九州大学学術情報リポジトリ Kyushu University Institutional Repository

Bioprocess Engineering: Harnessing Microorganisms for Sustainable Production

S. Sivamani

College of Engineering and Technology, Engineering Department, University of Technology and Applied Sciences

Saikat Banerjee

College of Engineering and Technology, Engineering Department, University of Technology and Applied Sciences

Arlene Abuda Joaquin

College of Engineering and Technology, Engineering Department, University of Technology and Applied Sciences

Namdeti Rakesh

College of Engineering and Technology, Engineering Department, University of Technology and Applied Sciences

https://doi.org/10.5109/7388840

出版情報: Evergreen. 12 (3), pp. 1438-1457, 2025-09. 九州大学グリーンテクノロジー研究教育セン

ター

バージョン:

権利関係: Creative Commons Attribution 4.0 International

Bioprocess Engineering: Harnessing Microorganisms for Sustainable Production

S. Sivamani^{1,*}, Saikat Banerjee¹, Arlene Abuda Joaquin¹, Namdeti Rakesh¹

¹College of Engineering and Technology, Engineering Department, University of Technology and Applied Sciences, Salalah, Oman

*Author to whom correspondence should be addressed: E-mail: sivmansel@gmail.com

(Received October 02, 2024; Revised June 01, 2025; Accepted July 26, 2025)

Abstract: This review delves into the pivotal role of bioprocess engineering in utilizing microbial diversity to achieve sustainable production practices across various industries. It provides a comprehensive examination of foundational principles, recent advancements, and ethical considerations within microbial biotechnology. Emphasizing the broad applicability of bioprocess engineering, the review highlights its potential impact across industries. By scrutinizing challenges and opportunities, the review underscores the indispensable contribution of bioprocess engineering to shaping a sustainable future. It offers valuable insights to researchers, practitioners, and policymakers, serving as a guide for fostering innovation and responsible practices in bioprocess engineering.

Keywords: Bioprocess engineering; Ethical considerations; Microbial diversity; Sustainable production

1. Introduction

Bioprocess engineering stands at the intersection of biology, chemistry, and engineering, dedicated to harnessing the power of living organisms to produce valuable substances, as shown in Figure 1. At its core, this field involves the design, optimization, and scaling up of biological processes, utilizing microorganisms, cells, enzymes, or other biological agents ^{1,2)}. The applications are diverse, spanning pharmaceuticals, biofuels, food products, and chemicals ^{3,4)}.

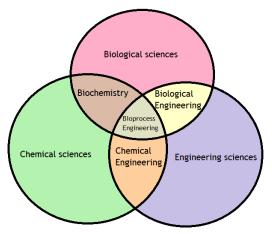


Fig. 1: Multidisciplinary nature of bioprocess engineering

1.1. Significance of bioprocess engineering

The significance of bioprocess engineering lies in its pivotal role in modern industrial processes. By manipulating biological systems, engineers can develop efficient methods for producing a wide array of bioproducts. This includes pharmaceuticals and vaccines, where the precision and complexity of living organisms offer unique advantages ⁵⁻⁷⁾. Bioprocess engineering is particularly crucial in optimizing growth conditions, nutrient supply, and environmental factors to maximize yield and efficiency ^{8,9)}. The field's impact extends to the scale-up of laboratory processes to industrial levels. This transition is a complex task requiring careful consideration of various factors to maintain product quality, efficiency, and cost-effectiveness ¹⁰⁾.

The three stages of bioprocess are upstream processing, fermentation and downstream processing (Figure 2). Upstream processing involves all the steps related to inoculum development: media preparation. cell culture ¹¹). Fermentation, a common technique in bioprocess engineering, involves the controlled growth of microorganisms in large bioreactors, showcasing the field's practical applications ¹²). Downstream processing, another key aspect, focuses on separating and purifying the desired product from the biological mixture ^{13,14}).

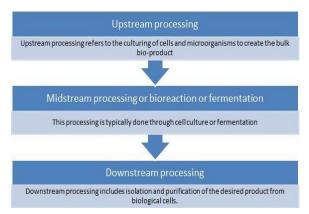


Fig. 2: Typical steps in bioprocesses

Bioprocess engineers are tasked with designing and optimizing these crucial steps ¹⁵⁾. Quality control measures are also integral, ensuring that the final product meets stringent standards throughout the production process ¹⁶⁾. **Bioprocess** aligns growing engineering with environmental concerns and the push for sustainability ¹⁷⁾. The field often involves the use of renewable resources and eco-friendly processes, contributing to more environmentally conscious approach to industrial production. Moreover, the advancements biotechnology, including genetic engineering and synthetic biology, have expanded the possibilities within bioprocess engineering, allowing for the design of microorganisms with enhanced capabilities for specific production purposes ¹⁸⁻²⁰⁾.

In essence, the significance of bioprocess engineering lies in its capacity to offer innovative and sustainable solutions across various industries. By integrating principles from multiple disciplines, bioprocess engineers contribute to the development of environmentally friendly processes that address the evolving needs of pharmaceuticals, bioenergy, food and beverages, agriculture, and environmental protection.

1.2. Harnessing microorganisms for sustainable production

The harnessing of microorganisms for sustainable production holds immense significance due to its multifaceted contributions across diverse industries, as shown in Figure 3.

One of the primary advantages lies in the renewable nature of microorganisms, which can be cultivated and reproduced, providing a continuous and sustainable resource for various applications. This is particularly evident in the field of bioenergy production, where microorganisms play a pivotal role in processes like fermentation for biofuel generation. There is a notable reduction in dependence on finite fossil fuels, aligning with the imperative to transition towards more sustainable energy sources by utilizing microorganisms in bioenergy ^{21,22}

Fig. 3: Sustainable products from bioprocess engineering

Microorganisms also play a crucial role in environmental conservation through bioremediation ²³⁾. Certain microbial species possess the remarkable ability to break down and metabolize pollutants, contributing to the clean-up of contaminated environments. This natural remediation process aids in the restoration of ecosystems affected by industrial activities, emphasizing the potential of microorganisms as allies in environmental sustainability efforts ^{24,25)}. The reduced environmental footprint of microbial processes is another compelling reason for their widespread adoption ²⁶⁾.

Microbial activities often occur at moderate temperatures and pressures, minimizing energy requirements and mitigating the release of harmful byproducts. This aligns with the principles of green chemistry, emphasizing the design of processes that are environmentally benign, resource-efficient, and economically viable ^{27,28)}.

In agriculture, the use of beneficial microorganisms contributes to sustainable practices ²⁹⁾. Certain bacteria and fungi enhance soil fertility, promote plant growth, and serve as biopesticides. There is a decreased reliance on synthetic fertilizers and pesticides, fostering environmentally friendly and sustainable farming practices by incorporating microorganisms into agricultural systems ^{30,31)}.

The application of microorganisms in pharmaceutical production is transformative for sustainable healthcare ³²⁾. Through recombinant DNA technology, bacteria and yeast are employed to produce therapeutic proteins and vaccines. This sustainable approach not only ensures a more efficient and cost-effective manufacturing process but also contributes to advancements in medicine and the accessibility of healthcare solutions ^{33,34)}.

Moreover, microorganisms play a key role in the circular economy by enabling the recycling and reuse of waste materials. Processes like composting and anaerobic digestion, facilitated by microorganisms, break down

organic waste and contribute to the creation of valuable byproducts such as organic fertilizers and biogas. This not only reduces the burden on landfills but also promotes a more circular and sustainable approach to waste management ^{35,36}. Finally, the importance of harnessing microorganisms for sustainable production is underscored by their ability to offer innovative solutions across industries. From energy to waste management, agriculture to pharmaceuticals, the versatile and eco-friendly nature of microorganisms contributes to the development of sustainable practices that address the pressing challenges of our time.

The aim of this review is to comprehensively explore the role of bioprocess engineering in leveraging microbial diversity for sustainable production. It covers foundational principles, recent advances, and ethical considerations in microbial biotechnology, emphasizing its potential across industries. By examining challenges and opportunities, the review underscores bioprocess engineering's crucial contribution to shaping a sustainable future, offering insights to researchers, practitioners, and policymakers.

2. Overview of bioprocessing in industries

2.1. Principles of bioprocess engineering

The area of bioprocess engineering combines engineering and biological concepts to create and improve procedures to produce biological products. This can involve growing mammalian cells and microorganisms like yeast, bacteria, and fungi to produce a range of goods like medicines, enzymes, biofuels, and more ³⁷⁾. With an emphasis on bioreactors, fermentation, downstream processing, process optimization and analytical methods, these are some fundamental ideas of bioprocess engineering (Figure 4).

Bioreactors: Bioreactors are the types of containers used in fermentation processes. Bioreactor design is crucial, taking mass transport, heat transfer, and mixing into account. Stirred-tank reactors, airlift reactors, and specially designed fermenters are examples of bioreactor

Fig. 4: Principles of bioprocess engineering

types. To maintain constant conditions and productivity, mass transfer, heat transfer, and fluid dynamics must be considered while scaling up a bioprocess from the laboratory to the industrial scale. Maintaining ideal conditions during the fermentation process requires constant observation and management of critical variables, including temperature, pH, dissolved oxygen, and nutrient concentrations ³⁸).

Fermentation: Selecting the right microorganism is essential. Robustness of the strain, productivity, and the capacity to generate the intended product are among the factors considered. Successful fermentation requires an understanding of the microorganism's nutritional requirements, including its carbon and nitrogen sources as well as its minerals and vitamins. regulating elements like pH, oxygen concentrations, and temperature to produce the ideal environment for the microorganism's development and productivity. Maintaining aseptic conditions is important to avoid contamination, which could harm the fermentation process ³⁷⁾.

Downstream Processing: Separation and purification of the desired product from the fermentation broth. Creating a final product formulation suitable for its intended use, whether it be a pharmaceutical, biofuel, or another application.

Process optimization: Applying statistical methods for parameter analysis and optimization in bioprocesses is a crucial aspect of ensuring efficiency and productivity. In addition, another key strategy involves altering microorganisms' metabolic pathways to increase target product generation and boost overall process efficiency. Genetic engineering and synthetic biology techniques are often employed to modify microorganisms, optimizing their biochemical pathways for enhanced productivity. adjusting the fermentation Furthermore, composition represents a significant avenue for process This includes fine-tuning improvement. concentrations, pH levels, and other factors to reduce the formation of undesirable by-products and increase the overall yield of the desired product. These integrated approaches, combining statistical methodologies, genetic manipulation, and media optimization, contribute to the advancement of bioprocess engineering by achieving higher yields, minimizing waste, and fostering more sustainable production practices. Strategies for operations employ techniques to maximize production productivity, such as fed batch or continuous cultivation

Analytical Methods: Using a range of analytical methods to keep an eye on the end product's consistency and quality. ensuring that the bioprocess satisfies regulatory requirements to produce drugs and other regulated goods. All things considered, bioprocess engineering is a multidisciplinary field that integrates ideas from engineering, microbiology, biology, and chemistry to

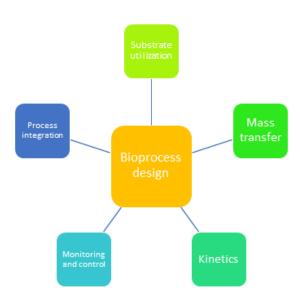


Fig. 5: Elements of bioprocess design

develop, optimize, and scale up processes to produce useful biological products ³⁹⁾.

2.2. Importance of substrate utilization, kinetics, and mass transfer in bioprocess design

The importance of substrate utilization, kinetics, and mass transfer in bioprocess design cannot be overstated (Figure 5). These factors play crucial roles in determining the efficiency and success of a bioprocess. Let's delve into each of these aspects:

Substrate Utilization: Substrate utilization refers to the consumption of raw materials (substrates) by microorganisms in a bioprocess. The primary substrate is often a carbon source, such as glucose, which serves as the energy and carbon backbone to produce desired products. The efficient utilization of substrates is essential for maximizing product yield and minimizing by-products. It directly influences the overall economics of the bioprocess ⁴⁰⁾

Kinetics: It is essential to comprehend the kinetics of microbial development. This entails researching the long-term growth and product production processes of microorganisms. Crucial elements include growth phases, substrate usage rates, and product production rates. The pace of production and accumulation, as well as the kinetics of product synthesis, influence the bioprocess's overall productivity. The bioprocess's time course can be predicted and optimized with the use of kinetic models. This data is crucial for figuring out how long fermentation should go, spotting bottlenecks, and setting up the ideal environment for maximal output ⁴¹.

Mass Transfer: The flow of materials (such as gasses and nutrients) both inside the bioreactor and between the microbes and their surroundings is referred to as mass

transfer. Enough oxygen must be available for aerobic fermentations to occur. Oxygen constraints resulting from inadequate transport of oxygen can impact cell development and product creation. Sustained development and production of the microorganisms depend on the effective transfer of nutrients from the medium. Effective removal of waste products and provision of essential nutrients and oxygen to microorganisms are guaranteed by proper mass transfer. Lower product yields, restricted cell development, and substrate constraints can result from inadequate mass transfer ⁴¹.

Integration in Bioprocess Design: When optimizing bioprocess conditions, it is crucial to take mass transfer, kinetics, and substrate use into account. This entails modifying variables like nutrition concentrations, agitation speed, and aeration rate. When moving a bioprocess from a lab to an industrial setting, it's important to carefully assess how mass transfer, kinetics, and substrate consumption will alter. The larger the process, the more difficult it is to maintain the parameters necessary for effective mass transfer ⁴².

Monitoring and Control: Online Monitoring: To modify conditions during the bioprocess, real-time monitoring of substrate concentrations, cell density, and other pertinent metrics is essential. Throughout the fermentation process, optimum mass transfer, kinetics, and substrate utilization rates can be maintained by putting control techniques into practice based on real-time data ⁴³).

To sum up, mass transfer, kinetics, and substrate utilization are essential components of bioprocess design. From laboratory-scale research to large-scale industrial production, the creation of effective and financially feasible bioprocesses is made possible by a thorough understanding of these aspects ^{42,44}).

2.3. Stages of bioprocess development and scale-up

Bioprocess development and scale-up involve a series of stages, each with its own set of challenges and considerations. The goal is to transition a laboratory-scale process to a larger, industrial-scale production while maintaining or improving the efficiency and yield of the bioprocess. The various stages of bioprocess development and scale-up are listed in Table 1.

 Table 1: Various stages of bioprocess development

Stage	Remarks
Laboratory-	Exploratory Research will identify and
Scale	select microorganisms, culture conditions,
Development	and media formulations for initial proof-of-
	concept experiments ^{45,46} . Small-Scale
	Cultivations will conduct small-scale batch,
	fed batch, or continuous cultures to optimize
	growth conditions, substrate utilization, and
	product formation.

_	<u> </u>
Pilot-Scale	Intermediate Scale is measured to conduct
Trials	trials at an intermediate scale (pilot scale) to
	bridge the gap between laboratory and
	industrial scales ⁴⁷⁾ . Equipment Similarity is
	processed to use equipment and conditions
	that closely resemble those at the intended
	larger scale.
Commercial-	Implement the optimized and validated
Scale	process for large-scale commercial
Production	production. Optimize the process further for
Troduction	economic considerations, including cost
	reduction and maximizing product yield 48.49)
	•
Scale-Up	Transfer the optimized process to larger
	bioreactors or multiple interconnected
	bioreactors. Ensure that key parameters such
	as mixing, mass transfer, and temperature
	control are maintained during scale-up.
	Address engineering challenges associated
	with larger vessels, such as heat transfer,
	mixing efficiency, and oxygenation ⁴⁸⁾ .
Scale-Down	Mimic large-scale conditions in smaller
Studies	vessels to validate the scalability of the
Studies	optimized process. Parameter Adjustment is
	required to identify and adjust parameters
	that may behave differently at smaller
	scales.
Process	Statistical Design of Experiments (DOE) is
Optimization	maintained systematically vary key process
	parameters to understand their impact on
	product yield and optimize the process and
	to develop mathematical models to
	understand microbial growth kinetics,
	substrate utilization, and product formation
	kinetics ⁴⁶⁾ .
Process	Demonstrate that the process can be
Validation	consistently reproduced at the larger scale.
	Ensure the quality and safety of the final
	product meet regulatory standards.
Monitoring	Implement real-time monitoring and control
and Control	systems to ensure consistency and adjust
	conditions as needed. Utilize automation for
	better control and reproducibility in large-
	scale production ⁴⁷⁾ .
Continuous	Feedback loop is required to establish a
	feedback loop for continuous improvement
Improvement	1
	based on ongoing monitoring and analysis of
	the production process. Adaptation of the
	process is required to changes in microbial
	characteristics, raw material quality, or other relevant factors ⁵⁰ .

Regulatory	Documentation has to comply with legal
Compliance	requirements, keep thorough records. Audits
	and Inspections is required to guarantee
	adherence to industry standards, regulatory
	audits and inspections must be planned for
	and conducted ⁵⁰). Collaboration between
	biologists, biochemists, engineers, and
	regulatory specialists is essential during
	these phases. A multidisciplinary approach
	and effective communication are critical to
	the creation and successful scaling up of
	bioprocesses.

3. Microbial diversity in bioprocess engineering

3.1. Diversity of microorganisms used in bioprocesses

Microorganisms are essential to many different bioprocesses, helping to produce a variety of valuable products. Microorganisms employed in bioprocesses are quite diverse and include yeasts, bacteria, fungus, and algae (Figure 6). The following are some instances of microorganisms and how they are used in bioprocesses: Escherichia coli (E. coli) is a type of bacteria that is frequently employed in bioprocesses to produce metabolites, enzymes, and proteins. The robustness and capacity to generate enzymes, antibiotics, and other useful chemicals are well-known characteristics of the Bacillus species. The genus Streptomyces is utilized to produce secondary metabolites and antibiotics ⁵¹⁾. Several synthetic consortia have proven to be more efficient in bioprocessing than monocultures 52). For example, Xu and Tschirner 53) demonstrated improved efficiency (up to two-fold) of ethanol manufacture by a co- culture of two strains of fermentative Clostridium compared to monocultures. They hypothesized that the observed synergy was a result of Clostridium thermolacticum utilizing the degraded substrates from Clostridium thermocellum, which are less favourable for C. thermocellum. Similarly, Zuroff et al. ⁵⁴⁾ established symbiosis between C. phytofermentans and a yeast (either S. cerevisiae or Candida molishiana) stable for 50 days 55). Some bacteria are useful in processes where methane or methanol are abundant because they can use these chemicals as a source of carbon and energy. One such

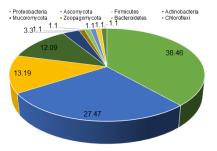


Fig. 6: Microbial diversity in bioprocess engineering

species is Methylobacterium. To synthesize acetate and other compounds from different carbon sources, acetogenic bacteria are employed, which helps to create environmentally friendly and sustainable processes ⁵⁶).

Methanogens are utilized in anaerobic digestion procedures to convert organic materials into methane to produce biogas and waste treatment. Certain industrial fermentations and bioconversion processes, for example, call for high temperatures, and thermophiles acclimated to these conditions are employed in these situations ⁵⁷⁾. Applications for halophiles that thrive in high salinity conditions include the synthesis of salt-tolerant enzymes, among other activities where salinity is a role 58). Aspergillus species are among the many fungi that are utilized to produce medicines, organic acids, and enzymes. Cellulases and other enzymes utilized in the textile and biofuel industries are produced by Trichoderma species ⁵⁷⁾. Antibiotics such as penicillin are produced using Penicillium species. Anaerobic fungi are abundant in the digestive tracts of herbivores, and they are being researched for their potential in bioconversion and lignocellulosic biomass breakdown ⁵⁹⁾.

Fungi have an ecological role in the breakdown and recycling of biomass, which makes them useful tools for the bioconversion and value-adding of agricultural and municipal waste 60). One of the consortia produced by enrichment approaches is the mutualistic pairing of fungi and methanogens 57,58). The primary metabolites of anaerobic fungi include carbon dioxide, hydrogen, and volatile fatty acids, which in turn are utilized by methanogens for growth and methane production. Yeasts such as Saccharomyces cerevisiae are widely employed in the baking, brewing, and bioethanol production industries. utilized as a host to produce recombinant proteins as well. Pichia pastoris can be used to produce heterologous enzymes and proteins 61). Pharmacies, nutritional supplements, and biofuels are made from algae, like as chlorella and spirulina. Beta-carotene production is a wellknown characteristic of Dunaliella salina 62). Microalgae are used because they can generate lipids, biofuels, and valuable chemicals like omega-3 fatty acids and astaxanthin, which are not found in regular algae ^{60,62)}. In bioprocesses, cyanobacteria such as Synechocystis are employed to directly produce biofuels and chemicals through photosynthesis.

Actinobacteria is the source of several bioactive substances including antibiotics. under bioprocesses, several extremophilic archaea are employed, especially under harsh and high-temperature conditions ⁶³⁾. Biogas is produced through anaerobic digestion using methanogenic Archaea. Cyanobacteria are a source of bioactive substances and are employed in the generation of biofuel. Lactic acid bacteria are used to produce lactic acid and to ferment dairy products and pickles. Enzymes, organic acids, and fermented foods are produced using a variety of

moulds 64).

The choice of microorganisms is contingent upon the needs of the bioprocess, including the intended product type, ambient conditions, substrate accessibility, and process scalability. Advances in genetic engineering also allow for the optimization of microorganisms for specific bioprocess applications 65). Some bacteria are useful in processes where methane or methanol are abundant because they can use these chemicals as a source of carbon and energy. One such species is Methylobacterium. To synthesize acetate and other compounds from different carbon sources, acetogenic bacteria are employed, which helps to create environmentally friendly and sustainable procedures 66). Certain bioprocesses, such the treatment of complicated wastewater or the creation of mixed-acid fermentation products, use consortiums of microorganisms rather than single strains ⁶⁴⁾.

Anaerobic fungi are abundant in herbivores' digestive tracts and are being researched for their potential in bioconversion and lignocellulosic biomass breakdown ⁵⁹⁾. The development of customized microbes with desired characteristics is made possible by advancements in synthetic biology, which increases their applicability for bioprocess applications ⁶⁶⁾. The variety of microbes utilized in bioprocesses is a testament to the flexibility and plasticity of these minuscule creatures. Our knowledge of microbial physiology and genetics is being expanded by ongoing research and technological developments, opening new avenues for the engineering and optimization of microorganisms for even more varied and sustainable bioprocess applications.

Microbial species, including bacteria, viruses, fungi, and other microorganisms, play crucial roles in various ecosystems and have both advantages and disadvantages. Here are some advantages to consider:

Decomposing organic materials, recycling nutrients, and reintroducing them into the environment for use by plants and other organisms are all made possible by bacteria and fungi. Pollutants and toxins can be broken down by certain bacteria, which helps clean up environmental risks like oil spills and industrial waste. With plants and animals, microbes form symbiotic partnerships that support nutrient absorption, disease resistance, and general health ⁶⁷⁾. Numerous food manufacturing processes, such as fermentation (which produces foods like yogurt, cheese, and bread) and the synthesis of specific vitamins, include the usage of microorganisms. It is possible to produce vaccinations, antibiotics, and other medical medicines using bacteria and fungi. Enzymes, biofuels, and other important goods are produced via biotechnological processes using microbes ⁶⁸⁾. Microorganisms play a key role in wastewater treatment by breaking down organic matter and pollutants.

Some disadvantages are as follows: Diseases in humans, animals, and plants can be brought on by pathogenic

microorganisms, such as some bacteria and viruses. Food and other perishable items can deteriorate due to microorganisms, which lowers their quality and shortens their shelf life. Humans, animals, and plants can all suffer from bacterial and fungal diseases ⁶⁹⁾. Bacteria and viruses could spread disease among living things. Treatment of infections can become difficult as microbes become resistant to antibiotics and antifungal medications. Ecological balance can be upset by specific microbial activity, such as excessive nutrient cycling or the release of toxic chemicals. Although helpful in the decomposition of garbage, certain bacteria can also lead to material deterioration and harm cultural assets and infrastructure ⁷⁰. Understanding the advantages and disadvantages of different microbial species is essential for harnessing their positive aspects while minimizing potential negative impacts on the environment, agriculture, and public health.

3.2. Selection of microorganism for a given application

Selecting the right microorganism for a specific application involves careful consideration of various factors. The choice of microorganism depends on the intended purpose, environmental conditions, and desired outcomes. Here are key considerations for selecting the right microorganism for a given application (Figure 7):

Purpose of Application: Define the specific goal of the application, whether it is bioremediation, fermentation, medical production, or another purpose. Different microorganisms have distinct capabilities suited for specific tasks.

Environmental Conditions: Consider the environmental factors, such as temperature, pH, salinity, and oxygen levels, at the application site. Microorganisms vary in their tolerance to these conditions, and selecting those that thrive in the target environment is crucial ⁷¹).

Fig. 7: Key factors for selection of microorganism for various applications in bioprocess engineering

Target Substrate or Host: Identify the substrate or host organism involved in the application. Some microorganisms have a specific affinity for certain substrates or hosts, making them more effective for tasks 72)

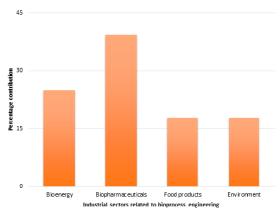
Pathogenicity and Safety: Assess the potential risks associated with the chosen microorganism, especially in applications involving human, animal, or plant health. Ensure that the selected microorganism does not pose a threat in terms of pathogenicity or unintended consequences.

Genetic Stability: Consider the genetic stability of the microorganism to ensure that it maintains its desired traits over time. This is crucial for applications requiring consistent performance ⁷³).

Regulatory Compliance: Be aware of and comply with regulatory requirements for the use of microorganisms in specific applications. Some applications may be subject to regulations to ensure safety and environmental protection. Compatibility with Other Microorganisms: Evaluate whether the chosen microorganism is compatible with other microorganisms present in the environment or the application process. Interactions between microorganisms can influence the overall success of the application ⁶⁰⁾.

Availability and Scalability: Consider the availability of the chosen microorganism, as well as its scalability for large-scale applications. Some microorganisms may be challenging to cultivate or may not be suitable for mass production ⁷²).

Biotechnological Potential: Assess the biotechnological potential of the microorganism for the desired application. This includes evaluating its ability to produce desired products, enzymes, or metabolites ⁷¹).


Monitoring and Control: Determine the ease of monitoring and controlling the selected microorganism during the application. This is crucial for maintaining the desired performance and preventing unintended consequences.

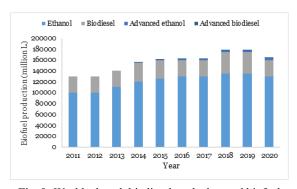
Economic Viability: Consider the economic aspects of using the microorganism, including cultivation costs, downstream processing, and overall efficiency. Evaluate whether the benefits outweigh the costs for the intended application ⁷⁴).

By carefully considering these factors, researchers and practitioners can make informed decisions when selecting microorganisms for specific applications, ensuring successful outcomes while minimizing potential risks and challenges.

4. Sustainable production through bioprocess engineering

4.1. Bioprocess Engineering Contribution to Sustainability in Different Industries

Fig. 8: Percentage contribution of various industrial sectors related to bioprocess engineering


Bioprocess designing, a multidisciplinary field at the crossing point of science and design, is instrumental in driving manageability across different ventures. This segment investigates how bioprocess designing systems add to maintainability in particular areas, zeroing in on biofuels, biopharmaceuticals, food creation and environment (Figure 8).

4.1.1. Biofuels: Advancing Renewable Energy

Biochemical Change of Biomass: Bioprocess designing works with biomass changes into biofuels through cutting-edge biochemical cycles like aging. This approach outfits microorganisms to separate natural matter into bioethanol, biodiesel, or other inexhaustible energies, diminishing reliance on non-renewable energy sources ^{75,76}.

Microbial Strain Designing: Practical biofuel creation depends on streamlining microbial strains for upgraded aging effectiveness and item yield. Bioprocess designing strategies empower the hereditary change of microorganisms to work on their capacity to change over biomass into bioenergy, adding to a more practical energy scene ⁷⁷⁾.

Shut Circle Frameworks: Bioprocess designing plans shut circle frameworks that limit squandering, water use, and energy utilization in biofuel creation. These practices improve general supportability by guaranteeing proficient asset usage all through the creation cycle ⁷⁸).

Fig. 9: World ethanol, biodiesel, and advanced biofuel production in million litres, 2011–2020. Source: authors' composition based on ⁷⁹⁾.

4.1.2. Biopharmaceuticals: Ethical and Eco-Friendly Manufacturing

Green Bioprocessing: Bioprocess designing in biopharmaceuticals underscores "green bioprocessing" works on, coordinating harmless to the ecosystem and manageable methodologies into the assembling of drug items. This incorporates enhancing cycles to diminish energy utilization, squander age, and the utilization of risky materials ^{80,81}).

Reasonable Unrefined Substances Obtaining: Bioprocess designing adds to maintainability by advancing reasonable and morally obtained unrefined substances in biopharmaceutical creation. This guarantees that the whole inventory network sticks to standards of natural obligation and social morals ⁸²⁾.

Process Heightening: Feasible creation in biopharmaceuticals is additionally accomplished through process heightening, where bioprocess designing upgrades process effectiveness, lessens creation time, and limits asset utilization, eventually prompting a more reasonable drug-producing industry ⁸³.

4.1.3. Food Production: Resource Efficiency and Waste Minimization

Accuracy Aging in the Food Business: Bioprocess designing presents accurate aging strategies in the food business, considering the development of elective proteins, compounds, and other important food parts. This approach adds to asset productivity by limiting area and water prerequisites contrasted with customary agrarian practices 84)

Bioprocessing for Squander Decrease: In food creation, bioprocess designing guides in creating techniques to change food squander into significant items, diminishing ecological effect. Microbial cycles can be tackled to change natural waste into bio-based items, encouraging a round economy in the food business ⁸⁵.

Production network Manageability: Bioprocess designing improves different phases of the food creation production network, from unrefined substance obtaining to handling and dissemination, advancing supportability through diminished squandering, energy-effective practices, and in general asset preservation ^{86,87)}. In general, bioprocess designing arises as a groundbreaking power in encouraging supportability across different ventures, displaying its flexibility intending to the novel difficulties and potential open doors introduced by biofuels, biopharmaceuticals, and food creation.

4.1.4. Reduction of Greenhouse Gas Emissions and Resource Conservation

This part digs into the crucial job of bioprocess designing in alleviating ecological effects by zeroing in on the decrease of ozone-harming substance outflows and the preservation of essential assets. **Fermentation-Based Carbon Capture:** Bioprocess designing adds to ozone-depleting substance decrease through creative aging cycles that catch and use carbon dioxide emanations. Microorganisms can be designed to change CO2 into important items, all the while sequestering carbon and diminishing emanations ⁸⁸⁾.

Biofuel Substitution for Fossil Fuels: The development of biofuels, worked with by bioprocess designing, fills in as an economical option in contrast to conventional non-renewable energy sources. By subbing biofuels for fuel or diesel, ventures can fundamentally decrease their carbon impression, adding to the worldwide work to battle environmental change ⁸⁹.

Sustainable Methane Production: Bioprocess designing backings the advancement of economical methane creation techniques utilizing microbial cycles. This approach gives an eco-accommodating energy source as well as forestalls the arrival of methane, a strong ozone-harming substance, into the environment ⁹⁰.

Closed-Loop Water Systems: Bioprocess designing plans shut circle water frameworks, limiting water utilization in modern cycles. This approach guarantees proficient water use, lessens the natural effect of waterserious enterprises, and advances dependable water stewardship ⁹¹.

Raw Material Optimization: Reasonable creation is accomplished through the improvement of unrefined substance use. Bioprocess designing empowers the proficient change of natural substances into significant items, limiting waste and guaranteeing that assets are utilized reasonably all through the creation cycle ^{92,93)}.

Energy-Efficient Bioreactors: Bioprocess designing adds to asset preservation by planning and carrying out energy-effective bioreactors. Progressed bioreactor advances improve energy utilization during aging, decreasing the general energy impression of bioprocessing tasks ⁹⁴⁾.

Waste Valorisation: Bioprocess designing lines up with the standards of the round economy by valorising waste streams. Microbial cycles can be utilized to change squandered materials into bio-based items, making a shutcircle framework that boosts asset usage and limits squandering ⁹⁵.

Recycling By-Products: In economical bioprocessing, results are seen as important assets as opposed to squandering. Bioprocess designing works with the reusing and reuse of results, adding to the roundabout economy model and lessening the ecological effect of modern exercises ⁹⁶.

Life Cycle Assessment: Bioprocess designing incorporates life cycle appraisal philosophies to assess and enhance the natural effect of creation processes. This comprehensive methodology guarantees that supportability contemplations are integrated at each phase of the item life cycle, from natural substance extraction to

end-of-life removal ⁹⁷⁾. At last, bioprocess designing arises as an amazing asset for diminishing ozone-harming substance discharges and advancing asset preservation, offering feasible arrangements that line up with the standards of ecological obligation and round economy rehearses.

4.2. Case Studies on Sustainable Production in Bioprocess Engineering

This part presents a top-to-bottom investigation of contextual analyses and models that represent the down-to-earth application and examples of overcoming adversity of feasible creation accomplished through bioprocess designing. These certifiable cases grandstand the adequacy of bioprocess designing in encouraging manageability across different businesses.

4.2.1. Biofuels: Converting Waste into Energy (Waste-to-Bioethanol Conversion)

For this situation study, a biofuel creation office uses bioprocess designing to change rural and modern waste into bioethanol. Microbial maturation processes productively separate natural waste materials, creating bioethanol as a perfect and environmentally friendly power source. This model exhibits how bioprocess designing tends to squander the executive's challenges as well as adds to the development of supportable biofuels ^{98,99)}.

4.2.2. Biopharmaceuticals: Ethical and Sustainable Drug Manufacturing (Green Bioprocessing in the Pharmaceutical Industry)

This model features a drug organization carrying out green bioprocessing rehearses through bioprocess designing. By advancing maturation processes, limiting water and energy use, and embracing maintainable obtaining rehearses, the organization accomplishes moral and eco-accommodating medication production. The case underlines how bioprocess designing can line up with maintainability objectives in the biopharmaceutical area ¹⁰⁰⁰.

4.2.3. Food Production: Precision Fermentation for Alternative Proteins (Precision Fermentation for Plant-Based Proteins)

This contextual analysis investigates the utilization of accuracy aging in the food business to deliver elective proteins. Bioprocess designing empowers the exact development of microorganisms to produce proteins that copy conventional creature-inferred proteins. The methodology not only addresses the natural effect of animal cultivating yet in addition features how bioprocess designing adds to feasible and asset-proficient food creation ¹⁰¹⁾.

4.2.4. Cross-Industry Synergies: Microbial Solutions for Waste Valorisation (Microbial Valorisation of Industrial By-Products)

This model features a cross-industry joint effort where bioprocess designing is utilized to valorise results from different modern cycles. Microbial arrangements are applied to change these results into significant bio-based materials, shutting the circle on squandering and advancing a round economy. The case exhibits the flexibility of bioprocess designing in tending to supportability challenges across various areas ¹⁰²).

4.2.5. Global Impact: Large-Scale Microbial Carbon Capture (Large-Scale Carbon Capture using Microbial Processes)

This model features a huge scope of modern utilization of microbial cycles for carbon catch. Bioprocess designing is utilized to plan and enhance microbial frameworks that catch and use carbon dioxide outflows from modern sources. The case shows how imaginative bioprocessing arrangements can add to moderating environmental change on a worldwide scale ¹⁰³⁾. In introducing these contextual analyses and models, this part gives unmistakable proof of the fruitful execution of bioprocess designing for feasible creation. Perusers gain experience in assorted applications and the extraordinary effect of bioprocess designing in tending to natural difficulties and propelling manageability objectives ¹⁰⁴⁾.

Throughout the course of recent years, the writing on manageable creation through bioprocess innovation microorganisms has seen momentous progressions, mirroring a unique crossing point of logical development and ecological cognizance ^{105,106)}. Strikingly, studies have widely investigated microbial strain designing, utilizing hereditary change procedures to improve the presentation of microorganisms in different bioprocess applications 107). This attention on fitting microbial digestion has yielded leap forwards in enhancing pathways for supportable creation, prompting further developed yields, asset productivity, and decreased sideeffects ¹⁰⁸⁾. Simultaneously, mechanical developments in bioreactor plan and control frameworks stand out, with the reconciliation of brilliant advances, for example, high level sensors, information examination, and man-made reasoning 109). The development of savvy bioreactors and particular bioprocessing stages connotes a shift towards adaptable, versatile, and decentralized assembling draws near, adding to improved productivity and diminished ecological effect 110).

Man-made consciousness (computer-based intelligence) has arisen as a central member in the domain of bioprocess improvement, as proven by the developing collection of writing underscoring computer-based intelligence driven navigation and the utilization of advanced twins ¹¹¹). AI

calculations dissect complex datasets to advance cycle boundaries continuously, while the idea of computerized twins considers virtual reproductions of bioprocess frameworks, working with recreation-based streamlining execution 112). actual Past mechanical contemplations and ongoing writing have highlighted the basic significance of natural and monetary appraisals in assessing the manageability of bioprocesses ¹¹³⁾. Life cycle appraisals (LCAs) have become vital in measuring the biological impression, energy utilization, and generally ecological effect, supplemented by monetary suitability concentrates on evaluating the monetary practicality of supportable microbial-based creation techniques 114). Together, these patterns address a comprehensive and multidisciplinary way to deal with progressing maintainable bioprocessing works on, mirroring an aggregate work to address natural difficulties and make ready for an eco-accommodating future in modern creation.

5. Advances in genetic engineering, metabolic engineering, and synthetic biology

5.1. Genetic engineering in optimizing microorganisms for specific tasks

Genetic engineering uses molecular biology technology to modify DNA sequences in genomes, using approaches like homologous recombination, which is cumbersome and inefficient due to drug selection ¹¹⁵). It is critical for genetic engineering to optimize microorganisms for a wide range of functions, from industrial applications to environmental solutions. It is used to optimize microorganisms to be modified genetically to produce valuable compounds such as enzymes, biofuels, pharmaceuticals, and other chemicals. Scientists can improve these microorganisms' metabolic pathways through genetic engineering, boosting their productivity. With the aid of synthetic biology, recombinant DNA technology, and CRISPR-Cas9, scientists can precisely alter the genetic makeup of microorganisms to increase their functionality. The discovery of CRISPR-Cas9-based genetic editing tools has been made possible through research in metabolic engineering and system biology ¹¹⁶). There are difficulties in using CRISPR-Cas9 in novel microorganisms, particularly in industrial microbe hosts, because it is challenging to use current genetic modification techniques. In this field, safety and legal measures are vital to guaranteeing that altered microorganisms do not pose a threat to human health or the environment. Oversight and regulatory frameworks play an important role in regulating and overseeing the use of modified microorganisms.

5.2. Metabolic engineering is applied to create tailored microorganisms for specific purposes

Metabolic engineering is the process of altering the

metabolic pathways of microorganisms to create customized cultures capable of producing specific chemicals or performing specific tasks. Developing microorganisms with optimum metabolic pathways in biology, chemistry, genetics, and engineering enables performance at the whole cell level. Allowing for the best design of a microbe for the efficient manufacture of pharmaceuticals and drug precursors ¹¹⁷. Genetically modified microbes can be utilized to produce biofuels as well as medicines, chemical compounds, and other applications in industry. The initial stage in metabolic engineering is to determine the exact compounds that the altered microbe is intended to generate. It includes biofuels such as ethyl alcohol or butanol, as well as important chemicals, enzymes, or medications.

Scientists investigate microorganism metabolic pathways to learn how chemicals are generated and the enzymes involved in these processes. It also aids in the identification of crucial processes and enzymes that can be altered to increase the manufacturing of the target chemical. When a particular metabolic pathway is discovered, the bacterium is genetically modified. It entails inserting, deleting, or changing certain genes that are involved in the creation or regulation of the desired molecules. These can be accomplished through gene deletion, overexpression, or gene editing with CRISPR-Cas9 or other gene-editing methods. The combination of CRISPR and Cas9 is a versatile and effective tool for modifying genes as well as regulating genes, with research focusing on expanding its applicability for each of them 118). Following genetic alterations, the designed microorganism is optimized to improve the required metabolic pathways. This could include modifying environmental variables, including pH, temperature, and nourishment availability. Furthermore, further genetic fine-tuning may be required to improve the efficacy of the pathways created. Iterative cycles of design, testing, and optimization are sometimes used in metabolic engineering.

5.3. Applications of synthetic biology in designing custom microbes

The design and construction of useful biological parts, technologies, and systems is known as synthetic biology. Synthetic biology, like machine programming, employs genetic instruments to design live cells and species ¹¹⁹. To reconstruct living systems, engineering ideas from synthetic biology and materials science are merged. As evolving and programmable materials that are dynamic and sensitive. Significant synthetic biology applications in science and medicine can be created to generate medications such as insulin, antibiotics, and vaccines at a cheaper cost and with greater efficiency than traditional approaches.

Microbes in the environment can decompose pollutants and poisons. They may, for example, break down oil spills, clean up industrial waste, and even neutralize dangerous chemicals. Microbes, on the other hand, can be engineered to produce biofuels such as ethanol, biodiesel, or other renewable energy sources, providing sustainable alternatives to fossil fuels. Microbes can be produced for therapeutic purposes in medical applications, such as generating enzymes or proteins to treat diseases or even targeting specific cells or tumours in personalized medicine. Custom microorganisms can boost crop growth, disease resistance, and nutrient absorption in the agricultural industry. Engineered microorganisms, for example, can fix nitrogen, making it more available to plants and lowering the need for chemical fertilizers.

Custom bacteria, on the other hand, can aid in the capture of carbon dioxide from the atmosphere, adding to attempts to reduce climate change. Engineered microbes may break down organic and inorganic trash, assisting in waste management operations. However, microbes in research and development are valuable tools for researching fundamental biological processes. They can be created to assist in the understanding of gene function, protein interactions, and pathways in live organisms. Because of the large amount of information that can be encoded in DNA, microbes produced using synthetic DNA sequences can be employed for data storage applications. Additionally, the capability of DNA synthesis and the system-building process of synthetic biology allows the implementation of novel ideas. A few of these elements have come together to create the first concrete synthetic biology applications for medicinal compound synthesis

Microbes can be employed in engineering to enhance Flavors, increase nutrient content, and even produce new food products for the manufacture of food engines. To ensure safety and quality, custom microorganisms can be used to identify diseases or toxins in food products. Custom microorganisms can be used to create a variety of materials, including bioplastics, bio-based fabrics, and other environmentally friendly materials. Engineered microorganisms can be programmed to synthesize complex molecules, allowing for more environmentally friendly and cost-effective manufacturing processes. The possibilities for using synthetic biology to create unique microorganisms are huge and growing all the time. They provide promising solutions in a variety of sectors, addressing issues and providing more sustainable, efficient, and precise approaches in a variety of industries.

5.4. Highlight recent breakthroughs and their implications for sustainable production

Several noteworthy discoveries in the last few years have important ramifications for sustainable production. Climate change and the accumulation of carbon dioxide are closely linked to energy and sustainability in the years 2050 and 2100 ¹²¹⁾. Sustainable production has become

increasingly appealing due to the growing efficiency and falling costs of renewable energy sources like wind and solar electricity. This shift towards cleaner energy sources reduces reliance on fossil fuels and helps mitigate greenhouse gas emissions. To lessen the likelihood of catastrophic climate change, greenhouse gas emissions must be decreased. Reducing emissions by 80% by the year 2050 is a widely recommended intermediate step in decarbonizing our energy output ¹²².

For renewable energy to be widely used, high-performance, reasonably priced batteries must be developed. The power grid's new lithium-ion batteries were created to improve energy storage systems' sustainability and electrochemical performance. First, innovative low-cobalt cathodes, organic electrodes, and aqueous electrolytes are examples of breakthrough material chemistries. In the 1990s, lithium-ion batteries saw tremendous success in portable gadgets and, more recently, electronic vehicles ¹²³). Recyclable batteries are thought to be essential to a sustainable civilization, and associated technologies are also in place.

Biotechnology advancements in agriculture through genetic engineering by speeding up the breeding of new kinds, genetic engineering helps agricultural systems adapt to the fast-changing global growth. However, the advancement of genetic engineering has made it possible to precisely manage the genomic modifications that have been created in recent years. It is now possible to transmit genetic modifications from one species into an entirely unrelated species, improving agricultural productivity or simplifying the production of specific materials ¹²⁴). They allowed for the development of crops that are more resilient to pests, diseases, and adverse environmental conditions. These advancements help reduce the need for chemical pesticides and fertilizers, reducing the environmental impact of agriculture while improving crop productivity.

The discipline of bioprocess technology, specifically genetic engineering, metabolic engineering, and synthetic biology has advanced significantly over the last five years. Scholars have investigated diverse methodologies to augment the potential of microorganisms for utilization in sectors like biofuel generation, medicines, and ecofriendly procedures. With the use of genetic engineering tools, scientists may now modify a microbe's genetic makeup to give it the ability to create useful substances or carry out certain tasks. As a result, new production strains have been created that have better traits like higher productivity, better resistance to adversity, and the capacity to synthesize complicated chemicals.

Advanced technology known as metabolic engineering is used to build extremely efficient microbial cell factories and is a fundamental element of the future economy. In a variety of natural or modified hosts, it has been widely employed to reroute the biosynthetic pathway to generate

desired products ¹²⁵⁾. Redesigning and streamlining microbial metabolic pathways have been the focus of metabolic engineering to convert raw materials more effectively into desired products. Researchers have improved yield, increased overall process efficiency, and redirected metabolic fluxes towards desired end products by understanding the biochemical events taking place within bacteria.

On the other side, synthetic biology has offered a foundation for creating new biological systems with standardized genetic components. Using this method, scientists have been able to create microorganisms with specialized roles and traits, like the ability to make customized enzymes, detect and react to stimuli outside of the cell, or even create artificial gene networks to control cellular activity. Synthetic biology significantly impacts human existence through its various applications, such as information processing, chemical manipulation, food production, building materials, energy production, and environmental maintenance ¹²⁶.

The number of studies released over the last five years on genetic engineering, metabolic engineering, and synthetic biology for bioprocess technology suggests that there is increasing interest in using microbes for a variety of industrial purposes. Future developments in these areas could lead to the creation of efficient and sustainable bioprocesses that help solve societal and environmental issues.

6. Regulatory and ethical considerations in using microbes for bioprocess engineering

6.1. Discuss regulatory aspects related to bioprocess engineering, including safety and quality control

Utilizing enzymes, bacteria, and living cells to create a variety of products in a regulated setting is known as bioprocess engineering. The software sensor's background algorithm, mathematical model, and real-time monitoring generate error-free bioprocess data, while appropriate safety measures are necessary for handling harmful microbes ¹²⁷⁾. Ensuring the safety of personnel handling live cells and microorganisms is a major concern in the field of bioprocess engineering. Strict adherence to safety procedures, including the use of appropriate personal protective equipment, the application of good manufacturing practices, and routine risk assessment, are necessary to achieve this. Businesses must abide by the rules put forth by agencies like the Occupational Safety and Health Administration to protect themselves legally and financially. These agencies set standards for the safe handling of biological materials. Quality control is a crucial component of bioprocess engineering.

Bioprocess technology development and implementation

are linked to environmental reduction, resource depletion, socioeconomic benefits, innovative products, and rural growth ¹²⁸⁾. In bioprocessing, product quality is crucial, and to guarantee that the finished product fulfils the required standards, stringent quality control procedures must be used. Crucial process variables like temperature, pH, oxygen concentration, and nutrition levels must be monitored and managed. In addition, bioprocess engineers must establish processes for the detection and prevention of contamination, including microbial testing and sanitization procedures.

Regulations also govern how waste produced during bioprocessing is to be disposed of. This involves getting rid of hazardous waste materials like chemicals and tainted media properly. When developing their processes, bioprocess engineers are supposed to take environmental factors into account and put precautions in place to reduce the environmental impact of bioprocessing. In general, regulatory compliance is essential to bioprocess engineering since it guarantees that goods are manufactured safely and to the required levels of quality. To guarantee compliance, bioprocess engineers must cooperate with regulatory agencies and be watchful about remaining current on the newest rules and standards.

6.2. Address ethical considerations surrounding genetic modification and bioprocesses

Ethical concerns regarding genetic modification and bioprocesses include potential harm to living beings' natural essence and potential misuse or abuse of technology. Generally, genetic modification can disrupt ecosystems, cause biodiversity loss, and involve intellectual property rights, raising concerns about equity, access to resources, and dependency 129). Genetic resources are increasingly valuable due to advancements in technologies and knowledge systems, which can help tackle global challenges such as agricultural growth, food security, public health, climate change, and environmental sustainability ¹³⁰⁾. On the other hand, manipulating human genes raises questions about informed consent, autonomy, and ethical dilemmas like potential stigma and discrimination. It is essential to guarantee the safety of genetically modified plants, animals, and microbes. Thorough examination and measurement should be carried out to comprehend possible hazards to human health and unanticipated effects on the ecosystem. The animals' welfare in genetic modification procedures like cloning, transgenesis, and genome editing may be questioned ¹³¹). It is imperative to consider the possible distress or injury inflicted upon animals throughout the investigation and implementation of these techniques. It is yet unclear how genetic alteration will affect the environment and public health in the long run. Genetic changes and bioprocesses have the potential to be unpredictable and irreversible, and

this needs to be considered when making ethical decisions.

6.3. Explore the role of public perception in shaping the application of microbes in microbial technology

The adoption of microbial technology is significantly influenced by public perception. The public perception of microbes impacts resistance to microbial-based products or processes. Applications cover a broad range of products and procedures where different enzyme behaviour patterns and characteristics may be needed ¹³²⁾. Furthermore, there is pressure to apply new or improved processes and to produce new commodities due to market trends, public perception, and tight laws. Positive perception encourages widespread application and influences regulations. Concerns about safety or environmental impact led to stricter regulations, while positive perception encourages lenient regulations for applications and innovation. The public's perception of microorganisms as advantageous can attract more funding for their study, development, and commercialization.

Health professionals and health educators place a great deal of emphasis on public perception, attitudes, and regarding the connection knowledge microorganisms and human health. Although there has always been a great deal of public interest in microbiology and infectious diseases, the last ten years have seen an increase in interest due to the growing body of research on microbiomes, or the communities human microorganisms that live in and on humans ¹³³⁾. However, a negative perception can limit the potential of microbiological technology, while a positive perception can encourage more exploration. Public perception significantly influences the market demand for microbiological goods and services. If consumers believe microbial-based products are safe, efficient, or ecofriendly, they are more inclined to buy them. A favourable public image and level of awareness might generate a demand in the market that propels the advancement and commercialization of microbiological technologies.

Regulatory bodies assess the risks of microbes in bioprocesses, including pathogenicity, environmental impact, and containment measures. They also ensure the safety and quality of final products, ensuring the absence of harmful microbial contaminants. This includes understanding release consequences and establishing containment measures ¹³⁴⁾. Obtaining informed consent from participants in studies or trials involving the use of microbial agents is one of the ethical considerations in bioprocess technology utilizing microbes. Ethical concerns arise from the possibility of dual use, in which the same technology or microbe might be employed for both advantageous and detrimental purposes. It is essential to weigh the advantages of research against any potential drawbacks. To guarantee justice and avoid exploitation,

the distribution of advantages and hazards related to bioprocess technologies should be ethically assessed. To limit the possible unexpected repercussions of genetic modifications, strict controls are necessary. It was demonstrated by case studies involving the use of CRISPR and other genome editing technologies in bacteria. Microbes have been used to remediate environmental problems, demonstrating the value of regulatory monitoring in averting unexpected environmental impacts ¹³⁵. Research on the utilization of microorganisms as probiotics or medicinal agents emphasizes the importance of ethical deliberations over safety, effectiveness, and fair availability.

7. Challenges and future directions

Bioprocess designing, while at the same time proclaiming progressions in practical creation, isn't without its difficulties and limits. This segment distinguishes and investigates key obstructions, examines ebb and flow research tries and arising advances pointed toward beating these difficulties, and conjectures on the possible future bearings and developments in the field.

7.1. Challenges and Limitations of Bioprocess Engineering

Product Inhibition: One critical test in bioprocess designing is item hindrance, where the aggregation of results adversely influences microbial efficiency. This peculiarity can obstruct the proficiency of maturation processes, restricting the yield of important bioproducts and representing a significant boundary to financially practical creation ¹³⁶.

Contamination Issues: Pollution addresses one more impressive test, compromising the trustworthiness of bioprocesses. Undesirable microorganisms or contaminations can think twice about quality, yield, and the general outcome of a bioprocessing activity. Keeping up with sterility and forestalling pollution is a ceaseless test that requires inventive answers for practical creation ¹³⁷)

7.2. Ongoing Research and Emerging Technologies to Address Challenges

Metabolic Engineering for Product Tolerance: Continuous examination centres around metabolic designing techniques to improve microbial resistance to finished results. By controlling microbial metabolic pathways, scientists mean to moderate item restraint, considering supported and effective creation even within the sight of raised item fixations ¹³⁸⁾.

Advanced Monitoring and Control Systems: Arising innovations incorporate the improvement of cutting-edge observing and control frameworks. Constant checking utilizing sensor organizations and modern control calculations streamlines bioprocess conditions,

forestalling and relieving pollution occasions. These advancements upgrade process dependability and add to the vigour of bioprocessing tasks ¹³⁹).

7.3. Future Directions and Potential Innovations in the Field

Synthetic Biology Applications: The future of bioprocess designing holds promising developments in engineered science applications. Hand crafted microorganisms with custom fitted hereditary circuits could empower exact command over metabolic pathways, upgrading item yields and beating difficulties like item hindrance. Manufactured science approaches might upset the field by giving remarkable control and consistency in bioprocessing ¹⁴⁰⁾. Nanotechnology Integration: Mix of nanotechnology into bioprocess designing addresses a likely boondocks. Nanoscale materials and sensors could be utilized to upgrade aging cycles, further develop item recuperation, and address difficulties connected with mass exchange constraints. Nanotechnology might offer novel answers for streamline bioprocessing at a microscale level, prompting more proficient and supportable creation frameworks ¹⁴¹⁾. All in all, while challenges endure in bioprocess designing, progressing research and arising advances are preparing for creative arrangements. The eventual fate of the field holds energizing prospects, with manufactured science, high level checking frameworks, and nanotechnology ready to drive the following rush of maintainable creation works on, beating current limits and opening new outskirts in bridling microorganisms for bioprocessing.

8. Conclusion

In conclusion, this review underscores the vital role of bioprocess engineering in unlocking the potential of microbial diversity for sustainable production across diverse industries. By examining foundational principles, recent advances, and ethical considerations in microbial biotechnology, the review highlights the significant impact of bioprocess engineering on shaping a sustainable future. It emphasizes the importance of responsible practices and innovation in leveraging bioprocess engineering for maximizing efficiency and minimizing environmental impact. Ultimately, this review serves as a valuable resource for researchers, practitioners, and policymakers, offering insights and guidance for advancing sustainable production through bioprocess engineering. Looking ahead, advancing bioprocess engineering will require a synergistic approach that integrates real-world case studies, process intensification strategies, and solutions to scale-up challenges such as bioreactor design and mass transfer limitations. Emphasis on technologies like cavitation, microreactors, and monolith reactors, alongside economic feasibility, will be key to industrial implementation. Additionally, emerging digital tools,

including AI-driven optimization, machine learning, and automation, will enhance process control, efficiency, and scalability. Together, these innovations will support the development of sustainable, resilient, and resource-efficient bioproduction systems.

References

- Stephanopoulos, G., & Reklaitis, G. V. (2011). Process systems engineering: From Solvay to modern bio-and nanotechnology.: A history of development, successes and prospects for the future. Chemical engineering science, 66(19), 4272-4306.
- Adesina, O., Anzai, I. A., Avalos, J. L., & Barstow,
 B. (2017). Embracing biological solutions to the sustainable energy challenge. Chem, 2(1), 20-51.
- 3) Samal, S. K., & Preetam, S. (2022). Synthetic Biology: Refining Human Health. In Microbial Engineering for Therapeutics (pp. 57-70). Singapore: Springer Nature Singapore.
- Nguyen, P. Q., Courchesne, N. M. D., Duraj-Thatte, A., Praveschotinunt, P., & Joshi, N. S. (2018). Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Advanced Materials, 30(19), 1704847.
- 5) Rangel, A. E., Gomez Ramirez, J. M., & Gonzalez Barrios, A. F. (2020). From industrial by-products to value-added compounds: the design of efficient microbial cell factories by coupling systems metabolic engineering and bioprocesses. Biofuels, Bioproducts and Biorefining, 14(6), 1228-1238.
- 6) Singh, A., & Singhal, B. (2023). Role of Machine Learning in Bioprocess Engineering: Current Perspectives and Future Directions. Design and Applications of Nature Inspired Optimization: Contribution of Women Leaders in the Field, 39-54.
- 7) Sarsaiya, S., Shi, J., & Chen, J. (2019). Bioengineering tools for the production of pharmaceuticals: current perspective and future outlook. Bioengineered, 10(1), 469-492.
- Lari, Z., Moradi-kheibari, N., Ahmadzadeh, H., Abrishamchi, P., Moheimani, N. R., & Murry, M. A. (2016). Bioprocess engineering of microalgae to optimize lipid production through nutrient management. Journal of Applied Phycology, 28, 3235-3250.
- 9) Ho, S. H., Ye, X., Hasunuma, T., Chang, J. S., & Kondo, A. (2014). Perspectives on engineering strategies for improving biofuel production from microalgae—a critical review. Biotechnology advances, 32(8), 1448-1459.
- Anderson, N. G. (2001). Practical use of continuous processing in developing and scaling up laboratory processes. Organic Process Research &

- Development, 5(6), 613-621.
- Piccinno, F., Hischier, R., Seeger, S., & Som, C. (2016). From laboratory to industrial scale: a scaleup framework for chemical processes in life cycle assessment studies. Journal of Cleaner Production, 135, 1085-1097.
- 12) Spier, M. R., Vandenberghe, L. P. D. S., Medeiros, A. B. P., & Soccol, C. R. (2011). Application of different types of bioreactors in bioprocesses. Bioreactors: Design, properties and applications, 53-87.
- 13) Zydney, A. L. (2016). Continuous downstream processing for high value biological products: a review. Biotechnology and bioengineering, 113(3), 465-475.
- 14) Cramer, S. M., & Holstein, M. A. (2011). Downstream bioprocessing: recent advances and future promise. Current Opinion in Chemical Engineering, 1(1), 27-37.
- 15) Rathore, A. S., Mishra, S., Nikita, S., & Priyanka, P. (2021). Bioprocess control: Current progress and future perspectives. Life, 11(6), 557.
- 16) Yu, L. X. (2008). Pharmaceutical quality by design: product and process development, understanding, and control. Pharmaceutical research, 25, 781-791.
- 17) Kumar, A., Udugama, I. A., Gargalo, C. L., & Gernaey, K. V. (2020). Why is batch processing still dominating the biologics landscape? Towards an integrated continuous bioprocessing alternative. Processes, 8(12), 1641.
- 18) Sharma, Y. C., Singh, B., & Korstad, J. (2011). A critical review on recent methods used for economically viable and eco-friendly development of microalgae as a potential feedstock for synthesis of biodiesel. Green chemistry, 13(11), 2993-3006.
- 19) Kumar, A., Kumar, J., & Bhaskar, T. (2020). Utilization of lignin: A sustainable and eco-friendly approach. Journal of the Energy Institute, 93(1), 235-271.
- 20) Thyavihalli Girijappa, Y. G., Mavinkere Rangappa, S., Parameswaranpillai, J., & Siengchin, S. (2019). Natural fibers as sustainable and renewable resource for development of eco-friendly composites: a comprehensive review. Frontiers in Materials, 6, 226.
- 21) Straathof, A. J., Wahl, S. A., Benjamin, K. R., Takors, R., Wierckx, N., & Noorman, H. J. (2019). Grand research challenges for sustainable industrial biotechnology. Trends in biotechnology, 37(10), 1042-1050.
- 22) Willke, T. H., & Vorlop, K. D. (2004). Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Applied microbiology and biotechnology, 66, 131-142.
- 23) Bala, S., Garg, D., Thirumalesh, B. V., Sharma, M., Sridhar, K., Inbarai, B. S., & Tripathi, M. (2022).

- Recent strategies for bioremediation of emerging pollutants: a review for a green and sustainable environment. Toxics, 10(8), 484.
- 24) Abatenh, E., Gizaw, B., Tsegaye, Z., & Wassie, M. (2017). The role of microorganisms in bioremediation-A review. Open Journal of Environmental Biology, 2(1), 038-046.
- 25) Bhatt, P., Gangola, S., Bhandari, G., Zhang, W., Maithani, D., Mishra, S., & Chen, S. (2021). New insights into the degradation of synthetic pollutants in contaminated environments. Chemosphere, 268, 128827.
- 26) Gomiero, T., Pimentel, D., & Paoletti, M. G. (2011). Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Critical reviews in plant sciences, 30(1-2), 95-124.
- 27) Chai, X., Tonjes, D. J., & Mahajan, D. (2016). Methane emissions as energy reservoir: context, scope, causes and mitigation strategies. Progress in Energy and Combustion Science, 56, 33-70.
- 28) Karlovsky, P., Suman, M., Berthiller, F., De Meester, J., Eisenbrand, G., Perrin, I., ... & Dussort, P. (2016). Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin research, 32, 179-205.
- 29) Ahirwar, N. K., Singh, R., Chaurasia, S., Chandra, R., & Ramana, S. (2020). Effective role of beneficial microbes in achieving the sustainable agriculture and eco-friendly environment development goals: a review. Front. Microbiol, 5, 111-123.
- 30) Majeed, A., Muhammad, Z., & Ahmad, H. (2018). Plant growth promoting bacteria: role in soil improvement, abiotic and biotic stress management of crops. Plant cell reports, 37, 1599-1609.
- 31) Yadav, A. N., Kour, D., & Ahluwalia, A. S. (2021). Soil and phytomicrobiomes for plant growth and soil fertility. Plant Science Today, 8(sp1), 1-5.
- 32) MacNeill, A. J., Hopf, H., Khanuja, A., Alizamir, S., Bilec, M., Eckelman, M. J., ... & Sherman, J. D. (2020). Transforming the medical device industry: road map to a circular economy: study examines a medical device industry transformation. Health Affairs, 39(12), 2088-2097.
- 33) Ohtake, S., & Arakawa, T. (2013). Recombinant therapeutic protein vaccines. Protein and peptide letters, 20(12), 1324-1344.
- 34) Liljeqvist, S., & Ståhl, S. (1999). Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. Journal of biotechnology, 73(1), 1-33.
- 35) Lin, L., Xu, F., Ge, X., & Li, Y. (2018). Improving the sustainability of organic waste management practices in the food-energy-water nexus: A comparative review of anaerobic digestion and

- composting. Renewable and Sustainable Energy Reviews, 89, 151-167.
- 36) Atelge, M. R., Krisa, D., Kumar, G., Eskicioglu, C., Nguyen, D. D., Chang, S. W., ... & Unalan, S. (2020). Biogas production from organic waste: recent progress and perspectives. Waste and Biomass Valorization, 11, 1019-1040.
- 37) Costa LR, Féris LA. Use of ozonation technology to combat viruses and bacteria in aquatic environments: Problems and application perspectives for SARS-CoV-2. Environmental Technology. 2023 Jul 16;44(16):2490-502.
- 38) Stabryla LM, Moncure PJ, Millstone JE, Gilbertson LM. Particle-Driven Effects at the Bacteria Interface: A Nanosilver Investigation of Particle Shape and Dose Metric. ACS Applied Materials & Interfaces. 2023 Aug 15;15(33):39027-38.
- 39) Reistrup CH. Considerations for the Use of Mycorrhizal Fungi Inoculants in Coal Mine Reclamation and Reforestation in Appalachia: A Guide of Best Practices and Management Recommendations.
- 40) Z. Du, H. Li, T. Gu, A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy, Biotechnol. Adv. 25 (2007) 464–482.
- B.H. Kim, I.S. Chang, G.M. Gadd, Challenges in microbial fuel cell development and operation, Appl. Microbiol. Biotechnol. 76 (2007) 485–494.
- 42) I.S. Kim, K.J. Chae, M.J. Choi, W. Verstraete, Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation, Environ. Eng. Res. 13 (2008) 51–65.
- 43) de Mello AF, de Souza Vandenberghe LP, Herrmann LW, Letti LA, Burgos WJ, Scapini T, Manzoki MC, de Oliveira PZ, Soccol CR. Strategies and engineering aspects on the scale-up of bioreactors for different bioprocesses. Systems Microbiology and Biomanufacturing. 2023 Oct 10:1-21.
- 44) Dholiya K, Parmar A, Bashir HS. Scale-up: Lab to commercial scale. InBasic Biotechniques for Bioprocess and Bioentrepreneurship 2023 Jan 1 (pp. 341-353). Academic Press.
- 45) Queiroz SS, Jofre FM, Mussatto SI, Maria das Graças AF. Scaling up xylitol bioproduction: challenges to achieve a profitable bioprocess. Renewable and Sustainable Energy Reviews. 2022 Feb 1;154:111789.
- 46) Ganeshan S, Kim SH, Vujanovic V. Scaling-up production of plant endophytes in bioreactors: concepts, challenges and perspectives. Bioresources and Bioprocessing. 2021 Dec;8:1-6.
- 47) S.T. Oh, J.R. Kim, G.C. Premier, T.H. Lee, C. Kim, W.T. Sloan, Sustainable wastewater treatment: how might microbial fuel cells contribute, Biotechnol.

- Adv. 28 (2010) 871-881.
- 48) El Enshasy HA. Fungal morphology: a challenge in bioprocess engineering industries for product development. Current Opinion in Chemical Engineering. 2022 Mar 1;35:100729.
- 49) Boodhoo KV, Flickinger MC, Woodley JM, Emanuelsson EA. Bioprocess intensification: A route to efficient and sustainable biocatalytic transformations for the future. Chemical Engineering and Processing-Process Intensification. 2022 Feb 1;172:108793.
- 50) Mondal PP, Galodha A, Verma VK, Singh V, Show PL, Awasthi MK, Lall B, Anees S, Pollmann K, Jain R. Review on machine learning-based bioprocess optimization, monitoring, and control systems. Bioresource technology. 2022 Dec 22:128523.
- 51) Barragán-Ocaña A, Silva-Borjas P, Olmos-Peña S, Polanco-Olguín M. Biotechnology and bioprocesses: Their contribution to sustainability. Processes. 2020 Apr 7;8(4):436.
- 52) Regassa H, Bose D, Mukherjee A. Review of microorganisms and their enzymatic products for industrial bioprocesses. Industrial Biotechnology. 2021 Aug 1;17(4):214-26.
- 53) Periyasamy S, Isabel JB, Kavitha S, Karthik V, Mohamed BA, Gizaw DG, Sivashanmugam P, Aminabhavi TM. Recent advances in consolidated bioprocessing for conversion of lignocellulosic biomass into bioethanol—A review. Chemical Engineering Journal. 2023 Feb 1;453:139783.
- 54) El Sheikha AF, Ray RC. Bioprocessing of horticultural wastes by solid-state fermentation into value-added/innovative bioproducts: A review. Food Reviews International. 2023 Aug 18;39(6):3009-65.
- 55) Balbino TR, Sánchez-Muñoz S, Díaz-Ruíz E, Rocha TM, Mier-Alba E, Inácio SC, Castro-Alonso MJ, de Carvalho Santos-Ebinuma V, Pereira JF, Santos JC, da Silva SS. Lignocellulosic biorefineries as a platform for the production of high-value yeast derived pigments—A review. Bioresource Technology. 2023 Jul 25:129549.
- 56) Sadh PK, Duhan S, Duhan JS. Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresources and Bioprocessing. 2018 Dec;5(1):1-5.
- 57) Pagels F, Guedes AC, Vicente AA, Vasconcelos V. Cyanobacteria-based bioprocess for cosmetic products—cyanobium sp. as a novel source of bioactive pigments. Phycology. 2023 Jan 28;3(1):47-64
- 58) Wang Y, Zhang C, Liu F, Jin Z, Xia X. Ecological succession and functional characteristics of lactic acid bacteria in traditional fermented foods. Critical reviews in food science and nutrition. 2023 Aug 29;63(22):5841-55.

- 59) Rodríguez-García EE, Soto-Mendoza A, Guajardo D. Serialization and Data Management of Bioreactors through Digitization: Bioprocessing 4.0 a Systematic Review. In2023 Portland International Conference on Management of Engineering and Technology (PICMET) 2023 Jul 23 (pp. 1-8). IEEE.
- 60) Lu H, Yadav V, Zhong M, Bilal M, Taherzadeh MJ, Iqbal HM. Bioengineered microbial platforms for biomass-derived biofuel production—A review. Chemosphere. 2022 Feb 1;288:132528.
- 61) Cai Y, Yang K, Qiu C, Bi Y, Tian B, Bi X. A Review of Manganese-Oxidizing Bacteria (MnOB): Applications, Future Concerns, and Challenges. International Journal of Environmental Research and Public Health. 2023 Jan 10;20(2):1272.
- 62) González-Tenorio D, Dudek K, Valdez-Vazquez I. Butanol and caproate production by consolidated bioprocessing after adaptive evolution of a fermentative microbial community. Biofuels, Bioproducts and Biorefining. 2023 Sep;17(5):1221-35
- 63) Nag M, Lahiri D, Ghosh S, Sarkar T, Pati S, Das AP, Ram DK, Bhattacharya D, Ray RR. Application of Microorganisms in Biotransformation and Bioremediation of Environmental Contaminant: A Review. Geomicrobiology Journal. 2023 Oct 5:1-8.
- 64) Kapoore RV, Padmaperuma G, Maneein S, Vaidyanathan S. Co-culturing microbial consortia: approaches for applications in biomanufacturing and bioprocessing. Critical Reviews in Biotechnology. 2022 Jan 2;42(1):46-72.
- 65) M.H. Osman, A.A. Shah, F.C. Walsh, Recent progress and continuing challenges in bio-fuel cells: Part II. Microbial, Biosens. Bioelectron. 26 (2010) 953–963.
- V. Sharma, P.P. Kundu, Biocatalysts in microbial fuel cells, Enzyme Microb. Technol. 47 (2010) 179– 188.
- 67) Deng S, Wang C, Ngo HH, Guo W, You N, Tang H, Yu H, Tang L, Han J. Comparative review on microbial electrochemical technologies for resource recovery from wastewater towards circular economy and carbon neutrality. Bioresource Technology. 2023 Mar 16:128906.
- 68) Zhang J, Zhou M, Li X, Fan Y, Li J, Lu K, Wen H, Ren J. Recent advances of fluorescent sensors for bacteria detection-A review. Talanta. 2023 Mar 1;254:124133.
- 69) Sutkar PR, Gadewar RD, Dhulap VP. Recent trends in degradation of microplastics in the environment: A state-of-the-art review. Journal of Hazardous Materials Advances. 2023 Jul 16:100343.
- 70) Malik S, Kishore S, Dhasmana A, Kumari P, Mitra T, Chaudhary V, Kumari R, Bora J, Ranjan A, Minkina T, Rajput VD. A Perspective Review on

- Microbial Fuel Cells in Treatment and Product Recovery from Wastewater. Water. 2023 Jan 12;15(2):316.
- 71) Zeng G, Zhang R, Liang D, Wang F, Han Y, Luo Y, Gao P, Wang Q, Wang Q, Yu C, Jin L. Comparison of the Advantages and Disadvantages of Algae Removal Technology and Its Development Status. Water. 2023 Mar 13;15(6):1104.
- 72) Zhuang Q, Guo H, Peng T, Ding E, Zhao H, Liu Q, He S, Zhao G. Advances in the detection of βlactamase: A review. International Journal of Biological Macromolecules. 2023 Aug 6:126159.
- 73) Nezamdoost-Sani N, Khaledabad MA, Amiri S, Khaneghah AM. Alginate and derivatives hydrogels in encapsulation of probiotic bacteria: An updated review. Food Bioscience. 2023 Jan 27:102433.
- 74) Singh R, Chakma S, Birke V. Performance of field-scale permeable reactive barriers: An overview on potentials and possible implications for in-situ groundwater remediation applications. Science of The Total Environment. 2023 Feb 1;858:158838.
- 75) Olsson L, Rugbjerg P, Pianale LT, Trivellin C. Robustness: linking strain design to viable bioprocesses. Trends in Biotechnology. 2022 Aug 1.
- 76) Redko, A., Redko, O., & Dipippo, R. (2020). Biofuels conversion: energy-saving processes and use of biogas.
- 77) Fuzhong Zhang, Sarah Rodriguez, Jay D Keasling. (2011). Metabolic engineering of microbial pathways for advanced biofuels production, Current Opinion in Biotechnology, Volume 22, issue 6, Pages 775-783.
- 78) Chaurasia, D., Boudh, S., Singh, J.S., & Chaturvedi, P. (2020). Microbes and Microbial Enzymes as a Sustainable Energy Source for Biofuel Production.
- 79) Advanced Biofuels Tracking Database. Available online: https://www.biofuelsdigest.com/bdigest/tag/advance d-biofuels-tracking-database/ (accessed on 12 July 2023).
- 80) Chisti, Y., & Moo-young, M. (1996). Bioprocess intensification through bioreactor engineering. Chemical Engineering Research & Design, 74, 575-583.
- 81) Kennes, C., Rene, E.R., & Veiga, M.C. (2009). Bioprocesses for air pollution control. Journal of Chemical Technology & Biotechnology, 84, 1419-1436.
- 82) Usmani, Z., Sharma, M., Awasthi, A.K., Sivakumar, N., Lukk, T., Pecoraro, L., Thakur, V.K., Roberts, D., Newbold, J.C., & Gupta, V.K. (2020). Bioprocessing of waste biomass for sustainable product development and minimizing environmental impact. Bioresource technology, 124548.
- 83) Ladisch, M.R. (2005). Bioprocess Engineering (Biotechnology).

- 84) Flickinger, M.C., & Drew, S.W. (1999). Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation.
- 85) Rogers, P.L., Jeon, Y.J., & Svenson, C.J. (2005). Application of Biotechnology to Industrial Sustainability. Process Safety and Environmental Protection, 83, 499-503.
- 86) Barragán-Ocaña, A., Silva-Borjas, P., Olmos-Peña, S., & Polanco-Olguín, M. (2020). Biotechnology and Bioprocesses: Their Contribution to Sustainability. Processes.
- 87) Neubauer, P., Cruz, N., Glauche, F., Junne, S., Knepper, A., & Raven, M. (2013). Consistent development of bioprocesses from microliter cultures to the industrial scale. Engineering in Life Sciences, 13.
- 88) Huber-Humer, M., Gebert, J., & Hilger, H.A. (2008). Biotic systems to mitigate landfill methane emissions. Waste Management & Research, 26, 33 46.
- 89) Cantera, S., Muñoz, R., Lebrero, R., López, J.C., Rodríguez, Y., & García-Encina, P.A. (2018). Technologies for the bioconversion of methane into more valuable products. Current opinion in biotechnology, 50, 128-135.
- 90) Xia, A., Cheng, J., & Murphy, J.D. (2016). Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel. Biotechnology advances, 34 5, 451-472.
- 91) Shimizu, K. (1996). A tutorial review on bioprocess systems engineering. Computers & Chemical Engineering, 20, 915-941.
- 92) Yang, S. (2013). Bioprocessing for value-added products from renewable resources: new technologies and applications.
- 93) Udugama, I.A., Mansouri, S.S., Mitić, A., Flores-Alsina, X., & Gernaey, K.V. (2017). Perspectives on Resource Recovery from Bio-Based Production Processes: From Concept to Implementation.
- 94) Liu, C., Sun, Y., Li, N., Zhang, B., & Liu, J. (2019). Improved energy utilization efficiency via adding solar radiant heating mode for traditional bioreactor to dispose straw: Experimental and numerical evaluation. Waste management, 89, 303-312.
- 95) Maina, S., Kachrimanidou, V., & Koutinas, A.A. (2017). A roadmap towards a circular and sustainable bioeconomy through waste valorization. Green and Sustainable Chemistry, 8, 18-23.
- 96) Afolalu, S.A., Salawu, E.Y., Ogedengbe, T.S., Joseph, O.O., Okwilagwe, O.O., Emetere, M.E., Yusuf, O.O., Noiki, A.A., & Akinlabi, S.A. (2021). Bio-Agro Waste Valorization and its Sustainability in the Industry: A Review. IOP Conference Series: Materials Science and Engineering, 1107.
- 97) Venkata Mohan, S., Nikhil, G.N., Chiranjeevi, P.V.,

- Nagendranatha Reddy, C., Rohit, M., Kumar, A., & Sarkar, O. (2016). Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresource technology, 215, 2-12.
- 98) Duan, Y., Pandey, A., Zhang, Z., Awasthi, M.K., Bhatia, S.K., & Taherzadeh, M.J. (2020). Organic solid waste biorefinery: Sustainable strategy for emerging circular bioeconomy in China. Industrial Crops and Products, 153, 112568.
- 99) Ochieng, R., Gebremedhin, A., & Sarker, S. (2022). Integration of Waste to Bioenergy Conversion Systems: A Critical Review. Energies.
- 100) Lalor, F., Fitzpatrick, J., Sage, C., & Byrne, E. (2019). Sustainability in the biopharmaceutical industry: Seeking a holistic perspective. Biotechnology advances.
- 101) Seo, S., & Jin, Y. (2022). Next-Generation Genetic and Fermentation Technologies for Safe and Sustainable Production of Food Ingredients: Colors and Flavorings. Annual review of food science and technology.
- 102) Cheng, S.Y., Tan, X., Show, P.L., Rambabu, K., Banat, F., Veeramuthu, A., Lau, B.F., Ng, E., & Ling, T.C. (2020). Incorporating biowaste into circular bioeconomy: A critical review of current trend and scaling up feasibility. Environmental Technology and Innovation, 19, 101034.
- 103) Tripathi, C., Malhotra, J., & Kaur, J. (2022). Employing Food and Industrial Microbiology to Accelerate Sustainable Development Goals. Microsphere.
- 104) Bajpai, P. (2020). Industrial sustainability and biotechnology.
- 105) Straathof, A.J., Wahl, S.A., Benjamin, K., Takors, R., Wierckx, N., Noorman, H., & Noorman, H. (2019). Grand Research Challenges for Sustainable Industrial Biotechnology. Trends in biotechnology.
- 106) Gargalo, C.L., Udugama, I.A., Pontius, K., Lopez, P.C., Nielsen, R., Hasanzadeh, A., Mansouri, S.S., Bayer, C., Junicke, H., & Gernaey, K.V. (2020). Towards smart biomanufacturing: a perspective on recent developments in industrial measurement and monitoring technologies for bio-based production processes. Journal of Industrial Microbiology & Biotechnology, 47, 947 964.
- 107) Xu, Y., Wu, Y., Lv, X., Sun, G., Zhang, H., Chen, T., Du, G., Li, J., & Liu, L. (2021). Design and construction of novel biocatalyst for bioprocessing: Recent advances and future outlook. Bioresource technology, 332, 125071.
- 108) Narayanan, H., Luna, M.F., Stosch, M.V., Cruz Bournazou, M.N., Polotti, G., Morbidelli, M., Butté, A., & Sokolov, M. (2020). Bioprocessing in the Digital Age: The Role of Process Models.

- Biotechnology Journal, 15.
- 109) Ferreira-Leitão, V.S., Cammarota, M.C., Aguieiras, E.C., Sá, L.R., Fernández-Lafuente, R., & Freire, D.M. (2017). The Protagonism of Biocatalysis in Green Chemistry and Its Environmental Benefits. Catalysts, 7, 9.
- 110) Sudheer, S., Bai, R.G., Usmani, Z., & Sharma, M. (2020). Insights on Engineered Microbes in Sustainable Agriculture: Biotechnological Developments and Future Prospects. Current Genomics, 21, 321 333.
- 111) Liao, M., & Yao, Y. (2021). Applications of artificial intelligence-based modeling for bioenergy systems: A review. GCB Bioenergy, 13.
- 112) Mateescu, C., Tudor, E., Dima, A.D., Chiriță, I., Tanasiev, V., & Prisecaru, T. (2022). Artificial Intelligence Approach In Predicting Biomass-to-Biofuels Conversion Performances. 2022 23rd International Carpathian Control Conference (ICCC), 370-375.
- 113) Bhardwaj, A., Kishore, S., & Pandey, D.K. (2022). Artificial Intelligence in Biological Sciences. Life, 12.
- 114) Carruthers, D.N., & Lee, T.S. (2022). Translating advances in microbial bioproduction to sustainable biotechnology. Frontiers in Bioengineering and Biotechnology, 10.
- 115) Lanigan, T. M., Kopera, H. C., & Saunders, T. L. (2020). Principles of genetic engineering. Genes, 11(3), 291.
- 116) Zhao, Jing, Huan Fang, and Dawei Zhang. "Expanding application of CRISPR-Cas9 system in microorganisms." Synthetic and Systems biotechnology 5.4 (2020): 269-276.
- 117) Lee, Sang Yup, et al. "Metabolic engineering of microorganisms: general strategies and drug production." Drug Discovery Today 14.1-2 (2009): 78-88.
- 118) Ahmad, Gulzar, and Mansoor Amiji. "Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery." Drug Discovery Today 23.3 (2018): 519-533.
- 119) Tang, Tzu-Chieh, et al., "Materials design by synthetic biology." Nature Reviews Materials 6.4 (2021): 332-350.
- 120) Seo, S. W., Yang, J., Min, B. E., Jang, S., Lim, J. H., Lim, H. G., ... & Jung, G. Y. (2013). Synthetic biology: tools to design microbes for the production of chemicals and fuels Biotechnology advances, 31(6), 811-817.
- 121) Ray, P. (2019). Renewable energy and sustainability. Clean Technologies and Environmental Policy, 21, 1517-1533.
- 122) Williams, J. H., DeBenedictis, A., Ghanadan, R., Mahone, A., Moore, J., Morrow III, W. R., ... & Torn,

- M. S. (2012). The technology path to deep greenhouse gas emissions cuts by 2050: the pivotal role of electricity. science, 335(6064), 53-59.
- 123) Cheng, X. B., Liu, H., Yuan, H., Peng, H. J., Tang, C., Huang, J. Q., & Zhang, Q. (2021). A perspective on sustainable energy materials for lithium batteries. SusMat, 1(1), 38-50.
- 124) Sharma, P., Singh, S. P., Iqbal, H. M., Parra-Saldivar, R., Varjani, S., & Tong, Y. W. (2022). Genetic modifications associated with sustainability aspects for sustainable developments. Bioengineered, 13(4), 9509-9521.
- 125) Adegboye, M. F., Ojuederie, O. B., Talia, P. M., & Babalola, O. O. (2021). Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges. Biotechnology for biofuels, 14(1), 1-21.
- 126) Zhao, D., & Ning, K. (2023). Introduction to Synthetic Biology. In Synthetic Biology and iGEM: Techniques, Development and Safety Concerns: An Omics Big-data Mining Perspective (pp. 1-22). Singapore: Springer Nature Singapore.
- 127) Dutta, S., & Das, D. (2023). Bioprocess: Control, management, and biosafety issues. In Basic Biotechniques for Bioprocess and Bioentrepreneurship (pp. 355-364). Academic Press.
- 128) Seth, A., Banyal, A., & Kumar, P. (2023). Commercialization and technology transfers of bioprocess. In Basic Biotechniques for Bioprocess and Bioentrepreneurship (pp. 455-469). Academic Press.
- 129) Lawson, C., & Adhikari, K. (2018). Biodiversity, genetic resources and intellectual property (pp. 1-8). Routledge.
- 130) Liu, S. (2020). Bioprocess engineering: kinetics, sustainability, and reactor design. Elsevier.
- 131) Ishii, T. (2017). Genome-edited livestock: Ethics and social acceptance. Animal Frontiers, 7(2), 24-32.
- 132) Fernandes, P., & Carvalho, F. (2017). Microbial enzymes for the food industry. In Biotechnology of microbial enzymes (pp. 513-544). Academic Press.
- 133) Zichello, J., Gupta, P., Scott, M., Desai, B., Cohen, R., Halderman, L., ... & DeSalle, R. (2021). A natural history museum visitor survey of perception, attitude and knowledge (PAK) of microbes and antibiotics. PloS one, 16(9), e0257085.
- 134) Dutta, S., & Das, D. (2023). Bioprocess: Control, management, and biosafety issues. In Basic Biotechniques for Bioprocess and Bioentrepreneurship (pp. 355-364). Academic Press.
- 135) Arora, N. K., Fatima, T., Mishra, I., Verma, M., Mishra, J., & Mishra, V. (2018). Environmental sustainability: challenges and viable solutions. Environmental Sustainability, 1, 309-340
- 136) Probst, M., Walter, A., Dreschke, G., Fornasier, F.,

- Pümpel, T., Walde, J.F., & Insam, H. (2015). End-product inhibition and acidification limit biowaste fermentation efficiency. Bioresource technology, 198, 540-9.
- 137) Angart, P., Kohnhorst, C., Chiang, M., & Arden, N.S. (2018). Considerations for risk and control of mycoplasma in bioprocessing. Current Opinion in Chemical Engineering.
- 138) Sharma, A., Singh, R.S., Gupta, G., Ahmad, T., & Kaur, B. (2019). Metabolic Engineering of Enzyme-Regulated Bioprocesses. Advances in Enzyme Technology.
- 139) de Fouchécour, F., Sánchez-Castañeda, A.K., Saulou-Bérion, C., & Spinnler, H. (2018). Process engineering for microbial production of 3hydroxypropionic acid. Biotechnology advances, 36 4, 1207-1222.
- 140) Jensen, M.K., & Keasling, J.D. (2014). Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS yeast research, 151, 1-10.
- 141) Hemmerich, J.L., Noack, S., Wiechert, W., & Oldiges, M. (2018). Microbioreactor Systems for Accelerated Bioprocess Development. Biotechnology Journal, 13.