundary styles, representing multiple views of the same 

underlying category. The goal of multi-view clustering is 

to leverage these diverse representations to improve 

clustering performance by integrating information from 

multiple perspectives. Instead of clustering based on a 

single feature space, this approach combines multiple 

feature sets to achieve more accurate and robust clustering 

results. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

Fig. 1: Multiview clustering problem 

Multi-view clustering is an advanced technique in 

unsupervised learning that aims to group data points by 

leveraging multiple feature representations or 

perspectives. In the given implementation, geometric 

shapes serve as a visual metaphor for multi-view 

clustering, where each subplot represents a different 

clustering approach: shape-based, color-based, line-style-

based, size-based, and hybrid clustering. These 

perspectives reflect how different features contribute to 

grouping patterns, similar to real-world scenarios where 

diverse data sources (e.g., textual, visual, or numerical) 

provide complementary information for clustering. By 

simultaneously analyzing multiple clustering solutions 

within a single framework, multi-view clustering enhances 

robustness, mitigates biases from individual views, and 

improves overall cluster quality. This visualization 

highlights how different clustering criteria lead to varied 

structures, emphasizing the importance of considering 

multiple perspectives in unsupervised learning tasks, 

especially in applications like bioinformatics, social 

network analysis, and computer vision. Multiview 

clustering has gained significant attention in recent years 

due to its ability to leverage complementary information 

from different data perspectives. By integrating multiple 

views, multiview clustering can better capture the 

underlying data distribution, enhance clustering stability, 

and provide more interpretable results. Various approaches 

have been developed for multiview clustering, including 

co-training-based methods, subspace learning methods, 

and deep learning-based techniques3). Co-training methods 

iteratively update cluster assignments by training on 

separate views and enforcing consistency across them. 

Subspace learning methods attempt to find a shared latent 

space where the clustering structure is more evident. Deep 

learning-based methods use neural networks to learn view-

specific representations while enforcing cross-view 

consistency4). Despite these advancements, multiview 

clustering still faces significant challenges that limit its 

practical application. Issues such as view heterogeneity, 

inconsistencies in feature alignment, computational 

scalability, and missing views pose obstacles to achieving 

robust and interpretable clustering outcomes5). This paper 

aims to systematically explore these challenges, review 

state-of-the-art solutions, and propose novel approaches to 

improve the efficiency, effectiveness, and applicability of 

multiview clustering in real-world scenarios6). While 

multiview clustering offers advantages over traditional 

single-view clustering, it also introduces several 

complexities that must be addressed to achieve optimal 

performance. These challenges primarily stem from 

variations in feature representation, inconsistencies 

between views, computational demands, missing data, and 

model interpretability. One of the fundamental challenges 

in multiview clustering is the heterogeneity of data 

representations across different views. In practical 

applications, different feature spaces may have varying 

distributions, scales, and dimensional structures, making it 

difficult to integrate them effectively7). Some views may 

contain redundant or noisy information, which can distort 

the clustering structure and lead to suboptimal results. 

Additionally, not all views contribute equally to clustering 

performance, and determining the relative importance of 

each view remains a complex problem. Addressing this 

challenge requires the development of view-weighting 

mechanisms or adaptive learning strategies that 

dynamically adjust the importance of different views 

during clustering8). Another major issue in multiview 

clustering is ensuring consistency and alignment between 

different views. While different views provide 

complementary information, they may not always be 

aligned due to variations in data collection methods, 

feature extraction techniques, or domain-specific 

differences. For example, in medical image analysis, 

different imaging modalities such as MRI, CT scans, and 

PET scans provide distinct perspectives on the same 

anatomical structure, but discrepancies in resolution, 

contrast, or orientation can create misalignment. Effective 

clustering requires robust alignment techniques that can 

map different feature spaces onto a common latent space 

while preserving structural relationships within the data9). 

Multiview clustering techniques often involve integrating 

multiple high-dimensional feature spaces, which 

significantly increases computational complexity. Many 

traditional clustering algorithms do not scale well in 

multiview settings, especially when dealing with large 

datasets in domains such as genomics, e-commerce, and 

social network analysis. The increased dimensionality and 

dependency on multiple feature spaces lead to greater 

memory requirements and longer processing times. This 

challenge necessitates the development of efficient 

dimensionality reduction, feature selection, and 

optimization techniques that can handle large-scale 

multiview clustering problems with reduced 

computational overhead10). In real-world scenarios, some 

views may be missing or incomplete due to limitations in 

data collection processes. For instance, in multimodal 

sentiment analysis, text, audio, and video data may not 

always be available simultaneously due to sensor failures, 

recording limitations, or privacy concerns11). In such cases, 

EVERGREEN - Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 12, Issue 03, pp. 1802-1826, September, 2025

- 1803 -

Cite: J. Mankar, S. Kamalapur, "Efficient Multi-View Clustering via Greedy Automatic View Selection
and Diverse Feature Integration". Evergreen, 12 (03) 1802-1826 (2025). https://doi.org/10.5109/7388866.



standard multiview clustering methods struggle to 

maintain performance when information from one or more 

views is unavailable. Handling missing views effectively 

requires the use of imputation techniques, generative 

models, or graph-based methods that can estimate missing 

data while maintaining clustering consistency12). While 

deep learning-based multiview clustering methods have 

shown promising results, they often suffer from poor 

interpretability. Many deep clustering models act as black 

boxes, making it difficult to understand how different 

views contribute to the final clustering decisions13). This 

lack of transparency limits their applicability in high-

stakes domains such as healthcare, finance, and 

cybersecurity, where interpretability is critical for trust and 

decision-making. Additionally, generalizing multiview 

clustering models across different datasets and application 

domains remains a challenge14). Many models are 

optimized for specific data distributions and do not adapt 

well to new datasets with varying feature spaces. 

Developing explainable and generalizable multiview 

clustering frameworks is essential for broader real-world 

adoption15). The rapid advancements in machine learning, 

clustering techniques, classification models, and material 

property optimization have led to significant 

improvements across multiple scientific and engineering 

domains. This literature review synthesizes recent studies, 

covering spectral clustering, synthetic data balancing, 

material property enhancements, and classification 

techniques. Spectral clustering has gained traction as an 

effective approach for high-dimensional data clustering. 

Abhadiomhen et al. 12) conducted a comparative analysis 

of spectral clustering techniques, emphasizing their 

robustness in handling complex datasets. Liu et al. 16) 

introduced a multiview spectral clustering method 

leveraging a weighted tensor low-rank constraint, which 

demonstrated improved clustering accuracy and reduced 

computational costs. Xu et al. 17) proposed a cooperative 

manifold learning technique that integrates low-rank 

representation, enhancing clustering stability and 

precision. Additionally, Gao et al. 18) developed a low-rank 

correlation representation method, improving clustering 

outcomes in unsupervised learning scenarios. Wang et al. 
19) implemented a hybrid approach combining spectral 

clustering with deep learning techniques, demonstrating 

increased efficiency and adaptability in high-dimensional 

spaces. Classification models play a crucial role in 

predictive analytics. Traditional methods such as decision 

trees and support vector machines (SVMs) have been 

widely used for various applications. However, 

imbalanced datasets pose a challenge, often leading to 

biased predictions. To address this issue, researchers have 

explored synthetic data balancing techniques. Wang et al. 
20) evaluated the impact of synthetic minority oversampling 

techniques (SMOTE) and NearMiss strategies, 

demonstrating their effectiveness in improving model 

robustness. Further, Tran et al. 21) applied reinforcement 

learning to optimize data resampling methods, achieving 

improved model generalization. Recent studies also 

highlight the effectiveness of hybrid balancing techniques, 

where machine learning and statistical methods are 

combined for better performance 22). Despite the significant 

advancements in multiview clustering, there remain 

several critical gaps that hinder its full potential and 

practical implementation in real-world applications. One 

of the main challenges is the heterogeneity of data 

representations across different views. While existing 

methods aim to integrate multiple views, variations in the 

data distribution, scale, and dimensional structure across 

views often create difficulties in achieving seamless 

integration23). There is a need for more robust techniques 

that can effectively handle such heterogeneity, ensuring 

consistent performance across diverse datasets. 

In the era of high-dimensional data, objects are often 

represented through multiple heterogeneous feature views 

that capture different aspects of the same entity. Multi-

view clustering has emerged as a promising technique to 

exploit this diversity and improve clustering accuracy. 

However, a major challenge lies in determining which 

combination of feature views contributes most effectively 

to the clustering outcome. The inclusion of redundant or 

irrelevant views can degrade clustering performance, 

increase computational complexity, and obscure 

meaningful patterns. Furthermore, the effectiveness of a 

clustering algorithm can vary significantly depending on 

the dataset characteristics and the selected feature views. 

Despite advancements in multi-view clustering, there is a 

lack of systematic methods for selecting the most 

informative subset of views that ensure optimal clustering 

performance across different datasets. This study 

addresses this critical gap by introducing a Greedy 

Automatic View Selection (GAVS) algorithm to 

iteratively identify and combine feature views that 

contribute most significantly to clustering quality. 

2. Methodology 

This study employs a robust multi-view clustering 

methodology, utilizing benchmark datasets to evaluate 

clustering performance across multiple feature 

representations. The process involves data preprocessing, 

dimensionality reduction, feature fusion, clustering, and 

evaluation using a variety of statistical and machine 

learning techniques. The selected datasets for this study 

include COIL-20, Caltech-7 (Dollar Bill, Faces, Garfield 

(Cartoon Cat), Motorbike, Snoopy (Cartoon Dog), Stop 

Sign, Windsor Chair), UCI Digit, and Movies dataset. 

These datasets provide diverse challenges, including 

variations in image features, text attributes, and categorical 

data, making them ideal for benchmarking multi-view 

clustering techniques. 
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COIL-20 Dataset: The Columbia Object Image Library 

(COIL-20) consists of grayscale images of 20 different 

objects captured from various angles (0° to 360°) at 5° 

intervals, totaling 1,440 images. The dataset is commonly 

used in image clustering tasks where multiple views 

correspond to different angles of the same object24). 

Caltech-7 Dataset: This dataset is a subset of the larger 

Caltech-101 dataset, containing images from seven 

categories. Each image is represented using multiple 

feature descriptors such as Gabor filters, wavelet moments, 

and histogram-based representations, providing a strong 

test case for multi-view learning. 

UCI Digit Dataset: This dataset comprises handwritten 

digits from 0 to 9, extracted from different sources such as 

postal mail and bank checks. It provides multiple feature 

representations, including pixel intensities, gradient-based 

features, and contour descriptors. 

Movies Dataset: The Movies dataset consists of multiple 

views, including metadata (genre, director, cast), text 

reviews, and ratings. It is used to assess how well multi-

view clustering techniques handle categorical and textual 

data alongside numerical features. The proposed 

methodology as shown in Figure 2a and 9 feature 

extractions are shown in Figure 2b, for multi-view 

clustering involves several stages, including data 

preprocessing, dimensionality reduction, feature fusion, 

clustering, and evaluation. The proposed methodology 

presents a novel and efficient approach to multi-view 

clustering by integrating a diverse set of nine feature 

extraction techniques, multiple clustering algorithms, and 

a unique Greedy Automatic View Selection (GAVS) 

strategy. This framework is designed to address the 

challenges of heterogeneity and redundancy in multi-view 

datasets by selecting the most informative feature subsets 

in a time-efficient manner. Traditional multi-view 

clustering methods often require manual selection or 

exhaustive evaluation of all possible view combinations, 

which becomes computationally intensive and impractical 

for high-dimensional data. In contrast, our GAVS 

algorithm adopts a greedy approach that incrementally 

identifies the most impactful views based on performance 

gains, thereby significantly reducing computational 

complexity without compromising clustering accuracy. 

The novelty of this methodology lies in its comprehensive 

feature representation strategy. By employing nine distinct 

feature extraction methods—including both linear (PCA, 

LDA, Karhunen-Loève Transform) and nonlinear 

(Isomap, NPE) techniques, along with statistical and 

morphological descriptors (HOG, Zernike Moments, Pixel 

Averages, and morphological features)—the model 

captures complementary aspects of the data. This multi-

perspective view enhances the robustness and 

discriminative power of the clustering process, allowing 

the algorithm to uncover deeper patterns within complex 

datasets. To evaluate clustering performance, we use a 

suite of metrics, including Adjusted Rand Index (ARI), 

Fowlkes-Mallows Index (FMI), Purity, Silhouette Score, 

and Normalized Mutual Information (NMI). Among these, 

NMI is selected as the primary evaluation criterion for the 

GAVS process because of its ability to measure the amount 

of shared information between predicted clusters and 

ground truth labels in a normalized and unbiased manner. 

Unlike ARI or FMI, which may be sensitive to the number 

of clusters or data imbalance, NMI provides a more stable 

and reliable measure across different datasets and 

clustering scenarios. Its bounded range [0, 1] and 

symmetry make it particularly suitable for view selection, 

ensuring consistent assessment of clustering quality at 

each step of the greedy selection process. Overall, this 

methodology offers a best-in-class balance between 

accuracy and efficiency. The GAVS mechanism 

eliminates the need to test all combinations of feature 

views, while the inclusion of varied feature descriptors 

ensures that important structural, statistical, and visual 

information is preserved. The combination of intelligent 

view selection, diverse feature fusion, and robust 

clustering evaluation makes this approach not only novel 

but also significantly more time-saving and scalable for 

real-world multi-view clustering applications. 

 

(a) Methodology 

 

(b) Feature Extractions using PCA, Isomap, Karhunen-Loève 

Representation ,Pixel Averages ,Zernike Moments , 

Morphological Features ,HOG, LDA, NPE 

Fig. 2: (a) Methodology and (b) Feature extraction using 9 

different methods 
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2.1. Mathematical Model  

Let, 

X={X1, X2,..., XM} be the dataset with N samples and M 

views. 

Each view 𝑋𝑚𝜖𝑅
𝑁×𝑑𝑚 represents a different feature 

extraction method. 

The goal is to find an optimal clustering assignment C such 

that intra-cluster similarity is maximized and inter-cluster 

similarity is minimized. 

Step 1: Feature Transformation for Multiview Data 

Each view Xm undergoes a transformation: 

Zm=fm(Xm), m∈{1,2,...,M} 

where fm represents transformations such as PCA, ICA, 

Isomap, NMF, LDA, Random Projection, and HOG. 

Z={Z1,Z2,...,ZM}, ZmϵR
N×dm  

Step 2: Feature Fusion 

To form a combined feature representation, we 

concatenate selected views: 

Z∗= [Zm1, Zm2,...,Zmk], Z∗∈RN×d∗ 𝑍∗𝜖𝑅𝑁×𝑑∗  

where 𝑑∗ = ∑ 𝑑𝑚𝑖
𝑘
𝑖=1  is the total dimensionality of the 

combined views. 

Step 3: Affinity Matrix Construction 

For Spectral Clustering and Hierarchical Clustering, an 

affinity matrix A is computed24): 

𝐴𝑖𝑗 = exp⁡(−
‖𝑍𝑖

∗−𝑍𝑗
∗‖

2

𝜎2
)  

Where, σ is a scaling parameter. 

Step 4: Clustering Formulation 

2.1.1. Algorithm: Multiview Clustering Using Greedy Automatic View Selection and 

Spectral/Hierarchical/Affinity Propagation 

Input: 

Multiview dataset 𝑋 = {X₁, X₂, ..., Xₘ} with N samples and M views 

Feature transformation methods: {PCA, ICA, Isomap, NMF, LDA, GRP, HOG,NPE} 

Clustering method: {Spectral Clustering, Affinity Propagation, Hierarchical 

Clustering} 

Number of clusters k (only for methods that require it) 

Output: 

Clustering assignment C 

Evaluation scores: {ARI, NMI, FMI, Silhouette, Homogeneity, Completeness, V-

Measure, Purity} 

Step 1: Feature Extraction 

For each view Xₘ ∈ ℝⁿˣᵈᵐ: 

a. Apply appropriate transformation: 

PCA → Fourier Coefficients, Karhunen-Loève 

ICA → Zernike Moments 

Isomap → Profile Correlations 

NMF → Pixel Averages 

LDA → LDA Features 

GRP → Morphological Features 

HOG → HOG Features 

NPE→ NPE Features 

Store transformed features as Zₘ = fₘ(Xₘ), forming Z = {Z₁, Z₂, ..., Zₘ} 

Step 2: Feature Fusion 

Select a subset of views (e.g., {Z₁, Z₂, ..., Zₖ}) 

Concatenate the views: 

Z* = [Zₘ₁, Zₘ₂, ..., Zₘₖ] ∈ ℝⁿˣᵈ⁎ 

where d* = ∑ dₘᵢ is the total fused feature dimension 

Step 3: Similarity Matrix Construction 

Compute pairwise similarities: 

For Spectral/Hierarchical Clustering: 

Aᵢⱼ = exp(−‖Zᵢ* − Zⱼ*‖² / σ²) 

For Affinity Propagation: 

S(i, k) = −‖Zᵢ* − Zₖ*‖² 

Step 4: Clustering 

Apply the chosen clustering algorithm: 
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Spectral Clustering: 

a. Construct Laplacian matrix L = D − A 

b. Compute eigenvectors of L corresponding to k smallest eigenvalues 

c. Apply k-means on eigenvector space 

Affinity Propagation: 

a. Initialize responsibility R and availability A matrices 

b. Iteratively update: 

R(i,k) = S(i,k) − maxₖ'≠k {A(i,k') + S(i,k')} 

A(i,k) = min(0, R(k,k) + ∑_{i'≠i,k} max(0, R(i',k))) 

c. Select exemplars and assign cluster labels 

Hierarchical Clustering: 

a. Compute distance matrix Dᵢⱼ = ‖Zᵢ* − Zⱼ*‖ 

b. Apply linkage method (average, complete, or single) 

c. Cut dendrogram to obtain k clusters 

Step 5: Evaluation 

Compute clustering evaluation metrics: 

Adjusted Rand Index (ARI) 

Normalized Mutual Information (NMI) 

Fowlkes-Mallows Index (FMI) 

Silhouette Score 

Homogeneity, Completeness, V-Measure 

Purity Score 

Step 6: Greedy Feature Combination Search (Detailed) 

Initialization: 

Start by evaluating each individual view's transformed features separately. 

For each view, apply the clustering algorithm and calculate the evaluation metric 

NMI  

Identify the single view with the highest NMI score. This view becomes the first 

selected feature set. 

Initialize the current best fused feature matrix as the features from this selected 

view. 

Keep track of the selected views in a list (e.g., selected_views = [best_single_view]). 

Iterative Addition of Views: 

For the remaining views that are not yet selected, do the following: 

a. Temporarily concatenate the features of one candidate view to the currently 

selected fused features to form a new combined feature matrix. 

b. Perform clustering on this new fused feature matrix. 

c. Calculate the NMI (or chosen evaluation metric) for the clustering result. 

d. Compare this NMI with the current best NMI score. 

Decision on Adding a View: 

If adding the candidate view results in an improvement in NMI by at least a 

predefined threshold (for example, 0.01), then: 

Update the selected views list to include this new view. 

Update the current best fused feature matrix to include this view's features. 

Update the current best NMI score to this new higher value. 

Otherwise, discard the candidate view from consideration for this iteration. 

Repeat Until No Improvement: 

Repeat the iterative addition process by testing all remaining unselected views in 

the same way. 

Continue adding views one-by-one, only if they improve the NMI score beyond the 

threshold. 
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Stop the iteration when no remaining views can improve the NMI score by the 

threshold. 

Final Output: 

The final selected subset of views and their fused features constitute the best 

performing feature combination. 

Proceed with clustering and evaluation using this final fused feature set. 

Step 7: Visualization 

Use t-SNE on Z* to project to 2D 

Plot clustered data points for qualitative analysis 

End of Algorithm 

2.1.2. Algorithm: Greedy Automatic View Selection (GAVS) for Multi-View Clustering 

Input: 

V = {v1, v2, ..., vm}: A set of m feature views extracted from the data (e.g., 

PCA, HOG, ICA features). Each view vi is a matrix of shape n × di, where n is the 

number of samples and di is the number of features in that view. 

y: Ground-truth labels for the n samples (used only for evaluation). 

ε > 0: A small positive threshold (e.g., 0.01) indicating the minimum improvement 

in clustering performance needed to add a new view. 

C: Clustering algorithm (e.g., Spectral Clustering) with fixed parameters. 

Output: 

S ⊆ V: A selected subset of views that gives the best clustering results. 

FS: The final combined feature matrix formed by concatenating the views in S. 

M: Evaluation metrics (such as NMI, ARI, or Purity) calculated from clustering FS. 

Step 1: Initialization 

Start with an empty selected view set: 

S ← ∅ 

Initialize the best clustering performance score: 

q ← 0* 

For each view vi in V: 

Perform clustering using algorithm C on vi 

Evaluate clustering using NMI against ground-truth labels y 

Identify the single view vb that gives the highest NMI score. 

Update: 

S ← {vb} (select the best performing view) 

q ← NMI(vb)* (store its clustering score) 

FS ← vb (initial combined feature matrix) 

Step 2: Greedy Iterative Selection 

Set R ← V \ S, the set of remaining views not yet selected. 

Repeat the following steps until no significant improvement is observed: 

a. For each view vc in R: 

Concatenate the current features FS with vc horizontally to form F_candidate = 

[FS | vc] 

Perform clustering on F_candidate using algorithm C 

Evaluate clustering with NMI against y, and store the score as qc 

b. Find the view v* in R that gives the highest qc score 

c. If qc - q* > ε (i.e., improvement is significant): 

Update selected views: S ← S ∪ {v}* 

Update best score: q ← qc* 
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Update combined features: FS ← [FS | v]* 

Remove selected view from remaining views: R ← R \ {v}* 

d. Else: 

Stop the iteration as no significant improvement can be achieved 

Step 3: Output 

Return: 

S: The final set of selected views 

FS: The fused feature matrix built by concatenating the selected views 

M: Clustering evaluation metrics (e.g., NMI, ARI, Purity) calculated on FS 

2.2. Spectral Clustering 

Spectral clustering is a graph-based clustering method that 

effectively identifies complex, non-linearly separable 

structures in data. It begins by representing the dataset as 

an undirected weighted graph, where each data point is a 

node, and the edges between nodes capture similarity 

based on a predefined function such as the Gaussian (RBF) 

kernel or k-nearest neighbors. The similarity relationships 

are stored in an adjacency matrix A, which is then used to 

construct the graph Laplacian matrix L = D - A, where D 

is the degree matrix containing the sum of edge weights for 

each node. Alternatively, normalized Laplacians in eq. 1 

can be used to improve numerical stability25). 

𝐿𝑠𝑦𝑚 =⁡𝐷
−1

2 × 𝐿 × 𝐷
−1

2      (1) 

The key idea in spectral clustering is to transform the data 

into a new space using eigenvectors of the Laplacian 

matrix. Specifically, the eigenvectors corresponding to the 

smallest k eigenvalues provide an optimal lower-

dimensional embedding that preserves graph connectivity. 

These eigenvectors form a new feature space where the 

data is easier to separate. Once the data is projected into 

this space, a standard clustering algorithm like K-means is 

applied to group the data points into clusters. This 

approach is particularly powerful in cases where 

traditional clustering algorithms, such as K-means or 

hierarchical clustering, struggle to handle complex 

structures or non-convex clusters. 

The clustering problem is formulated as solving the graph 

Laplacian Eigen problem in eq.2: 

L=D−A       (2) 

where D is the degree matrix with Dii=∑jAij . The 

eigenvectors of L corresponding to the smallest k 

eigenvalues form the new feature space, which is clustered 

using k-means. 

2.3. Affinity Propagation 

Affinity Propagation (AP) was introduced by Frey and 

Dueck (2007) and is unique for its message-passing 

approach to clustering. The algorithm works by 

exchanging responsibility and availability messages 

between data points, iteratively refining the cluster 

assignments. Unlike traditional clustering methods like k-

means, AP does not require the user to specify the number 

of clusters in advance. Instead, it identifies exemplars 

(central data points for clusters) based on the input 

similarity matrix, making it a data-driven method. 

Responsibility: Measures how well-suited a point is to be 

the exemplar for another point. 

Availability: Measures how well-suited a point is to be the 

exemplar for all points in the cluster. 

This foundation makes AP suitable for high-dimensional 

data and data with arbitrary shapes. 

The extension of Affinity Propagation to the multiview 

setting aims to integrate the information from multiple 

views during the clustering process. MVAP works by 

constructing a joint similarity matrix derived from multiple 

views, which is then used as the input for the Affinity 

Propagation algorithm. The key idea is that the data in one 

view might provide valuable information for clustering, 

and the other views can further refine or confirm the 

clustering structure26).  

The responsibility matrix R in eq.3 and availability matrix 

A in eq.4 are iteratively updated: 

𝑅(𝑖, 𝑘) = 𝑆(𝑖, 𝑘) − 𝑚𝑎𝑥
𝑘′≠𝑘

{𝐴(𝑖, 𝑘′) + 𝑆(𝑖, 𝑘′)}    (3)  

𝐴(𝑖, 𝑘) = 𝑚𝑖𝑛⁡(0, 𝑅(𝑘, 𝑘) + ∑ 𝑚𝑎𝑥(0, 𝑅(𝑖′, 𝑘))𝑖′≠𝑖,𝑘 )(4)  

where S(i,k) is the similarity between points i and k. 

2.4. Hierarchical Clustering 

Hierarchical clustering is a powerful method in data 

analysis for grouping objects into clusters based on their 

similarities. It's especially useful when the goal is to 

understand the structure of the data and visualize 

relationships at different levels of granularity. Hierarchical 

clustering creates a hierarchy (tree structure) of clusters by 

either: 

Agglomerative (bottom-up): Starting with each object as 

its own cluster, and then progressively merging the most 

similar clusters until there's only one cluster left. 

Divisive (top-down): Starting with all objects in a single 

cluster, then recursively splitting the clusters into smaller 

EVERGREEN - Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, Vol. 12, Issue 03, pp. 1802-1826, September, 2025

- 1809 -

Cite: J. Mankar, S. Kamalapur, "Efficient Multi-View Clustering via Greedy Automatic View Selection
and Diverse Feature Integration". Evergreen, 12 (03) 1802-1826 (2025). https://doi.org/10.5109/7388866.



clusters based on dissimilarity27). 

A distance matrix D is computed in eq.5: 

Dij=‖𝑍𝑖
∗ −𝑍𝑖

∗‖      (5) 

A linkage function (e.g., single, complete, or average 

linkage) is applied to form hierarchical clusters. 

2.5. Feature Extraction 

2.5.1. Fourier Coefficients (Using PCA) 

Fourier analysis transforms an image into its frequency 

domain representation. PCA is applied to reduce 

dimensionality while preserving the most significant 

variance27). 

Given an image I(x,y), the 2D Discrete Fourier Transform 

(DFT) is in eq.6 

F(u,v)= ∑ ∑ 𝐼(𝑥, 𝑦) × 𝑒−𝑗2𝜋(
𝑢𝑥

𝑀
+

𝑣𝑦

𝑁
)𝑁−1

𝑦=0
𝑀−1
𝑥=0   (6)  

where j is the imaginary unit, and (u,v) are frequency 

coordinates. 

Compute the covariance matrix  

 Σ=
1

𝑁
∑ (𝑋𝑖 − 𝜇)(𝑋𝑖 − 𝜇)𝑇𝑁
𝑖=1     (7)  

Solve for eigenvalues and eigenvectors: ΣV=λV 

Select the top 32 eigenvectors, forming the principal 

component space. 

Principal Component Analysis (PCA) is applied to extract 

the dominant frequency components from the images. 

PCA reduces the dataset’s dimensionality while preserving 

important variance, ensuring that only the most significant 

information is retained. This transformation generates a 

feature space containing 32 principal components, referred 

to as the Fourier Coefficients view28). 

2.5.2. Profile Correlations (Using Isomap) 

Isomap, a non-linear dimensionality reduction technique, 

is used to capture geodesic distances between image 

pixels. This helps preserve the intrinsic shape of objects. 

The Isomap transformation results in a 32-dimensional 

feature space, highlighting pixel correlations and structural 

profiles. This is named the Profile Correlations view. 

Isomap is a non-linear dimensionality reduction technique 

that preserves geodesic distances29). Construct a weighted 

graph where nodes represent images, and edge weights 

represent Euclidean distances in the original feature 

space.Compute shortest paths between all points using 

Floyd-Warshall or Dijkstra’s algorithm. Perform 

Multidimensional Scaling (MDS) to obtain low-

dimensional embeddings in eq.8: 

B=- 
1

2
𝐽𝐷2𝐽     (8) 

where 𝐷2 is the squared distance matrix, and J= I- 
1

𝑁
11𝑇 

centers the data. 

The final representation is a 32-dimensional embedding of 

the profile correlations. 

2.5.3. Karhunen-Loève Representation (Using PCA) 

Another PCA transformation extracts the Karhunen-Loève 

(KL) representation, an optimal basis for representing data 

with maximum variance. Mathematically, it follows the 

same eigen-decomposition approach as PCA, but applied 

to a different initialization matrix. 

2.5.4. Pixel Averages (Using NMF) 

Non-Negative Matrix Factorization (NMF) is used to 

obtain 32 non-negative basis components from the dataset. 

Since NMF constrains all values to be positive, it is 

particularly useful for extracting pixel intensity patterns 

that emphasize dominant brightness distributions in the 

images. This is referred to as the Pixel Averages view30). 

Non-Negative Matrix Factorization (NMF) decomposes a 

non-negative data matrix XXX into two matrices: X≈WH 

Where: 

W (basis matrix) contains spatial feature components. 

H (coefficient matrix) represents pixel intensities. 

NMF optimizes: 

∣∣ 𝑋 −𝑊𝐻 ∣∣𝑊,𝐻
min 2,𝐹 

Subject to W, H≥0 

This results in a 32-dimensional Pixel Averages view. 

2.5.5. Zernike Moments (Using ICA) 

Independent Component Analysis (ICA) is employed to 

separate statistically independent sources of variation 

within the images. The resulting 32 independent 

components represent Zernike moments, which are often 

used for shape-based image recognition. This 

transformation is named the Zernike Moments view31). 

Independent Component Analysis (ICA) finds statistically 

independent components by maximizing non-

Gaussianity32). 

Zernike Polynomials: Basis functions defined over a unit 

disk in eq.9: 

 𝑍𝑛
𝑚(𝜌, 𝜃) = ⁡𝑅𝑛

𝑚(𝜌)𝑒𝑗𝑚𝜃    (9)  

where 𝑅𝑛
𝑚(ρ) is the radial polynomial. 

 

ICA models images as a linear mixture of sources: 

X=AS 

where 𝐴 is the mixing matrix and 𝑆 represents independent 

components. ICA estimates 𝐴−1 to retrieve independent 

sources. This leads to 32 Zernike Moments, useful for 

shape-based recognition. 
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2.5.6. Morphological Features (Using Random 

Projection) 

Gaussian Random Projection (GRP) is applied to map the 

dataset into a lower-dimensional space (32D) while 

maintaining distance-based relationships between images. 

This transformation captures morphological variations 

within the dataset, making it useful for structural analysis 

of the objects. The extracted features form the 

Morphological Features view33). 

Gaussian Random Projection (GRP) reduces 

dimensionality while preserving distance metrics. 

Projection Matrix33): 

R∼N(0,
1

𝑑
) 

where R is a random matrix with entries sampled from a 

normal distribution. 

X′=XR 

The 32-dimensional output captures morphological 

variations. 

2.5.7. HOG (Histogram of Oriented Gradients) 

Features 

HOG descriptors are extracted using 

skimage.feature.hog(). HOG is widely used in image 

processing for capturing gradient orientations, which 

highlight the edges and contours of objects. This 

transformation generates a distinct HOG Features view, 

which is particularly useful for recognizing shape 

patterns34).   

HOG captures object contours by computing gradient 

orientations. 

Gradient Computation: 

Given an image I(x,y) the gradients are in eq.10 and 

eq.11: 

Gx=I(x+1,y)−I(x−1,y)    (10)  

Gy=I(x,y+1)−I(x,y−1)   (11)  

Magnitude in eq.12 and orientation in eq.13 

M= √𝐺𝑥
2 + 𝐺𝑦

2     (12)  

θ= 𝑡𝑎𝑛−1
𝐺𝑦

𝐺𝑥
     (13)  

Divide image into cells and compute histograms of 

orientations. 

HOG generates a feature vector capturing edge directions. 

2.5.8. LDA Features (Using Linear Discriminant 

Analysis) 

Linear Discriminant Analysis (LDA) is performed to 

extract 19 discriminative features that maximize class 

separability. Since the dataset consists of 20 object classes, 

the number of LDA components is set to one less than the 

number of classes (19). This results in an LDA Features 

view, which enhances the distinction between different 

objects in the dataset. 

LDA maximizes class separability  

Scatter Matrices Within class scatter in eq. 14 

𝑆𝑤 = ∑ ∑ (𝑥𝑖 − 𝜇𝑐)(𝑥𝑖 − 𝜇𝑐)
𝑇

𝑥𝑖∈𝐶
𝐶
𝐶=1   (14)  

Between class scatter in eq.15 

𝑆𝑏 = ∑ 𝑁𝑐(𝜇𝑐 − 𝜇)(𝜇𝑐 − 𝜇)𝑇𝐶
𝐶=1   (15)  

Eigen decomposition 

𝑆𝑤
−1𝑆𝑏𝑣=λv     (16)  

The top 19 eigenvectors define the LDA subspace 

2.5.9. NPE (Neighborhood Preserving Embedding) 

Placeholder 

A placeholder is added for Neighborhood Preserving 

Embedding (NPE), a technique that preserves local 

relationships between data points. Since no 

implementation is provided, this transformation currently 

acts as an identity mapping, maintaining the original 

dataset structure. 

NPE preserves local structures in data. 

Graph Construction: 

Compute nearest neighbors and construct an adjacency 

matrix. 

Linear Approximation: 

Solve: 

X=WX 

subject to W preserving local relationships. 

Currently, NPE is just a placeholder. 

Once the feature representations are generated, different 

combinations of these views are explored for clustering 

using Spectral Clustering. The goal is to identify an 

optimal combination of views that improves clustering 

performance. Several evaluation metrics, including 

Adjusted Rand Index (ARI), Normalized Mutual 

Information (NMI), Silhouette Score, and Purity Score, are 

used to assess the quality of the clustering results. The 

script systematically tests all possible combinations of 

views, records their performance, and identifies the best-

performing feature set. Finally, the most effective 

combination of views is visualized using t-SNE for 

dimensionality reduction, allowing for a better 

understanding of how well the clusters are formed. The 

approach demonstrates how integrating multiple feature 

representations can enhance clustering outcomes by 

capturing diverse aspects of image data. 
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2.6. Evaluation Metrics for Clustering 

Performance 

Since clustering is an unsupervised learning task, 

evaluation metrics help assess how well the clustering 

results align with the true class labels. Below are the key 

metrics used in the code: 

2.6.1. Adjusted Rand Index (ARI) 

ARI measures the similarity between the predicted clusters 

and the ground truth labels, adjusting for random chance. 

It is a corrected version of the Rand Index (RI), which 

evaluates the proportion of correctly grouped or separated 

data points34). 

ARI= 
RI−E[RI]

max(RI)−E[RI]⁡
 

where: 

RI (Rand Index) is the fraction of point pairs correctly 

clustered or separated. E[RI] is the expected RI under a 

random clustering scenario. 

2.6.2. Normalized Mutual Information (NMI) 

NMI (eq. 17) measures the mutual dependence between 

the predicted clusters and the actual labels using entropy. 

It assesses how much information one set provides about 

the other35). 

NMI= 
2𝐼(𝑌,𝐶)⁡

𝐻(𝑌)+𝐻(𝐶)
      (17) 

where: 

I(Y, C) is the mutual information between true labels Y 

and predicted clusters C. H(Y) is the entropies of the true 

and predicted cluster distributions. 

2.6.3. Fowlkes-Mallows Index (FMI) 

FMI (eq. 18) measures the similarity between true and 

predicted clusters by computing the geometric mean of 

precision and recall12). 

FMI= √
𝑇𝑃

𝑇𝑃+𝐹𝑃
×

𝑇𝑃

𝑇𝑃+𝐹𝑁⁡
    (18) 

where: 

TP (True Positive): Pairs of points correctly assigned to the 

same cluster. 

FP (False Positive): Pairs assigned to the same cluster but 

actually belong to different classes. 

FN (False Negative): Pairs assigned to different clusters 

but actually belong to the same class. 

2.6.4. Silhouette Score 

Silhouette Score (eq.19) measures how similar an object is 

to its own cluster compared to other clusters. It evaluates 

the compactness and separation of clusters. 

S=
𝑏−𝑎

𝑚𝑎𝑥(𝑎,𝑏)
      (19) 

where: 

a= Average intra-cluster distance (distance to other points 

in the same cluster). 

b= Average nearest-cluster distance (distance to the closest 

different cluster). 

2.6.5. Homogeneity Score 

Homogeneity (eq.20) measures whether each cluster 

contains only members of a single ground-truth class14). 

H=1−
𝐻(𝑌∣𝐶)⁡

𝐻(𝑌)
      (20) 

where: 

H(Y∣C)is the conditional entropy (uncertainty in class 

labels given clusters). 

H(Y) is the entropy of the true labels. 

2.6.6. Completeness Score 

Completeness measures (eq.21) whether all members of a 

given class are assigned to the same cluster32). 

C=1−⁡
𝐻(𝐶∣𝑌)

𝐻(𝐶)⁡
      (21) 

where: 

H(C∣Y) is the conditional entropy (uncertainty in clusters 

given class labels). 

H(C) is the entropy of the clustering distribution. 

2.6.7. V-Measure Score 

V-Measure (eq.22) is the harmonic mean of Homogeneity 

and Completeness, balancing both aspects. 

V= 
2×𝐻×𝐶⁡

𝐻+𝐶
      (22) 

where: 

H is Homogeneity. 

C is Completeness. 

2.6.8. Purity Score 

Purity (eq.23) measures how many data points in each 

cluster belong to the dominant class. It’s a simple measure 

of cluster quality35). 

Purity=
1

𝑁
∑ 𝑚𝑎𝑥(𝑛𝑖,𝑗)𝑖      (23) 

where: 

N is the total number of points. 

ni,j is the number of data points in cluster iii belonging to 

class j. 

These metrics provide a comprehensive evaluation of 

clustering performance by considering factors such as 

cluster separation, class consistency, and the balance 

between homogeneity and completeness. 
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3. Results and Discussion 

3.1. Coil 20 Dataset 

The multi-view clustering experiment on the Coil20 

dataset demonstrates that Agglomerative Clustering 

outperforms all other methods, achieving perfect 

clustering performance with an ARI, NMI, FMI, 

Homogeneity, Completeness, V-Measure, and Purity of 

1.0000 across all feature combinations. Although its 

Silhouette Score varies, it remains relatively high, 

indicating well-defined cluster compactness. The superior 

performance of Agglomerative Clustering can be 

attributed to its hierarchical approach, which effectively 

captures the dataset’s intrinsic structure without requiring 

prior knowledge of cluster numbers. In contrast, Spectral 

Clustering performs well but remains feature-dependent, 

with its best combination ('Karhunen-Loeve', 'Zernike 

Moments', 'HOG') achieving an ARI of 0.7731 and an NMI 

of 0.8936, signifying strong but inferior agreement 

compared to Agglomerative Clustering. Affinity 

Propagation struggles to match their performance, 

displaying lower ARI and NMI scores despite achieving 

perfect homogeneity (1.0000), suggesting well-separated 

but incomplete clusters. Feature selection plays a crucial 

role, with ('Pixel Averages', 'Zernike Moments', 'LDA') 

and ('HOG', 'LDA') emerging as the best feature 

combinations under Agglomerative Clustering. These 

features effectively capture both local and global structural 

information, enhancing cluster separability. Overall, the 

findings confirm that Agglomerative Clustering is the most 

effective approach for multi-view clustering in computer 

vision and pattern recognition applications, offering high 

accuracy, robustness, and interpretability. Figure 3 shows 

comparative cluster formations obtained on the COIL-20 

dataset using different multi-view feature combinations. 

Figure 4 displays sample cluster-wise images highlighting 

visual grouping consistency. The top 5 performing 

combinations of feature representations based on 

clustering accuracy metrics such as ARI, NMI, and Purity 

are summarized in Table 1 

   

Spectral Clustering Affinity Propagation Agglomerative Clustering 

Fig. 3: Comparative clusters formations in Coil 20 Dataset 

Table 1: Top 5 feature combinations of coil 20 dataset 

Clustering 

Method 

Top 5 

Combinati

on out of 

503 

Adjuste

d Rand 

Index 

(ARI) 

Normalize

d Mutual 

Informatio

n (NMI) 

Fowlke

s-

Mallow

s Index 

(FMI) 

Silhouett

e Score 

Homogenei

ty 

Completene

ss 

V-

Measure 
Purity 

Spectral 

Clustering 

('Karhunen-

Loeve', 

'Pixel 

Averages', 

'LDA', 

'NPE') 

0.7396 0.9021 0.7591 0.2174 0.8851 0.9198 0.9021 0.8493 

('Karhunen-

Loeve', 

'Zernike 

Moments', 

'HOG') 

0.7731 0.8936 0.7860 0.2603 0.8852 0.9023 0.8936 0.8507 

('Fourier 

Coefficients

', 

'Karhunen-

Loeve', 

'Zernike 

0.7720 0.8931 0.7849 0.2834 0.8845 0.9018 0.8931 0.8500 
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Moments') 

('Karhunen-

Loeve', 

'HOG') 

0.7711 0.8923 0.7842 0.2607 0.8837 0.9012 0.8923 0.8493 

('Fourier 

Coefficients

', 

'Karhunen-

Loeve', 

'Zernike 

Moments', 

'HOG', 

'NPE') 

0.7712 0.8912 0.7842 0.2220 0.8827 0.8999 0.8912 0.8493 

Affinity 

Propagation 

('Zernike 

Moments', 

'HOG', 

'LDA') 

0.6910 0.8325 0.7352 0.2180 1.0000 0.7131 0.8325 1.0000 

('Pixel 

Averages', 

'HOG', 

'LDA') 

0.7229 0.8122 0.7606 0.2523 1.0000 0.6837 0.8122 1.0000 

('HOG', 

'LDA') 
0.7079 0.8088 0.7485 0.2449 1.0000 0.6790 0.8088 1.0000 

('Pixel 

Averages', 

'Zernike 

Moments', 

'HOG', 

'LDA') 

0.6607 0.7959 0.7113 0.1906 1.0000 0.6610 0.7959 1.0000 

('Fourier 

Coefficients

', 'Pixel 

Averages', 

'HOG', 

'LDA') 

0.5577 0.7922 0.6155 0.3814 0.9303 0.6899 0.7922 0.9007 

Agglomerati

ve Clustering 

('Pixel 

Averages', 

'LDA') 

1.0000 1.0000 1.0000 0.8618 1.0000 1.0000 1.0000 1.0000 

('Zernike 

Moments', 

'LDA') 

1.0000 1.0000 1.0000 0.7883 1.0000 1.0000 1.0000 1.0000 

('HOG', 

'LDA') 
1.0000 1.0000 1.0000 0.4727 1.0000 1.0000 1.0000 1.0000 

('Pixel 

Averages', 

'Zernike 

Moments', 

'LDA') 

1.0000 1.0000 1.0000 0.7835 1.0000 1.0000 1.0000 1.0000 

('Pixel 

Averages', 

'HOG', 

'LDA') 

1.0000 1.0000 1.0000 0.4720 1.0000 1.0000 1.0000 1.0000 
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Fig. 4: Cluster wise images of coil 20 dataset 

3.2. UCI Digits Dataset 

The multi-view clustering experiment on the UCI Digits 

Dataset indicates that Spectral Clustering achieves the best 

overall performance, particularly with the feature 

combination ('HOG', 'LDA'), yielding an Adjusted Rand 

Index (ARI) and Normalized Mutual Information (NMI) 

of 0.9351, an FMI of 0.9415, and a Purity of 0.9699. These 

results suggest a strong agreement with ground truth labels 

and well-formed clusters. The Silhouette Score for this 

combination is 0.3882, indicating reasonably compact 

clusters. Other feature combinations, such as ('Pixel 

Averages', 'LDA') and ('Pixel Averages', 'HOG', 'LDA'), 

also perform well but slightly lag behind in ARI and NMI 

scores. 

Agglomerative Clustering closely follows Spectral 

Clustering, with its best performance achieved using 

('HOG', 'LDA'), yielding an ARI of 0.9161 and an NMI of 
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0.9143. This method effectively captures hierarchical 

relationships within the dataset but falls marginally short 

of Spectral Clustering’s clustering accuracy. Among the 

tested feature sets, ('Pixel Averages', 'LDA') and ('Pixel 

Averages', 'HOG', 'LDA') also produce competitive results, 

demonstrating the effectiveness of global and local feature 

combinations. Affinity Propagation, however, 

significantly underperforms, with its best ARI at 0.3044 

and an NMI of 0.7018, indicating weaker alignment with 

the ground truth. Although homogeneity remains high 

(above 0.94), its lower completeness and V-measure 

scores highlight issues in fully capturing the dataset's 

inherent structure. Feature combinations involving Fourier 

Coefficients and Karhunen-Loeve further degrade 

performance, reinforcing the importance of robust feature 

selection. Overall, Spectral Clustering emerges as the best 

method, particularly when utilizing HOG and LDA 

features, due to its ability to capture intrinsic patterns in 

high-dimensional spaces through graph-based partitioning. 

Agglomerative Clustering remains a strong alternative, 

especially for datasets requiring hierarchical grouping, 

while Affinity Propagation struggles due to its sensitivity 

to input preferences and message-passing dynamics. These 

findings suggest that Spectral Clustering with HOG and 

LDA should be the preferred approach for digit recognition 

tasks, where high clustering accuracy and feature 

discrimination are essential. Figure 5 presents comparative 

cluster formations on the UCI dataset using various multi-

view feature combinations. Figure 6 illustrates 

representative images from each cluster, demonstrating the 

effectiveness of visual separation. The top 5 feature 

combinations yielding the best clustering performance are 

detailed in Table 2, based on evaluation metrics such as 

ARI, NMI, and Silhouette Score.

 
 

 
(a)Spectral Clustering (b)Affinity Propagation 

 

(c)Agglomerative Clustering 

Fig. 5: Comparative clusters formations in UCI Dataset 

Table 2: Top 5 feature combinations of UCI dataset 

Clustering 

Method 

Top 5 

Combinati

on out of 

503 

Adjuste

d Rand 

Index 

(ARI) 

Normalize

d Mutual 

Informatio

n (NMI) 

Fowlke

s-

Mallow

s Index 

(FMI) 

Silhouett

e Score 

Homogenei

ty 

Completene

ss 

V-

Measure 
Purity 

Sprectral 

Clustering 

('HOG', 

'LDA') 
0.9351 0.9351 0.9415 0.3882 0.9351 0.9352 0.9351 0.9699 

('Pixel 

Averages', 

'LDA') 

0.9198 0.9238 0.9278 0.3373 0.9235 0.9241 0.9238 0.9622 

('Pixel 

Averages', 

'HOG', 

'LDA') 

0.9147 0.9224 0.9232 0.3330 0.9219 0.9228 0.9224 0.9594 

('Zernike 

Moments', 

'LDA') 

0.8266 0.9056 0.8481 0.2106 0.8865 0.9255 0.9056 0.8837 

('Zernike 

Moments', 

'HOG', 

'LDA') 

0.8266 0.9056 0.8481 0.2098 0.8865 0.9255 0.9056 0.8837 

Affinity ('HOG', 0.3044 0.7018 0.4341 0.1134 0.9485 0.5570 0.7018 0.9638 
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Propogation 'LDA') 

('Pixel 

Averages', 

'LDA') 

0.2709 0.6872 0.4052 0.1096 0.9496 0.5384 0.6872 0.9655 

('Pixel 

Averages', 

'HOG', 

'LDA') 

0.2698 0.6868 0.4040 0.1098 0.9503 0.5377 0.6868 0.9655 

('Fourier 

Coefficients

', 'LDA') 

0.2180 0.6644 0.3604 0.1128 0.9599 0.5080 0.6644 0.9711 

('Karhunen-

Loeve', 

'LDA') 

0.2180 0.6644 0.3604 0.1128 0.9599 0.5080 0.6644 0.9711 

Agglomerati

ve Clustering 

('HOG', 

'LDA') 
0.9161 0.9143 0.9245 0.3799 0.9142 0.9145 0.9143 0.9610 

('Pixel 

Averages', 

'LDA') 

0.8904 0.9032 0.9014 0.3303 0.9018 0.9045 0.9032 0.9482 

('Pixel 

Averages', 

'HOG', 

'LDA') 

0.8865 0.9013 0.8979 0.3250 0.9000 0.9026 0.9013 0.9460 

('Pixel 

Averages', 

'Zernike 

Moments', 

'LDA') 

0.8313 0.8984 0.8534 0.2009 0.8720 0.9265 0.8984 0.8781 

('Pixel 

Averages', 

'Zernike 

Moments', 

'HOG', 

'LDA') 

0.8286 0.8962 0.8511 0.1997 0.8698 0.9242 0.8962 0.8770 

 

Fig. 6: Cluster wise images of UCI dataset
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3.3. Movies Dataset 

The clustering results for the Movies Dataset indicate that 

Affinity Propagation with the combination ('NMF', 'LDA') 

performed the best, achieving the highest Adjusted Rand 

Index (ARI) of 0.5062 and Fowlkes-Mallows Index (FMI) 

of 0.54249. This suggests that this method effectively 

groups similar movies while maintaining strong agreement 

with the ground truth labels. Spectral Clustering also 

showed competitive performance, particularly with ('ICA', 

'LDA'), yielding an ARI of 0.35997 and NMI of 0.69374, 

indicating good cluster separability. However, 

combinations involving PCA generally resulted in lower 

clustering performance, as seen with ('PCA', 'LDA'), which 

had one of the lowest ARI scores (0.09342) and NMI 

(0.35706), suggesting that PCA-based feature 

combinations may not be well-suited for clustering in this 

dataset. Overall, methods incorporating NMF and LDA 

produced more reliable and consistent clustering results 

across different algorithms. Figure 7 shows comparative 

cluster formations on the Movies dataset, highlighting the 

structural distinctions captured through multi-view 

clustering. The top 5 performing feature combinations are 

summarized in Table 3. 

 

 

 

Spectral Clustering Affinity Propagation Agglomerative Clustering 

Fig. 7: Comparative clusters formations in Movies Dataset 

Table 3: Top 5 feature combinations of Movies dataset 

Clustering 

Method 

Top 5 

Combinati

on out of 

58 

Adjuste

d Rand 

Index 

(ARI) 

Normalize

d Mutual 

Informati

on (NMI) 

Fowlke

s-

Mallow

s Index 

(FMI) 

Silhouet

te Score 

Homogenei

ty 

Completene

ss 

V-

Measu

re 

Purity 

Spectral 

Clustering 

('ICA', 

'LDA') 
0.35997 0.69374 0.42625 0.09709 0.66811 0.72141 0.69374 0.71637 

('ICA', 

'NMF', 

'LDA') 

0.34513 0.68688 0.41407 0.09824 0.66017 0.71585 0.68688 0.70827 

('NMF', 

'LDA') 
0.27526 0.67297 0.36419 0.26735 0.63451 0.71641 0.67297 0.67585 

('PCA', 

'NMF', 

'LDA') 

0.09804 0.35846 0.19133 -0.11942 0.33284 0.38835 0.35846 0.38574 

('PCA', 

'LDA') 
0.09342 0.35706 0.18830 -0.11252 0.33100 0.38757 0.35706 0.38574 

Affinity 

Propagation 

('NMF', 

'LDA') 
0.50620 0.66187 0.54249 0.23248 0.72053 0.61205 0.66187 0.74230 

('ICA', 

'LDA') 
0.31094 0.60983 0.35142 0.11499 0.69364 0.54409 0.60983 0.73582 

('ICA', 

'NMF', 

'LDA') 

0.30511 0.60668 0.34581 0.11535 0.69159 0.54034 0.60668 0.73258 

('PCA', 

'ICA', 

'LDA') 

0.08162 0.39441 0.13599 0.01705 0.44641 0.35327 0.39441 0.48622 
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('PCA', 

'ICA', 

'NMF', 

'LDA') 

0.08199 0.39377 0.13640 0.01680 0.44498 0.35314 0.39377 0.48136 

Agglomerati

ve 

Clustering 

('ICA', 

'LDA') 
0.35997 0.69374 0.42625 0.09709 0.66811 0.72141 0.69374 0.71637 

('ICA', 

'NMF', 

'LDA') 

0.34513 0.68688 0.41407 0.09824 0.66017 0.71585 0.68688 0.70827 

('NMF', 

'LDA') 
0.27526 0.67297 0.36419 0.26735 0.63451 0.71641 0.67297 0.67585 

('PCA', 

'ICA', 

'LDA') 

0.07883 0.36776 0.19096 -0.13013 0.33150 0.41291 0.36776 0.37925 

('PCA', 

'LDA') 
0.09937 0.35977 0.18834 -0.11334 0.33524 0.38817 0.35977 0.38574 

3.4. Caltech 7 Dataset 

The Caltech 7 Dataset clustering results indicate that 

Spectral Clustering and Agglomerative Clustering perform 

exceptionally well, achieving near-perfect clustering 

scores with combinations that include HOG (Histogram of 

Oriented Gradients) and LDA (Linear Discriminant 

Analysis). The best feature combinations, such as ('Pixel 

Averages', 'HOG', 'LDA') and ('Zernike Moments', 'HOG', 

'LDA'), yield an Adjusted Rand Index (ARI) of 0.9922 and 

Normalized Mutual Information (NMI) of 0.9806, 

indicating almost complete alignment with ground truth 

labels. These combinations also maintain high 

homogeneity, completeness, and purity, confirming that 

they preserve the intrinsic structure of the dataset 

effectively. The Caltech 7 Dataset, which consists of 

Dollar Bill, Faces, Garfield (Cartoon Cat), Motorbike, 

Snoopy (Cartoon Dog), Stop Sign, and Windsor Chair, 

represents diverse object categories, making it an excellent 

benchmark for evaluating clustering techniques. 

 
 

 

Spectral Clustering Affinity Propagation 

 

Agglomerative Clustering 

Fig. 8: Comparative clusters formations in Caltech 7 Dataset 

Table 4: Top 5 feature combinations of Caltech 7 dataset 

Clustering 

Method 

Top 5 

Combinatio

n out of 248 

Adjuste

d Rand 

Index 

(ARI) 

Normalize

d Mutual 

Informatio

n (NMI) 

Fowlke

s-

Mallow

s Index 

(FMI) 

Silhouett

e Score 

Homogenei

ty 

Completene

ss 

V-

Measur

e 

Purity 

Spectral 

Clustering 

('Pixel 

Averages', 

'HOG', 

'LDA') 

0.9922 0.9806 0.9952 0.3147 0.9767 0.9845 0.9806 0.9959 

('Zernike 

Moments', 

'HOG', 

0.9922 0.9806 0.9952 0.2982 0.9767 0.9845 0.9806 0.9959 
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'LDA') 

('Pixel 

Averages', 

'Zernike 

Moments', 

'HOG', 

'LDA') 

0.9922 0.9806 0.9952 0.2972 0.9767 0.9845 0.9806 0.9959 

('HOG', 

'LDA') 
0.9366 0.9270 0.9625 0.2927 0.8976 0.9583 0.9270 0.9722 

('Pixel 

Averages', 

'LDA') 

0.8273 0.8487 0.8938 0.5282 0.8664 0.8316 0.8487 0.9579 

Affinity 

Propagation 

('Pixel 

Averages', 

'LDA') 

0.1434 0.5549 0.3461 0.1338 0.9908 0.3854 0.5549 0.9966 

('Zernike 

Moments', 

'LDA') 

0.0429 0.4416 0.1875 0.0765 0.9941 0.2838 0.4416 0.9966 

('Pixel 

Averages', 

'Zernike 

Moments', 

'LDA') 

0.0396 0.4354 0.1801 0.0743 0.9941 0.2787 0.4354 0.9966 

('Pixel 

Averages', 

'Zernike 

Moments') 

0.0426 0.3393 0.1826 0.1147 0.7229 0.2217 0.3393 0.8738 

('Karhunen-

Loeve', 

'Pixel 

Averages') 

0.0003 0.2936 0.0143 0.0152 1.0000 0.1721 0.2936 1.0000 

Agglomerati

ve Clustering 

('HOG', 

'LDA') 
0.9900 0.9719 0.9939 0.3153 0.9696 0.9742 0.9719 0.9939 

('Pixel 

Averages', 

'HOG', 

'LDA') 

0.9900 0.9719 0.9939 0.3142 0.9696 0.9742 0.9719 0.9939 

('Zernike 

Moments', 

'HOG', 

'LDA') 

0.9900 0.9719 0.9939 0.2976 0.9696 0.9742 0.9719 0.9939 

('Pixel 

Averages', 

'Zernike 

Moments', 

'HOG', 

'LDA') 

0.9900 0.9719 0.9939 0.2967 0.9696 0.9742 0.9719 0.9939 

('Pixel 

Averages', 

'LDA') 

0.9887 0.9708 0.9930 0.7763 0.9682 0.9735 0.9708 0.9939 
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Fig. 9: Cluster wise images of Caltech 7 dataset 

 

Figure 8 illustrates comparative cluster formations for the 

Caltech 7 dataset using different multi-view feature 

combinations. Figure 9 presents representative images 

from each cluster, demonstrating the visual coherence 

achieved. The top 5 feature combinations, ranked by 

metrics such as ARI, NMI, and FMI, are listed in Table 5, 

showcasing the most effective fusion strategies for this 

dataset. 

In contrast, Affinity Propagation performs significantly 

worse, with ARI dropping to as low as 0.0003 when using 

('Karhunen-Loeve', 'Pixel Averages'), suggesting that it 

struggles with high-dimensional features. Even the best-

performing Affinity Propagation combinations, such as 

('Pixel Averages', 'LDA'), show an ARI of only 0.1434, 

demonstrating that this method is not well-suited for this 

dataset compared to other clustering techniques. 

Interestingly, the Silhouette Score varies widely across 

methods. Spectral Clustering and Agglomerative 

Clustering have relatively moderate silhouette scores 

(~0.29–0.52), while Affinity Propagation scores are much 

lower, indicating that clusters are not well-separated in this 

method. The highest Silhouette Score of 0.7763 is 

observed for Agglomerative Clustering using ('Pixel 

Averages', 'LDA'), implying that this combination 

provides compact and well-defined clusters. Overall, the 

results suggest that HOG and LDA are the most effective 

features for clustering the Caltech 7 Dataset, and both 

Spectral and Agglomerative Clustering methods perform 

significantly better than Affinity Propagation. The findings 

highlight that selecting the right feature representation 

plays a crucial role in optimizing clustering performance. 

 In this study, we evaluate the performance of various 

clustering methods, specifically Spectral Clustering, 

Affinity Propagation, and Agglomerative Clustering, 

across multiple datasets: Coil20, Handwritten Digits, 

Movies, and Caltech 7, with a focus on their efficacy in 

multiview clustering. The results highlight notable 

differences in the performance of these methods. 

Agglomerative Clustering emerges as the most effective 

method, particularly for the Coil20 and Caltech 7 datasets,
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Table 5: Comparative study of results with existing research and our method 

Dataset 
Clustering 

Method 

Combinati

on 
ARI NMI FMI 

Silhouet

te Score 

Homogene

ity 

Completen

ess 

V-

Measur

e 

Purity 

Coil20  

Sprectral 

Clustering+ 

GAVS 

('Karhunen

-Loeve', 

'Pixel 

Averages', 

'LDA', 

'NPE') 

0.739

6 

0.902

1 

0.759

1 
0.2174 0.8851 0.9198 0.9021 0.8493 

Affinity 

Propogation

+ 

GAVS 

('Zernike 

Moments', 

'HOG', 

'LDA') 

0.691

0 

0.832

5 

0.735

2 
0.2180 1.0000 0.7131 0.8325 1.0000 

Agglomerat

ive 

Clustering+ 

GAVS 

('Pixel 

Averages', 

'LDA') 

1.000

0 

1.000

0 

1.000

0 
0.8618 1.0000 1.0000 1.0000 1.0000 

Co-Reg -  
0.962

3 

0.989

9 
-  -  -  -  -  -  

MVLRSSC  - 
0.978

8 

0.994

3 
 -  -  -  -  -  - 

DeepNMF  - 
0.220

2 

0.514

4 
 -  -  -  -  -  - 

Handwritt

en Digits 

Sprectral 

Clustering+ 

GAVS 

('HOG', 

'LDA') 

0.935

1 

0.935

1 

0.941

5 
0.3882 0.9351 0.9352 0.9351 0.9699 

Affinity 

Propogation

+ 

GAVS 

('HOG', 

'LDA') 

0.304

4 

0.701

8 

0.434

1 
0.1134 0.9485 0.5570 0.7018 0.9638 

Agglomerat

ive 

Clustering+ 

GAVS 

('HOG', 

'LDA') 

0.916

1 

0.914

3 

0.924

5 
0.3799 0.9142 0.9145 0.9143 0.9610 

Co-Reg -  
0.648

1 

0.729

8 
-  -  -  -  -  -  

MVLRSSC  - 
0.697

1 

0.779

9 
 -  -  -  -  -  - 

MultiNMF  - 
0.725

2 
0.774  -  -  -  -  -  - 

DeepNMF -  
0.715

6 

0.796

1 
-  -  -  -  -  -  

Movies 

Sprectral 

Clustering+ 

GAVS 

('ICA', 

'LDA') 

0.359

97 

0.693

74 

0.426

25 
0.09709 0.66811 0.72141 

0.6937

4 
0.7164 

Affinity 

Propogation

+ 

GAVS 

('NMF', 

'LDA') 

0.506

20 

0.661

87 

0.542

49 
0.23248 0.72053 0.61205 

0.6618

7 
0.7423 

Agglomerat

ive 

Clustering+ 

GAVS 

('ICA', 

'LDA') 

0.359

97 

0.693

74 

0.426

25 
0.09709 0.66811 0.72141 

0.6937

4 

0.7163

7 

Co-Reg -  
0.095

5 

0.252

9 
-  -  -  -  -  -  

MVLRSSC  - 
0.140

3 

0.318

4 
 -  -  -  -  -  - 
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DeepNMF  - 
0.033

2 

0.162

6 
 -  -  -  -  -  - 

Caltech 7 

Sprectral 

Clustering+ 

GAVS 

('Pixel 

Averages', 

'HOG', 

'LDA') 

0.992

2 

0.980

6 

0.995

2 
0.3147 0.9767 0.9845 0.9806 0.9959 

Affinity 

Propogation

+ 

GAVS 

('Pixel 

Averages', 

'LDA') 

0.143

4 

0.554

9 

0.346

1 
0.1338 0.9908 0.3854 0.5549 0.9966 

Agglomerat

ive 

Clustering+ 

GAVS 

('HOG', 

'LDA') 

0.990

0 

0.971

9 

0.993

9 
0.3153 0.9696 0.9742 0.9719 0.9939 

where it achieves perfect clustering results, with an 

Adjusted Rand Index (ARI) and Normalized Mutual 

Information (NMI) both reaching 1.0000. This indicates 

that Agglomerative Clustering excels in grouping the data 

into distinct clusters while maintaining high homogeneity 

and completeness. On the other hand, Spectral Clustering 

shows strong performance in the Coil20, Handwritten 

Digits, and Caltech 7 datasets, with ARI values above 0.7 

and NMI values approaching 1.0, demonstrating its 

robustness in handling high-dimensional and diverse data. 

However, it performs less effectively on the Movies 

dataset, where its ARI and NMI are significantly lower. 

Affinity Propagation, while showing promising results on 

certain datasets like Coil20, falls short in others, 

particularly on Handwritten Digits and Caltech 7, where its 

ARI and NMI are considerably lower than those of 

Spectral and Agglomerative Clustering methods. 

Furthermore, the performance of Multiview Learning-

based methods, including MVLRSSC and Co-Reg, is 

evaluated. These methods show strong performance on 

Coil20, with MVLRSSC achieving an ARI of 0.9788 and 

NMI of 0.9943, indicating their potential in multiview 

clustering scenarios. However, as shown in Table 5 the 

performance of DeepNMF and other similar methods is 

consistently subpar across all datasets, with ARI values 

significantly lower than those of the traditional clustering 

methods. The findings suggest that Agglomerative 

Clustering and Spectral Clustering are the most reliable 

methods for multiview clustering, with Agglomerative 

Clustering particularly excelling in terms of clustering 

quality, while MVLRSSC and Co-Reg show promise for 

enhancing multiview clustering performance, particularly 

for high-dimensional datasets. These insights provide a 

valuable foundation for future work in the optimization 

and application of clustering algorithms for multiview 

learning tasks. 

The superior performance of specific multi-view feature 

combinations observed in this study can be attributed to 

their ability to capture complementary and discriminative 

information across heterogeneous feature spaces. Multi-

view learning leverages the principle that different 

representations of the same data can emphasize diverse 

structural, semantic, or statistical properties. When 

thoughtfully integrated, these views can significantly 

improve the clustering quality by enhancing both inter-

cluster separability and intra-cluster compactness. 

For instance, in the Coil20 dataset, combining Pixel 

Averages and LDA (with Agglomerative Clustering 

yielding NMI = 1.0000) is particularly effective because 

these features represent orthogonal perspectives of the 

data. Pixel Averages retain spatial intensity summaries, 

capturing global shape and pose, while LDA performs 

supervised dimensionality reduction (in a semi-supervised 

pre-processing context), projecting data into a space that 

maximizes class separation. This complementarity yields a 

joint representation that aligns with the intrinsic class 

structure of the data, making hierarchical linkage-based 

methods like Agglomerative Clustering particularly 

effective. 

In the Handwritten Digits dataset, the consistent success of 

the HOG + LDA combination can be understood through 

a similar lens. HOG descriptors encode gradient 

orientation histograms that are robust to small variations in 

handwriting, thus modeling the local stroke patterns 

essential for digit identity. LDA, again, enhances 

separability in a lower-dimensional space. Their synergy 

allows the clustering algorithms to operate in a feature 

space where digits are well-separated by both edge 

structure and class-discriminative attributes. Notably, 

Spectral Clustering achieved NMI = 0.9351 on this 

combination, suggesting that the eigenstructure of the 

similarity graph aligns well with the cluster boundaries in 

this fused space. 

In the Movies dataset, although clustering is inherently 

more challenging due to subjective human ratings and 

sparse features, the combination of ICA and LDA 

performs relatively better (NMI = 0.6937). Here, ICA 

attempts to uncover statistically independent latent factors 

from co-viewing patterns or user preferences, which may 

correspond to genre, popularity, or style. LDA provides 

further reduction while preserving separability. Their joint 

space likely filters noise while exposing latent grouping 
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structure, explaining the improved—but modest—

clustering performance. 

The Caltech 7 results further substantiate the strength of 

multi-view learning. The combination of Pixel Averages, 

HOG, and LDA incorporates global appearance (Pixel 

Averages), local shape and texture (HOG), and linear 

separability (LDA). This three-view fusion leads to high 

clustering accuracy (NMI = 0.9806 with Spectral 

Clustering), as each view captures a different level of 

abstraction. The use of Spectral Clustering is particularly 

beneficial here, as it exploits graph-based affinity among 

data points that may not be linearly separable in any single 

view but are well-separated in the combined graph 

Laplacian. 

The experimental results across all four benchmark 

datasets—COIL-20, UCI Digits, Movies, and Caltech-7—

clearly demonstrate that the proposed Greedy Automatic 

View Selection (GAVS) algorithm provides a significant 

improvement over conventional multi-view clustering 

techniques in terms of both accuracy and computational 

efficiency. Unlike traditional approaches that rely on 

brute-force evaluation of all possible feature combinations 

or require complex model training (as in deep learning-

based methods), GAVS efficiently identifies the most 

complementary feature views through a greedy search 

strategy. This drastically reduces the computational 

overhead while preserving, or even enhancing, clustering 

quality. 

The strength of GAVS lies in its ability to exploit feature 

complementarity rather than just accumulating feature 

diversity. Our study confirms that it is not the quantity of 

features used that drives clustering performance, but the 

strategic combination of views that contribute uniquely 

informative perspectives. For example, shape-based 

features like Zernike Moments, textural descriptors like 

HOG, and statistical methods such as ICA or LDA, when 

selected in synergy, yield more robust and interpretable 

clustering outputs. This synergy enhances cluster 

compactness and separation, particularly benefiting 

algorithms like Spectral and Agglomerative Clustering, 

which are sensitive to the geometry and connectivity of the 

data manifold.  

GAVS also demonstrates robust generalization across 

domains, performing effectively on both image-centric 

datasets (COIL-20, Caltech-7) and mixed-modal datasets 

(Movies). Its performance consistency is further evidenced 

by metrics such as ARI, FMI, and particularly Normalized 

Mutual Information (NMI). NMI was chosen as the 

primary metric for view selection in GAVS because it 

balances homogeneity and completeness, offering a 

normalized and interpretable measure that performs 

reliably across varying cluster sizes and dataset 

complexities. Furthermore, GAVS reduces time 

complexity significantly. Traditional exhaustive search 

methods or deep clustering models such as MVLRSSC and 

DeepNMF require extensive training and parameter 

tuning, making them impractical for real-time or large-

scale applications. In contrast, GAVS achieves 

competitive—and often superior—performance by 

making intelligent, step-wise selections of view 

combinations, bypassing the need for full feature 

enumeration or deep architecture design. This makes 

GAVS not only effective but also practical for real-world 

deployment, especially where rapid clustering and feature 

selection are critical. Interestingly, even in scenarios where 

deep learning-based clustering methods underperform due 

to data sparsity or noise, GAVS continues to deliver high-

quality clusters, as evidenced by high homogeneity, 

completeness, and V-measure scores. These scores 

confirm that the algorithm not only places similar data 

points into the same clusters but also maintains clear 

separations between different groups, which is essential for 

tasks like object recognition, document categorization, and 

user profiling. 

In summary, the GAVS approach redefines multi-view 

clustering by aligning simplicity with strategic feature 

selection, offering a compelling alternative to more 

computationally expensive and complex methods. Its 

strong empirical results across diverse datasets validate its 

utility, making it a valuable addition to the toolkit for 

unsupervised learning and pattern discovery.  

Interestingly, even advanced methods like MVLRSSC and 

DeepNMF, while competitive, do not always outperform 

simpler clustering algorithms when empowered by 

thoughtfully selected feature combinations. This 

emphasizes that feature engineering and view selection 

remain critical in the multiview learning paradigm and can 

often rival or surpass deep unsupervised learning models 

when handled carefully. Moreover, the consistently high 

homogeneity, completeness, and V-measure scores across 

datasets further confirm that multiview approaches not 

only cluster data points accurately but also maintain intra-

cluster purity and inter-cluster distinctiveness. 

4. Conclusion 

This study presents a comprehensive evaluation of multi-

view clustering techniques and introduces a novel, 

efficient approach—Greedy Automatic View Selection 

(GAVS)—to enhance clustering performance by 

systematically selecting the most complementary feature 

views. Our results demonstrate that clustering 

effectiveness is not merely a function of feature quantity 

but strongly depends on the quality and complementarity 

of the selected features. 

Among the clustering algorithms tested, Agglomerative 

Clustering consistently delivered superior results, 

including perfect performance on the COIL-20 dataset 

(ARI = 1.0000, NMI = 1.0000, FMI = 1.0000), due to its 

hierarchical nature and its ability to leverage well-
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combined feature views such as Pixel Averages and LDA. 

Spectral Clustering also showed strong performance, 

particularly with combinations like ('HOG', 'LDA') and 

('Pixel Averages', 'HOG', 'LDA'), benefiting from its 

sensitivity to non-linear manifold structures. Affinity 

Propagation, while achieving high cluster purity in some 

datasets, struggled with global cohesion, as reflected in 

lower ARI and NMI scores. 

The proposed GAVS algorithm offers a significant 

advancement by automatically identifying the most 

synergistic feature subsets based on the Normalized 

Mutual Information (NMI) metric. GAVS is novel in its 

greedy yet principled selection process, efficient in 

computation by avoiding exhaustive combinations, and 

effective in boosting clustering accuracy across multiple 

datasets. It outperformed both conventional and deep 

learning-based clustering models in terms of ARI, NMI, 

FMI, and V-measure, all while being far less time-

consuming and more interpretable. 

This research underscores that classic clustering 

algorithms, when empowered by strategic multi-view 

feature combinations identified via GAVS, can rival or 

surpass more complex models. Future work may focus on 

extending GAVS to handle deep learned embeddings, 

streaming data, and multi-modal fusion, thereby 

broadening its applicability to real-time, large-scale 

clustering challenges. 
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