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INTRODUCTION

Smallholder farmers in developing countries contin-
uously face challenges in enhancing agricultural produc-
tivity due to climate variability (Asfew & Bedemo, 2022), 
limited access to agricultural extension services (Leta et 
al., 2017), and weak implementation of agricultural 
extension systems (Kitajima, 2024).  Climate change sig-
nificantly threatens global agricultural production, par-
ticularly affecting developing countries (Kalele et al., 
2021).  The region’s heavy reliance on rain–fed agricul-
ture makes it especially vulnerable to climate variability.  
Although agriculture constitutes 40% of East Africa’s 
GDP and sustains the livelihoods of 80% of the popula-
tion in developing countries, shifts in temperature and 
precipitation patterns greatly diminish agricultural out-
put (Musyimi, 2020), endangering the livelihoods of over 
3.83 billion people who depend on the agri–food system 
(FAO, 2023).  Climate change also encourages the 
increased presence and outbreaks of existing and new 

pests and diseases (Patrick et al., 2020).  Thus, develop-
ing countries will need an estimated $127 billion annu-
ally by 2030 and $295 billion annually by 2050 to adapt 
to the adverse effects of climate change 
(Intergovernmental Panel on Climate Change (IPCC), 
2022).

Horticultural farming is one of the essential eco-
nomic activities in East Africa (Nyasimi, Radeny, and 
Kinyangi, 2013).  While it is often viewed as a climate–
smart practice, particularly when supported by irrigation 
systems (Tesfaye et al., 2023).  As a result, adaptation 
efforts have primarily concentrated on other crops and 
livestock farming (Asfew & Bedemo, 2022; Berhanu et 
al., 2024; Di Falco & Veronesi, 2013; Mpala & Simatele, 
2024).  However, recent studies indicate that horticul-
tural farming remains susceptible to climate change.  For 
instance, horticultural crops are particularly vulnerable 
to climate change due to their high water demands and 
specific temperature requirements (Patrick et al., 2020).  
Increasing temperatures may exceed crop–specific 
thresholds, thereby impacting growth and yield.  For 
example, higher temperatures can reduce tomatoes’ 
yield and quality (Ayankojo & Morgan, 2020).  Changes 
in rainfall patterns result in greater variability in water 
availability, which subsequently affects crop growth and 
irrigation needs (OECD, 2014). 

As a result, climate–smart agriculture practices 
(CSA) have been introduced and implemented to adapt 
the adverse effects of climate change on agricultural pro-
ductivity.  CSA acts as a bridge between scientific 
research and policymaking, contributing to accomplish-
ing sustainable development goals, initially pioneered by 
FAO in 2010 at the Hague Conference on Agriculture, 
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Food Security, and Climate Change (FAO, 2013).  CSA 
practices refer to sustainably transforming, reorienting, 
and creating long–term agricultural development, 
improving yield and household welfare.  Developing 
countries, including Ethiopia, have embraced various cli-
mate–smart agriculture (CSA) practices as adaptation 
strategies to tackle these challenges (Waaswa et al., 
2021).  CSA practices have been widely implemented for 
their effectiveness in mitigating the adverse effects of 
climate change by enhancing resilience and farm pro-
duction while lowering greenhouse gas emissions (Di 
Falco and Veronesi, 2013; FAO, 2022).  Different coun-
tries have been practicing CSH in various groups, such 
as innovative agronomic methods (adjusting irrigation 
scheduling6, managing pests and diseases, using 
improved varieties adapted to climate variability, imple-
menting crop rotation, and changing planting and har-
vest dates) by Shah & Wu (2019), soil conservation prac-
tices such as using compost, mulching, organic fertiliz-
ers, and conservation agriculture, tie ridge by Okoronkwo 
et al. (2024) and farm risk reduction practices (crop 
insurance, crop diversification, and utilizing water ponds 
on their farm plots) (Naazie et al., 2023).  Since horti-
culture crops are being influenced by climate change 
and the need for targeted adaptation strategies to 
enhance their resilience and long–term sustainability, 
recently, the concept of climate–smart horticulture 
(CSH) practices has been customized from the CSA con-
cept.  It has a similar definition of CSA, which follows the 
same principles of adaptability and building resilience to 
climate variability.  However, the CSH concept involves 
adapting and building the resilience of horticulture crops 
to climate variability (Mwikamba, Otieno, and Oluoch–
Kosura, 2024). 

Moreover, the Ethiopian and Japanese governments 
have collaborated to implement market–oriented exten-
sion programs called Smallholder Horticulture 
Empowerment and Promotion (SHEP) to improve farm-
ers’ income and welfare.  The primary focus of the SHEP 
program is to facilitate and teach farmers to adopt a 
“grow to sell” approach, which involves farmers continu-
ously analyzing market demand before they grow strate-
gic7 horticultural crops, rather than simply planting 
crops business as usual.  The SHEP program has pro-
vided various comprehensive soft skills training, includ-
ing sensitization workshops (which clearly communicate 
the vision), market demand analysis, improved agro-
nomic training (covering crop selection, crop calendar, 
soil management, planting protocols, weed management, 
pest and disease control, and harvesting techniques), 
post–harvest handling, profitability analysis, gender 
mainstreaming, and other climate–smart agricultural 
practices.  The SHEP interventions have also been 

implemented to improve horticultural crop yield, equip-
ping farmers with essential skills and knowledge to make 
informed production decisions aligned with the market 
demand within climate–variability scenarios.  Thus, the 
SHEP intervention significantly promotes commerciali-
zation and joint decision–making, thereby improving the 
income of smallholder farmers (Fikadu et al., 2025).  On 
the other hand, even though CSH practices are not a 
frontline objective of the SHEP program, they have 
broadly been promoted in every single training session of 
the SHEP program.  For example, using disease–resist-
ant varieties, diversifying market–demand horticulture 
crops, adjusting planting and harvesting time, adjusting 
irrigation schedules, and other climate–smart practices 
have been provided to the farmers as integral sections of 
the SHEP training packages (Nomura et al., 2024).  In 
line with this, the SHEP intervention promotes climate–
smart horticulture (CSH) practices to increase produc-
tivity, adapt to agricultural risks, which are called adapt-
ing climate–related risks (Nomura et al., 2024), and 
improve household income (Fikadu et al., 2025).

Despite the growing body of literature on adopting 
climate–smart agriculture (CSA) practices and their 
effects on crop yield, few studies have focused on exam-
ining the effects of adopting CSH practices on horticul-
tural yield.  For example, the research conducted by 
Mwikamba, Otieno, and Oluoch–Kosura (2024) high-
lighted the factors affecting adopting CSH practices in 
Kenya.  They treated the data as count data and 
employed a negative binomial regression model, but did 
not address how these practices influence horticultural 
crop yield.  Nevertheless, the effects of adopting CSH 
practices on horticultural yield, especially within irriga-
tion–based horticultural farming using methodologically 
rigorous approaches, have been less documented.  
Addressing these gaps by analyzing the effects of CSH 
adoption on horticultural yield will provide a more com-
prehensive understanding of sustainable horticultural 
farming.  A study by Nomura et al. (2024) confirmed 
that adopting the Smallholder Horticulture 
Empowerment and Promotion (SHEP) approach 
enhances the likelihood of adopting agricultural prac-
tices to manage climate–related risks following climate–
smart principles.  However, the heterogeneous effects of 
the SHEP approach through adopting CSH practices 
remain underexplored.  Therefore, this study aims to 
estimate the effects of farmers’ adoption of climate–
smart horticulture practices and SHEP intervention on 
aggregate weighted horticultural crop yield.

Conceptual framework of the study
The conceptual framework illustrates how the SHEP 

intervention affects aggregate weighted horticultural 

6	 Irrigation schedule adjustment is implemented among groups of farmers who have irrigation plots within the same cluster and share 
similar water sources in our study areas.  Adjusting the schedule based on a commonly agreed rotation system facilitates the efficient 
use of limited water resources, minimizing wastage and ensuring that all farmers can conveniently access water at different times.

7	 Market–responsive horticultural crops refer to market–driven crop types selected by farmers based on their high demand, 
profitability, and suitability to local agroecological conditions.  In the SHEP framework, diversification emphasizes strategically selecting 
high–value horticultural crops to maximize income and market responsibness rather than producing a wide array of crops regardless of 
their market demand.



157Impacts of Adoption of Climate–smart Horticulture Practices on Yield

yield through adopting climate–smart horticulture 
(CSH) practices, such as adjusting irrigation scheduling, 
using disease–resistant crop varieties, adjusting planting 
and harvesting times, and market–oriented crop diversi-
fication8 (Fig. 1).  The study employs inverse probabil-
ity–weighted regression adjustment (IPWRA) to esti-
mate average treatment effects by addressing selection 
bias.  We use quantile regression as a regression adjust-
ment after matching instead of ordinary least squares 
(OLS) to capture the heterogeneous effects of SHEP and 
CSH adoption across the yield distribution.  The frame-
work also considers how farmers’ demographic, socioec-
onomic, and agriculture–related characteristics influence 
aggregate weighted horticultural yield across different 
quantiles, from the lowest to the highest.

RESEARCH METHODS

Study area setting, sampling procedures, and data
The SHEP intervention has been implemented in 

four woredas (districts) and eight kebeles9 within the 
Jimma zone of the Oromia region.  The intervention 
kebeles were not randomly selected when the project 
was initially launched, introducing potential selection 
bias in assessing its effect on horticulture yield.  
Therefore, we employ a quasi–experimental research 
design (QERD) to control for selection bias at the kebele 
level. Unlike randomized control trials (RCTs), QERD 
lacks randomization and instead uses agricultural peculi-
arities or observable characteristics deliberately 
employed to select or match counterfactual groups with 
the treated groups.  We utilized various agricultural 

peculiarities, including soil properties, slope, elevation, 
irrigation availability, distance to major cities, and road 
density, to create equivalent counterfactual kebeles 
alongside treated kebeles using satellite geographic 
information system (GIS) (Campbell & Stanley, 1963).   
These parameters are considered essential for improving 
horticultural production and marketing.  Based on those 
agricultural peculiarities, we created a comparable coun-
terfactual group outside the SHEP intervention woreda, 
referred to as “control” groups.  The main assumption is 
that individuals in the control group are expected to be 
located far from the SHEP intervention areas, leading to 
minimal social interactions or information sharing among 
farmers, thus helping to prevent potential spillover 
effects.  We followed several procedures to identify 
counterfactual kebeles.  First, we divided the entire 
Oromia region into a grid of 1 km by 1 km parcels.  We 
assigned a dummy value of 1 to parcels within the kebe-
les with SHEP interventions, designating these as 
“treated” parcels.  All other parcels received a dummy 
value of 0, representing the “non–treated” parcels.  
Second, we considered six essential agricultural charac-
teristics or non–random attributes, such as soil charac-
teristics and access to infrastructure, at the 1 km by 
1 km parcel level for both treated and non–treated par-
cels.  Third, using R programming software, we applied 
the nearest neighbor matching method at the 1 km by 
1 km mesh level to statistically identify control parcels 
that resemble the “treated” parcels based on these key 
attributes.  Fourth, we calculated the total number of 
plots of 1 km by 1 km identified as “control” for each “no 
treatment” kebele in the non–intervention woredas, 

8	 Crop diversification can be classified into two types.  Conventional crop diversification involves growing a variety of crops primarily 
to reduce risks, such as crop failure, without necessarily considering market demand or profitability.  In contrast, market–responsive 
crop diversification entails the deliberate selection of crops based on market demand and profitability, aiming to maximize income by 
focusing on more marketable crops.

9	 Ethiopia’s administrative system is organized hierarchically into four levels of authority: regions, zones, woredas (districts), and kebeles, 
with the kebele being the smallest administrative unit.

Fig. 1.  Conceptual framework of the effects of adoption of CSH on aggregate weighted horticulture yield.
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respectively.  Finally, we designated a kebele as a “con-
trol” kebele if more than 20% similar to those treated 
kebeles, highlighting the confounding factors between 
the treated and counterfactual groups to become more 
comparable (Fig. 2 and Appendix 1).  Thus, this study 
used 15 kebeles (eight treated and seven control kebe-
les) across six woredas, comprising 409 smallholder 
farmers in horticulture (207 from the treated group and 
202 from the pure control group) (Fig. 2).  Household 
survey data were collected using structured question-
naires from December 2022 to January 2023. 

Main variables of interest and their measurement 
Aggregate weighted horticulture yield

Weighting in aggregate yield estimation is crucial in 
contexts where farmers cultivate multiple horticultural 
crops within the same season; for example, farmers in 
the study area have grown different horticultural crops, 
such as cabbage, onion, potato, tomato, carrot, sweet 
potato, and green pepper, on separate plots.  It ensures 
that crops occupying a larger share of land contribute 
more to the overall measure.  This approach enhances 
comparability across households by standardizing yield 
metrics and preventing distortions caused by crops from 
small plots.  Additionally, it balances representation by 
mitigating the risk of overinflating yield for high–yield 
crops grown on small plots while ensuring that low–yield 
crops cultivated in larger areas are not underrepre-
sented.  Furthermore, the sample size in this study for 
each horticultural crop is small, which is insufficient for 
econometric model estimation for the individual crop; 

therefore, we use the aggregate weighted yield to repre-
sent overall household–level horticultural yield.  The 
ratio of land allocated for each crop to the total horticul-
tural land of the household serves as a weighting factor, 
acting as a proxy for the relative importance of each 
crop in the farmer’s production strategy.  We follow the 
following three steps to calculate the household produc-
tion system’s aggregate weighted yield of the horticul-
tural crops.

First, we calculate the yield of each crop produced 
by the farmers, which is the ratio of the quantity of har-
vests multiplied by the land allocation of each crop.

(Yield)ij = 
(Quantity of harvest measured in kg)ij——————————————————

(Land area measured in hectare)ij

� (1)

Where j denotes the horticultural crop types pro-
duced by farmer i.

Second, we calculate the weighting factor for each 
crop to estimate the aggregate yield of farmers' horticul-
ture crops.

(Weight)ij = 
(Land allocation)ij————————————————————

(Lotal land size for horticulture production)ij

� (2)

Third, we aggregate the yield of each crop using the 
weight factor for the individual farmers who produced 
them in the same season.  This approach accounts for 

Fig. 2.  Map of the study areas.
                                           Source: Sketched by the authors (2024)
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the relative importance of each crop based on land allo-
cation decisions.  It provides a balanced representation 
of all crops, preventing overemphasis on high–yielding 
crops that might occupy smaller areas.

(Aggregate weighted horticultural yield)i = 

                   ∑7

j=1
 [(Weight)ij * (Yield)ij]� (3)

Where i represents the sample farmers and j denotes 
the number of horticultural crops produced by the sam-
ple farmers. 

Adoption of climate–smart horticulture (CSH) 
practices

In this study, the adoption of CSH practices is meas-
ured using dummies (adopters and non–adopters) for 
each practice implemented by farmers, such as adjusting 
irrigation scheduling, using disease–resistant crop varie-
ties, adjusting planting and harvesting times, and diversi-
fying crops for market orientation.  A farmer is consid-
ered an adopter if they employed at least one CSH prac-
tice, while those who did not implement any CSH prac-
tices at all are referred to as non–adopters.

Econometric model specification 
We used an inverse probability weighting regression 

adjustment to estimate effects of adopting CSH practices 
on aggregate weighted horticultural yield.

Inverse Probability Weighting Regression 
Adjustment (IPWRA) 

We used the Inverse Probability Weighted 
Regression Adjustment (IPWRA) model to estimate the 
effects of adopting CSH practices in a quasi–experimen-
tal design setting, which makes a causal inference by 
creating the best possible counterfactual groups.  The 
IPWRA estimates the Average Treatment Effects on the 

treated, which is the difference in outcome variables of 
the adopters and non–adopters, and it helps as a “ther-
apy” for biases that arise from misspecification of 
Propensity Score Matching (PSM) (Ogunniyi et al., 
2023).  Misspecification of the propensity score model 
occurs when important covariates are excluded, irrele-
vant ones are included, or nonlinear relationships are 
assumed linear, leading to poor covariate balance and 
biased treatment effect estimates.  Similarly, the out-
come model may suffer from missing key covariates, 
including irrelevant ones, or failing to capture nonlinear 
or heterogeneous effects, resulting in biased estimates of 
the Average Treatment Effect on the treated (ATET).  
These issues compromise the accuracy of both models, 
as the propensity score fails to balance treated and 
untreated groups, and the outcome model misestimates 
the relationship between covariates and outcomes.  The 
IPWRA estimator is a “doubly robust” model, indicating 
that consistent treatment effects can be estimated even 
if one of the two models (treatment and outcome model) 
is incorrectly specified (Sibhatu, Arslan, and Zucchini, 
2022; Wooldridge, 2010).  Thus, this estimator allows us 
to estimate the effects of smallholder farmers’ adopting 
CSH practices on horticulture production.

Following Ogunniyi et al. (2023), we assume the lin-
ear regression function of the model estimation is Yij = βi 

+ γi Xi + εi.  Then, we follow three steps to estimate 
ATET using the IWPRA: First, we generate the propensity 
score using the observable factors p(x; y)̂ .  Second, we 
calculate the weights for the adopters and non–adopters 
using the inverse of the propensity score values to create 
balanced pseudo–populations, such as weights for the 
treated group 1⁄p(x; y ˆ ) and weights for the control group 
(Fig. 3).  Third, we estimate the Average Treated Effects 
on the Treated (ATET) using inverse probability weighted 
least squares from the adopters and non–adopters.

Fig. 3.  Testing the overlap assumption before and after matching
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min ∑n

i=1
 (Zi – β1 – γ1 Xi) ⁄ p(x; y)̂  if Ti = 1� (4)

β1 γ1

min ∑n

i=1
 (Zi – β0 – γ0 Xi) ⁄ p(x; y)̂  if Ti = 0� (5)

β0 γ0

where (β1, γ1) is the estimation for the adapters or 
Ti =1) and (β0, γ0) is the estimation of non–adapters or 
Ti =1. 

Then, estimate the ATET, which is the difference 
between equations 8 and 9.

ATT = 
1—
nt

 ∑nt

i=1
 [(β̂1 – β̂0)] (γ̂1 – γ̂0) Xi� (6)

where nt is the total number of smallholder farmers 
who adopted the CSH practices, (β̂1γ̂1) denotes the esti-
mated inverse probability weighted parameters for the 
adopters are denoted, and (β̂0γ̂0) and represents the 
estimated inverse probability weighted parameters for 
the non–adopters.

Fourth, quantile regression is estimated as a regres-
sion adjustment by including the treatment and other 
control covariates to assess the robustness of the ATET. 

Yi = βi + θi Ti + ωi Di + γi Xi + εi� (7)

where Tt is the treatment variable (adoption of CSH 
practices), and Di is the SHEP intervention (1 = treated 
and 0 = otherwise) Xi are other control variables.

The outcome variables (Yi) in this model (IWRA) are 
aggregate weighted horticultural yield.  All sample farm-
ers are included in estimating the Average Treatment 
Effect on the Treated (ATET) of adoption to Climate–
Smart Horticulture (CSH) practices on aggregated horti-
cultural production. 

After estimating the Average Treatment Effect on 
the Treated (ATET) using the Inverse Probability 
Weighted Regression Adjustment (IPWRA), we further 
investigate the factors influencing aggregated weighted 
horticultural yield through quantile regression because 
the study setting is a quasi–experiment, there is still 
some confounding bias (hidden bias) that has been 
inherited after IPW matching.  The rationale for using 
quantile regression arises from our findings on the 
Average Treatment Effect (ATE), which reveal that the 
benefits of adopting CSH practices are not uniform 
across all smallholder farmers.  The mean–based estima-
tors may obscure these heterogeneous effects.  In con-
trast, quantile regression allows us to examine how the 
effects of various factors differ across the aggregate yield 
distribution—from the lowest to the highest quantiles.  
In quantile regression estimation, we decompose the 
adoptions of CSH practices into four practices: adjusting 
irrigation schedule, using disease–resistant crops/varie-
ties, changing sowing and harvesting time, and using 
crop diversification.  Quantile regression shows the het-
erogeneity effects of the covariates, providing insights 
into effects at different aggregate weighted yield distri-
butions, from the lowest to highest levels (Buchinsky, 
1998; Fikadu et al., 2025; Koenker & Hallock, 2001; 

Ogutu & Qaim, 2019).  Following Tabe Ojong et al. 
(2022), the standard quantiles were used, encompassing 
the median (50th percentile), quartiles (25th and 75th per-
centiles), and two additional percentiles—one at the 
lower end and another at the upper–income level (the 
10th, 25th, 50th, 75th, and 90th quantiles).

The quantile regression specification is explained in 
Equation (4): 

Yi = Xí βq + μqi     where; (Yi | Xi = Xí βq)�------------ (8)

where Yi  is the aggregate weighted yield; Xi is the 
set of covariates, including different adoptions of CSH 
practices, SHEP intervention, Interaction effects, and 
other control covariates such as farmers’ socioeconomic, 
demographic, and institutional characteristics; q it is a 
quantile with 0< q<1 βq the parameters to be estimated.

RESULTS AND DISCUSSIONS

Summary of descriptive statistics
Table 1 summarizes various covariates across adop-

ters and non–adopters, highlighting the statistically sig-
nificant differences between the two groups.  The aver-
age education level of the household head was over 
three years, while non–adopters were below three years, 
suggesting that better education may influence adoption 
decisions.  The average land area allocated for horticul-
ture production is 0.56 hectares, which is almost similar 
for both adopters and non–adopters.  The average years 
of experience in horticulture farming for adopters were 
over eight years, whereas non–adopters had seven years, 
which is a statistically significant mean difference 
between them.  The farmers who have more years of 
experience might have contributed to the likelihood of 
adopting new CSH practices.  Approximately 60.7% of 
the adopters were in the treated group, while about 
43.2% were non–adopters, which differs significantly 
from the control group, indicating that participation in 
the SHEP intervention is strongly associated with adopt-
ing CSH practices.  Another essential factor is participa-
tion in farm field demonstrations, which is statistically 
significant; a higher percentage of  adopters (65.5%) 
participated in farm demonstrations compared to non–
adopters (53.6%).  This emphasizes the role of hands–on 
learning in adaptation.  Similarly, the frequency of exten-
sion contact is significant, showing that adopters had 
more frequent monthly extension visits than non–adop-
ters, suggesting that greater access to agricultural advice 
facilitates the adoption of CSH practices.  The distance 
to the agriculture office is marginally significant, where 
adopters are closer to the agriculture office than non–
adopters, implying that proximity to the agriculture 
office may enhance access to resources and support for 
adopting CSH practices.  Livestock ownership, measured 
in Tropical Livestock Units (TLU), is statistically signifi-
cant, showing that adopters own more livestock than 
non–adopters, suggesting that wealthier households, 
regarding livestock assets, are more likely to adopt CSH 
practices.  The baseline difference between adopters and 
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non–adopters was removed after applying matching 
(ipw), which indicates that their characteristics are well 
balanced.  After matching, the standardized mean differ-
ences should be consistently below 0.1 and not statisti-
cally significant for successful matching (Austin, 2009).

Association between adopting CSH practices and 
SHEP intervention

We observed a consistent trend of higher adoption of 
different practices among farmers in the treated group 
compared to those in the control group.  The adoption of 
irrigation schedule adjustments varies significantly 
between the control and treated groups, with approxi-
mately 13% of farmers in the treated group making this 
adjustment, compared to 2.9% in the control group (Fig. 
4A).  This indicates that participation in the treatment 
(SHEP intervention) slightly increases the likelihood of 
adopting irrigation schedule adjustments, though overall 
adoption remains relatively low.  Adopting disease–
resistant crop varieties is more prevalent than adjusting 
irrigation schedules, with adoption rates of 38.7% in the 
treated groups and 28.7% in the control groups (Fig. 
4B).  This implies that farmers in the SHEP intervention 
are more inclined to adopt disease–resistant crop varie-
ties to mitigate disease risks than those in the control 
group.  Adjusting sowing and harvesting times repre-
sents another adaptation strategy that entails modest 
decision–making.  Farmers in the treated group adopted 
their sowing and harvesting times at a rate of 21.7%, 
while those in the control group reached 14.4% (Fig. 
4C).  This disparity indicates that SHEP participants 
made more informed adoption decisions regarding plant-
ing schedules in response to climate variability.  This 
shift suggests the intervention’s positive, albeit limited, 
impact on promoting adaptive agronomic practices.  
Crop diversification, a vital risk management strategy, 

exhibits the lowest adoption rates among all practices.  
In the treated group, only 15.9% of farmers utilized crop 
diversification as a CSH practice, whereas 5.4% of farm-
ers in the control group adopted it (Figure 4D).

Aggregate weighted horticulture yield across 
adopters of CSH practices and SHEP groups

Fig. 5 shows the red line (Non–adopters: Control), 
which shows the highest peak, indicating a larger pro-
portion of individuals with very low horticultural yields 
(up to 2,000 kg).  The green line (Non–adopters: 
Treated) shifts slightly to the right compared to the red 
line, suggesting that treatment positively influences the 
aggregate weighted horticultural yield of non–adopters.  
The blue line (Adopters: Control) is skewed to the left 
but has a longer tail, implying that adopters without 
treatment achieve higher production levels than non–
adopters.  The purple line (Adopters: Treated) shifts fur-
ther to the right and has the flattest distribution, signify-
ing a significant improvement in the horticultural yield of 
adopters due to treatment.  Thus, adopters (from 
treated and control) consistently demonstrate higher 
production levels than non–adopters, underscoring the 
benefits of adopting climate–smart horticultural (CSH) 
practices.  Moreover, the shift from blue (Adopters: 
Control) to purple (Adopters: Treated) is more pro-
nounced than the shift from red (Non–adopters: 
Control) to green (Non–adopters: Treated), suggesting 
that treatment is more effective for adopters compared 
to non–adopters.

Average treatment effects of adopting CSH prac-
tices on aggregated weighted horticultural crop 
yield

Table 2 presents the estimated impact of adopting 
Climate–Smart Horticulture (CSH) practices on aggre-

 Table 1.   �Summary statistics before and after matching

(1)
Full sample

(2)
Adopters

(3)
Non–adopters

(4)
diff (2) – (3)

(5)
standardized 
diff (2) – (3)

Sex of the household head (1 = male; 0 = female) 0.92 0.94 0.93 –0.01 0.00

Age of the household head (years) 42.46 42.59 42.46 0.04 0.01

Education level of the household head (years of school-
ing)

3.22 3.47 2.99 0.43 0.04

Participation in farm field demonstration in village (1 = 
yes; 0 = no)

0.64 0.66 0.54 0.19 *** 0.03

Frequency of extension contact (frequency per month) 6.94 7.18 5.69 1.56 ** 0.01

Land allocation for horticultural crop production (ha.) 0.56 0.59 0.55 0.03 0.04

Experience of horticulture farming (years) 7.87 8.50 7.36 0.61 0.00

Total family size in the household 6.14 5.99 6.11 –0.06 0.06

Road access (number of months passable for vehicles) 10.81 10.83 10.67 0.24 0.00

Distance to agricultural cooperatives (minutes by foot) 34.84 35.65 40.00 –0.86 0.02

Distance to farmers training center (minutes by foot) 30.00 30.81 29.91 –0.27 0.05

Distance to main market (minutes by foot) 78.07 77.98 79.45 4.41 –0.01

Distance to agriculture office (minutes by foot) 29.87 28.08 31.18 –3.10 ** 0.01

Livestock (in TLU) 4.16 4.37 3.75 0.49 * 0.01
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Fig. 4.  Adoption of different climate-smart horticulture (CSH) practices across the SHEP group.

Fig. 5.  �The results of Kernel density estimation: Distribution of horticultural production 
between adapters and non-adapters in SHEP groups.
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gate weighted horticultural yield, using Inverse 
Probability Weighted Regression Adjustment (IPWRA).  
The Average Treatment Effect on the Treated (ATET) is 
0.430, meaning that CSH adopters experience a 43.0% 
increase in yield compared to what they would have 
experienced had they not adopted these practices.  This 
confirms that adopting CSH practices significantly 
enhances yield among those who adopt them.  The 
Average Treatment Effect (ATE) is 0.059, indicating that 
when considering the entire population, the overall 
effect of adopting CSH practices is only a 5.9% increase 
and is statistically insignificant, which suggests that 
while adopting CSH practices is highly beneficial for 
adopters, expanding it to all farmers may not give the 
same level of adoption.  Compared to the value of ATET, 
the small and insignificant ATE highlights heterogeneous 
treatment effects, meaning that certain farmers could 
benefit more from adopting CSH practices than others.  
Thus, this finding underscores that CSH adoption is 
highly effective for those who voluntarily adopt it.  
However, its benefits might not be uniform across all 
farmers; it will likely be heterogeneous. Consequently, 
rather than promoting broad or blanket climate change 
adaptation policies (one–size–fits–all), policymakers 
should focus on context–specific, location–sensitive CSH 
interventions.  This approach ensures that CSH adapta-
tion strategies align with different farming communities’ 
socioeconomic and agroecological conditions, maximiz-
ing their effectiveness and long–term sustainability.  
Moreover, the potential outcome means (POMean) for 
adopters and non–adopters provides additional insights 
into the post–treatment yield levels.  The expected yield 
level for adopters is 8.177, while for the entire popula-
tion (adopters and non–adopters), it is 8.248.  This sug-
gests that the estimated yield levels between the two 
groups remain relatively comparable in absolute terms 
after accounting for selection bias.  However, the posi-
tive and significant ATET effect indicates that adopters 
achieve a notable relative advantage due to adopting 
CSH practices.

Heterogeneous effects of adopting CSH practices 
and SHEP intervention on aggregated horticulture 
yield

We decompose the CSH practices into four compo-
nents: (i) adjusting irrigation schedules, (ii) using dis-
ease–resistant crop varieties, (iii) adjusting planting and 
harvesting periods, and (iv) implementing crop diversifi-
cation.  This disaggregation enables a nuanced assess-
ment of their effects on aggregated weighted horticul-
tural yield (Table 3).  By disaggregating CSH practices, 
we provide a more realistic representation of farmers’ 
decision–making processes, as adoption is often selective 

rather than uniform.  Farmers tailor their choices based 
on specific agroecological conditions, resource availabil-
ity, and market incentives, resulting in varying impacts 
on horticultural yield.  This nuanced approach enhances 
the understanding of diverse adaptation pathways, offer-
ing more targeted insights for policy and extension ser-
vices.

Our findings indicate varied results regarding the 
effects of adopting various CSH practices through the 
SHEP intervention on aggregated weighted yield.  For 
example, the SHEP intervention positively influences 
aggregate weighted horticultural yield across all quan-
tiles except the 10th quantile, regardless of whether 
farmers adopt CSH practices (Table 3: model–1).  
Moreover, the interaction effects of the SHEP interven-
tion and the use of disease–resistant crop varieties are 
notably significant at the 75th quantile of aggregate 
weighted horticultural yield, suggesting that farmers in 
the higher yield range benefit the most from the synergy 
between market–oriented extensions like the SHEP 
intervention and climate–resilient crop choices, such as 
adopting disease–resistant crops (Table 3: model–2).  On 
the other hand, the interaction effects of SHEP and crop 
diversification show reverse effects on aggregate yield, 
indicating that adopters in the control group exhibit 
higher aggregate weighted yield per hectare than those 
in the treated group. 

Road access has a significant heterogeneous effect 
on aggregate weighted yield across all quantiles except 
for the lowest (10th quantile), indicating that better road 
infrastructure benefits most farmers by enhancing their 
aggregated horticulture yield (Table 3).  The distances 
to agricultural cooperatives and farmers’ training schools 
are crucial factors affecting horticulture yield, particu-
larly in the higher quantiles, such as the 75th and 90th per-
centiles (Table 3: model–2).

DISCUSSIONS

This study examines the effects of SHEP interven-
tion and the adoption of CSH practices on aggregate hor-
ticultural crop yield.  Our findings demonstrate that 
adopting various CSH practices through the SHEP inter-
vention has different effects on the aggregate weighted 
horticultural yield, implying that these effects depend on 
the specific CSH practices implemented.  On the one 
hand, the SHEP intervention boosts yield across all 
quantiles except the 10th quantiles, regardless of the 
interaction effects of farmers’ adoption of CSH practices.  
Furthermore, the interaction between the SHEP inter-
vention and the adoption of disease–resistant crop varie-
ties shows a significant positive effect at the 75th quan-
tile, indicating that farmers with higher yields benefit the 

        Table 2.   �Average treatment effect of adopting CSH practices on aggregated weighted horticulture yield

ATET POMean ATE POMean

Adaptation of CSH 0.430 8.177 0.059 8.248

practices (0.086) *** (0.072) *** (0.051) (0.053) ***
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 Table 3.   Factors affecting aggregated weighted horticulture yield using quantile regression estimation

Covariates

10th 25th 50th 75th 90th

Model–1 Model–2 Model–1 Model–2 Model–1 Model–2 Model–1 Model–2 Model–1 Model–2

β̂ (SE) β̂ (SE) β̂ (SE) β̂ (SE) β̂ (SE) β̂ (SE) β̂ (SE) β̂ (SE) β̂ (SE) β̂ (SE)

SHEP intervention (1= 
treated group; 0= con-
trol group)

0.740
(0.137)

1.016
(0.241)***

0.520
(0.149)***

0.627
(0.188)***

0.419
(0.117)***

0.497
(0.135)***

0.347
(0.072)***

0.388
(0.114)***

0.406
(0.101)***

0.375
(0.144)**

Adjust ing  i r r igat ion 
schedule (1= yes; 0= 
no)

–0.451
(0.316)

0.052
(0.287)

–0.365
(0.138)***

–0.432
(0.962)

–0.436
(0.241)*

–0.519
(0.252)**

0.014
(0.358)

–0.449
(0.203)**

0.066
(0.123)

–0.453
(0.841)

SHEP intervention * 
Optimizing the irriga-
tion schedule 

–0.628
(0.391)

0.086
(0.982)

0.188
(0.386)

0.588
(0.448)

0.493
(0.858)

Use of disease–resistant 
varieties (1=yes; 0=no)

0.541
(0.147)***

0.869
(0.346)**

0.320
(0.136)**

0.650
(0.303)**

0.270
(0.131)**

0.254
(0.145)*

0.199
(0.098)**

0.047
(0.134)

0.087
(0.114)

–0.031
(0.159)

SHEP intervention * 
Use of disease–resistant 
varieties 

–0.349
(0.372)

–0.419
(0.339)

–0.023
(0.226)

0.309
(0.181)*

0.193
(0.185)

Adjusting the sowing 
and harvesting time 
(use effective crop cal-
ender) (1= yes; 0= no)

0.392
(0.142)***

0.291
(0.347)

0.169
(0.139)

0.006
(0.382)

0.127
(0.199)

0.266
(0.278)

0.280
(0.104)***

0.540
(0.152)***

0.143
(0.115)

0.282
(0.147)*

SHEP intervention * 
Adjusting the sowing 
and harvesting time 

0.156
(0.358)

0.171
(0.409)

–0.228
(0.335)

–0.312
(0.331)

–0.116
(0.181)

Use of crop diversifica-
tion (1= yes; 0= no)

–0.135
(0.159)

–0.286
(0.643)

0.024
(0.335)

0.009
(0.320)

0.370
(0.238)

1.052
(0.828)

0.370
(0.069)***

1.132
(0.096)***

0.146
(0.225)

1.017
(0.243)***

SHEP intervention * 
Use of crop diversifica-
tion

0.109
(0.665)

0.058
(0.493)

–0.699
(0.845)

–1.000
(0.187)***

–1.024
(0.258)***

Sex of the housheold 
head (1=male; 0=fe-
male)

0.169
(0.242)

0.177
(0.179)

0.001
(0.202)

0.024
(0.230)

0.077
(0.282)

0.069
(0.291)

0.023
(0.110)

–0.149
(0.112)

0.149
(0.182)

0.138
(0.175)

Age of the housheold 
head measured in years

0.001
(0.07)

–0.000
(0.005)

–0.011
(0.006) *

–0.012
(0.005) **

–0.001
(0.006)

–0.000
(0.005)

–0.001
(0.003)

–0.002
(0.004)

–0.008
(0.005)

–0.007
(0.004) *

E d u c a t i o n  l e v e l  o f 
the household head 
measured in years of 
schooling 

0.061
(0.022)***

0.049
(0.016)***

0.021
(0.029)

0.032
(0.018)*

0.023
(0.019)

0.016
(0.019)

0.017
(0.011)

0.030
(0.012)**

0.000
(0.017)

–0.004
(0.015)

Total family size in the 
household 

0.006
(0.032)

0.015
(0.023)

0.021
(0.029)

0.009
(0.028)

0.003
(0.028)

–0.013
(0.025)

0.017
(0.018)

0.020
(0.018)

–0.018
(0.020)

–0.015
(0.023)

Road access measured 
in number of months 
passable for veheciles 

–0.010
(0.034)

–0.022
(0.033)

0.094
(0.041)**

0.095
(0.039)**

0.126
(0.035)***

0.147
(0.031)***

0.106
(0.021)***

0.103
(0.023)***

0.103
(0.035)***

0.086
(0.0279)***

Distance to agricultural 
cooperatives 

–0.003
(0.002)

–0.003
(0.005)

–0.004
(0.004)

–0.005
(0.005)

–0.001
(0.003)

–0.001
(0.003)

–0.002
(0.002)**

–0.004
(0.002)**

–0.004
(0.003)

–0.004
(0.001)***

Distance to farmers 
training school

0.002
(0.002)

0.002
(0.005)

0.001
(0.005)

0.001
(0.005)

–0.004
(0.004)

–0.003
(0.003)

–0.006
(0.002)**

–0.003
(0.003)

–0.007
(0.003)*

–0.007
(0.003)***

Constant 
6.262

(0.560)***
6.190

(0.602)***
6.685

(0.504)***
6.608

(0.528)***
6.730

(0.560)***
6.501

(0.528)***
7.595

(0.289)***
7.670

(0.321)***
8.609

(0.476)***
8.748

(0.422)***

Pseudo R
2

0.1414 0.1495 0.0810 0.0854 0.0957 0.1048 0.1126 0.1305 0.1199 0.1514

Note: �Model–1 is the model estimation “without interaction effects”; Model–2 represents model estimation “with interaction effect”; and SE 
indicates the standard error and β̂ the coefficients of the covariates.  : ***, **, and * show the variables’ significance at 1%, 5%, and 
10% significant levels, respectively
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most from the combined impacts of market–oriented 
extensions like the SHEP intervention and climate–resil-
ient practices, such as cultivating disease–resistant 
crops.  Disease–resistant varieties reduce yield losses 
from pests and diseases, especially in intensively man-
aged horticultural systems, which positively influence 
crop yield (Autio et al., 2021).  Alternatively, the inter-
action between the SHEP intervention and crop diversi-
fication adoption demonstrates an inverse effect on 
aggregate yield, suggesting that adopters in the control 
group achieve a higher aggregate weighted yield per 
hectare than those in the treated group.  This could be 
because SHEP is a market–oriented extension approach 
aimed at helping farmers cultivate crops that align with 
market demand rather than simply maximizing yields.  
This market alignment strategy has improved income 
and food security (Fikadu et al., 2025).  Conversely, 
farmers in the control group, who are not part of SHEP’s 
market–driven strategy, may focus on crops that do not 
necessarily align with market demand.  While such crops 
may contribute to a higher aggregate yield per hectare, 
they may not result in greater income gains.  This pat-
tern aligns with previous findings from Shimizutani et al. 
(2021), which reported that Kenyan farmers participat-
ing in SHEP transitioned to market–responsive crops, 
leading to a 70% increase in horticultural income despite 
potential yield reductions.  This underscores the notion 
that SHEP farmers may prioritize market–responsive 
crop selection over indiscriminate crop diversification 
for maximizing income, which could explain why adop-
ters in the treated group do not necessarily achieve 
higher aggregate yield per hectare.

Road access shows a significant heterogeneous 
effect on aggregate weighted yield across all quantiles, 
except for the lowest (10th quantile), indicating that 
improved road infrastructure generally enhances horti-
cultural yield for most farmers.  For those in higher yield 
quantiles, better road access increases the likelihood of 
generating a marketable surplus by facilitating access to 
higher–quality inputs. Moreover, a well–developed road 
network encourages input providers to deliver high–
quality agricultural supplies more efficiently, boosting 
horticultural yield.  This result aligns with the findings of 
Wudad et al. (2021); they found that improved road net-
works allow them to access agricultural inputs, exten-
sion services, and higher–value urban markets, further 
enhancing yield and income gain in Dedo woreda of 
Jimma zone, Ethiopia.

The proximity to agricultural cooperatives and farm-
ers’ training schools is critical in influencing horticultural 
yield, especially at higher quantiles, such as the 75th and 
90th percentiles.  It indicates that farmers close to the 
agricultural cooperatives are more likely to get various 
agricultural inputs, including improved seed, fertilizer, 
technical training, and market linkages, which could con-
tribute to higher aggregate yield.  Moreover, farmers in 
the upper yield quantiles tend to possess the resources 
and knowledge necessary to leverage cooperative mem-
bership and training programs fully.  This enables them 
to optimize input usage, adopt advanced agronomic 

practices, and enhance post–harvest handling.  This 
finding aligns with the study of Akinola et al. (2023), 
who highlighted that farmers who are members of agri-
cultural cooperatives have significantly improved their 
tomato yield than non–member farmers in Nigeria.  In 
another study by Abate et al. (2014), agricultural coop-
eratives play a crucial role in improving farm efficiency 
in Ethiopia by providing easy access to improved inputs 
and embedded supports, including information and 
training on applying these inputs to their farms.  In line 
with this, the farmer’s training center significantly posi-
tively affects crop productivity in Ethiopia (Wonde et al., 
2022).

CONCLUSIONS AND POLICY IMPLICATIONS

This study examines the relationship between 
adopting climate–smart horticulture (CSH) practices 
and participation in the Smallholder Horticulture 
Empowerment and Promotion (SHEP) intervention.  
The findings show that 41.3% of farmers adopted CSH 
practices, with a notably higher adoption rate among the 
SHEP–treated group (50.7%) than the control group 
(33.7%).  Disaggregated analysis indicates that farmers 
in the SHEP group more frequently adopt specific CSH 
practices—such as adjustments to irrigation schedules 
and disease–resistant crop varieties, as well as adjust-
ments in sowing and harvesting times.  However, crop 
diversification demonstrates the lowest adoption rates 
among all practices.  The SHEP intervention significantly 
increases the likelihood of adopting irrigation schedule 
adjustments and crop diversification, emphasizing its 
market–oriented approach to crop selection.  The 
Average Treatment Effect on the Treated (ATET) 
reveals a 43.0% increase in yield among adopters com-
pared to non–adopters.  The SHEP intervention signifi-
cantly improved aggregate horticulture yield across all 
quantiles, regardless of its interaction with CSH adop-
tion.  Furthermore, considering the interaction effects of 
SHEP with adopting CSH practices reveals more signifi-
cant aggregate yield gains for farmers in the SHEP group 
who adopt disease–resistant crop varieties.  In contrast, 
the interaction between SHEP and crop diversification is 
negatively associated with yield, likely due to SHEP’s 
focus on strategic market–oriented crop selection 
instead of maximizing aggregate yields after addressing 
hidden biases.  Road access, proximity to agricultural 
cooperatives, and farmers’ training schools influence 
aggregate horticulture yield.  These findings underscore 
the necessity for targeted, market–oriented extension 
strategies that balance yield optimization with context–
specific and market–oriented climate–smart practices 
rather than applying blanket adaptation policies.  Such a 
strategy would ensure the scalability of CSH practices 
among smallholder farmers to enhance horticulture 
yield.

The study provides robust insights into the effects of 
adopting CSH practices and implementing SHEP inter-
ventions to improve horticultural crop yield.  We also 
highlight the heterogeneous effects of various adoption 
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of CSH practices and SHEP interventions on horticul-
tural yield.  This study utilized aggregate weighted yield, 
demonstrating the comparability of aggregate crop yield 
among smallholder farmers.  While the method considers 
land allocation and offers a balanced representation of 
all crops, it assumes that weighting by land area ade-
quately reflects the significance of each crop in the farm-
er’s production strategy.  This assumption may overlook 
differences in crop–specific factors such as input inten-
sity, labor requirements, or market value, as the 
approach aggregates all horticultural crops harvested by 
smallholder farmers into a single metric.  Consequently, 
valuable insights into the relative performance of spe-
cific crops, their economic contributions, and direct 
comparisons of individual crop yields across farmers will 
be examined in future research.
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Appendix 1   �Summary statistics of key agricultural attributes used 
in the matching process at kebele level for control 
group identification

Variables Unmatched 
kebeles

Treated 
kebeles

Matched 
control 
kebeles

Soil Clay Depth (%) 36.30 46.37 43.20

Soil Nitrogen Depth (%) 1.61 2.36 1.70

Soil Carbon Depth (%) 24.91 34.10 30.54

Soil pH*10 65.17 56.56 58.69

Distance to nearest 
major city (km)

317.05 251.43 214.38

Slope (degree) 6.64 5.71 5.64

Elevation (m) 1609.33 1803.35 1721.97

Distance to River (m) 139442.24 65830.29 69727.16

Length road network 1786.18 6425.73 4278.63


