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Climate—smart practices in agriculture have been widely implemented to adapt to the adverse effects
of climate change. Despite the growing literature on this topic, less attention has been given to evaluating
their effects on horticulture yield. This study investigates the effects of adopting climate—smart horticul-
ture (CSH) practices on horticultural yield in Jimma, Ethiopia, within the framework of the Smallholder
Horticulture Empowerment and Promotion (SHEP) approach. Primary data were collected from
409 smallholder horticulture farmers in the Jimma zone, Ethiopia. Quantile regression and Inverse proba-
bility weighting regression adjustment (IPWRA) were used to estimate the heterogeneous effects of SHEP
and adoption of CSH practices on aggregate weighted horticulture yield. The results show that adopting
CSH practices increases yield by 43% among adopters. Moreover, through adopting disease-resistant vari-
eties, the SHEP intervention positively affects yield across all quantiles. Therefore, the study underscores
the need to scale up context—specific CSH practices alongside a market—-oriented extension program.
Strengthening farm demonstration programs and enhancing access to agricultural cooperatives can further

support smallholder farmers in improving horticulture yield.
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INTRODUCTION

Smallholder farmers in developing countries contin-
uously face challenges in enhancing agricultural produc-
tivity due to climate variability (Asfew & Bedemo, 2022),
limited access to agricultural extension services (Leta et
al., 2017), and weak implementation of agricultural
extension systems (Kitajima, 2024). Climate change sig-
nificantly threatens global agricultural production, par-
ticularly affecting developing countries (Kalele et al.,
2021). The region’s heavy reliance on rain—fed agricul-
ture makes it especially vulnerable to climate variability.
Although agriculture constitutes 40% of East Africa’s
GDP and sustains the livelihoods of 80% of the popula-
tion in developing countries, shifts in temperature and
precipitation patterns greatly diminish agricultural out-
put (Musyimi, 2020), endangering the livelihoods of over
3.83 billion people who depend on the agri—food system
(FAO, 2023). Climate change also encourages the
increased presence and outbreaks of existing and new
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pests and diseases (Patrick et al., 2020). Thus, develop-
ing countries will need an estimated $127 billion annu-
ally by 2030 and $295 billion annually by 2050 to adapt

to the adverse effects of climate change
(Intergovernmental Panel on Climate Change (IPCC),
2022).

Horticultural farming is one of the essential eco-
nomic activities in East Africa (Nyasimi, Radeny, and
Kinyangi, 2013). While it is often viewed as a climate—
smart practice, particularly when supported by irrigation
systems (Tesfaye et al., 2023). As a result, adaptation
efforts have primarily concentrated on other crops and
livestock farming (Asfew & Bedemo, 2022; Berhanu et
al., 2024; Di Falco & Veronesi, 2013; Mpala & Simatele,
2024). However, recent studies indicate that horticul-
tural farming remains susceptible to climate change. For
instance, horticultural crops are particularly vulnerable
to climate change due to their high water demands and
specific temperature requirements (Patrick et al., 2020).
Increasing temperatures may exceed crop-specific
thresholds, thereby impacting growth and yield. For
example, higher temperatures can reduce tomatoes’
yield and quality (Ayankojo & Morgan, 2020). Changes
in rainfall patterns result in greater variability in water
availability, which subsequently affects crop growth and
irrigation needs (OECD, 2014).

As a result, climate-smart agriculture practices
(CSA) have been introduced and implemented to adapt
the adverse effects of climate change on agricultural pro-
ductivity. CSA acts as a bridge between scientific
research and policymaking, contributing to accomplish-
ing sustainable development goals, initially pioneered by
FAO in 2010 at the Hague Conference on Agriculture,
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Food Security, and Climate Change (FAO, 2013). CSA
practices refer to sustainably transforming, reorienting,
and creating long-term agricultural development,
improving yield and household welfare. Developing
countries, including Ethiopia, have embraced various cli-
mate—smart agriculture (CSA) practices as adaptation
strategies to tackle these challenges (Waaswa et al.,
2021). CSA practices have been widely implemented for
their effectiveness in mitigating the adverse effects of
climate change by enhancing resilience and farm pro-
duction while lowering greenhouse gas emissions (Di
Falco and Veronesi, 2013; FAO, 2022). Different coun-
tries have been practicing CSH in various groups, such
as innovative agronomic methods (adjusting irrigation
scheduling’, managing pests and diseases, using
improved varieties adapted to climate variability, imple-
menting crop rotation, and changing planting and har-
vest dates) by Shah & Wu (2019), soil conservation prac-
tices such as using compost, mulching, organic fertiliz-
ers, and conservation agriculture, tie ridge by Okoronkwo
et al. (2024) and farm risk reduction practices (crop
insurance, crop diversification, and utilizing water ponds
on their farm plots) (Naazie et al., 2023). Since horti-
culture crops are being influenced by climate change
and the need for targeted adaptation strategies to
enhance their resilience and long—term sustainability,
recently, the concept of climate-smart horticulture
(CSH) practices has been customized from the CSA con-
cept. It has a similar definition of CSA, which follows the
same principles of adaptability and building resilience to
climate variability. However, the CSH concept involves
adapting and building the resilience of horticulture crops
to climate variability (Mwikamba, Otieno, and Oluoch—
Kosura, 2024).

Moreover, the Ethiopian and Japanese governments
have collaborated to implement market—oriented exten-
sion programs called Smallholder Horticulture
Empowerment and Promotion (SHEP) to improve farm-
ers’ income and welfare. The primary focus of the SHEP
program is to facilitate and teach farmers to adopt a
“grow to sell” approach, which involves farmers continu-
ously analyzing market demand before they grow strate-
gic” horticultural crops, rather than simply planting
crops business as usual. The SHEP program has pro-
vided various comprehensive soft skills training, includ-
ing sensitization workshops (which clearly communicate
the vision), market demand analysis, improved agro-
nomic training (covering crop selection, crop calendar,
soil management, planting protocols, weed management,
pest and disease control, and harvesting techniques),
post-harvest handling, profitability analysis, gender
mainstreaming, and other climate—smart agricultural
practices. The SHEP interventions have also been

implemented to improve horticultural crop yield, equip-
ping farmers with essential skills and knowledge to make
informed production decisions aligned with the market
demand within climate—variability scenarios. Thus, the
SHEP intervention significantly promotes commerciali-
zation and joint decision—making, thereby improving the
income of smallholder farmers (Fikadu et al., 2025). On
the other hand, even though CSH practices are not a
frontline objective of the SHEP program, they have
broadly been promoted in every single training session of
the SHEP program. For example, using disease-resist-
ant varieties, diversifying market—-demand horticulture
crops, adjusting planting and harvesting time, adjusting
irrigation schedules, and other climate—smart practices
have been provided to the farmers as integral sections of
the SHEP training packages (Nomura et al., 2024). In
line with this, the SHEP intervention promotes climate—
smart horticulture (CSH) practices to increase produc-
tivity, adapt to agricultural risks, which are called adapt-
ing climate-related risks (Nomura et al., 2024), and
improve household income (Fikadu et al., 2025).

Despite the growing body of literature on adopting
climate-smart agriculture (CSA) practices and their
effects on crop yield, few studies have focused on exam-
ining the effects of adopting CSH practices on horticul-
tural yield. For example, the research conducted by
Mwikamba, Otieno, and Oluoch-Kosura (2024) high-
lighted the factors affecting adopting CSH practices in
Kenya. They treated the data as count data and
employed a negative binomial regression model, but did
not address how these practices influence horticultural
crop yield. Nevertheless, the effects of adopting CSH
practices on horticultural yield, especially within irriga-
tion-based horticultural farming using methodologically
rigorous approaches, have been less documented.
Addressing these gaps by analyzing the effects of CSH
adoption on horticultural yield will provide a more com-
prehensive understanding of sustainable horticultural
farming. A study by Nomura et al. (2024) confirmed
that adopting the Smallholder Horticulture
Empowerment and Promotion (SHEP) approach
enhances the likelihood of adopting agricultural prac-
tices to manage climate-related risks following climate—
smart principles. However, the heterogeneous effects of
the SHEP approach through adopting CSH practices
remain underexplored. Therefore, this study aims to
estimate the effects of farmers’ adoption of climate-
smart horticulture practices and SHEP intervention on
aggregate weighted horticultural crop yield.

Conceptual framework of the study
The conceptual framework illustrates how the SHEP
intervention affects aggregate weighted horticultural

° Irrigation schedule adjustment is implemented among groups of farmers who have irrigation plots within the same cluster and share
similar water sources in our study areas. Adjusting the schedule based on a commonly agreed rotation system facilitates the efficient
use of limited water resources, minimizing wastage and ensuring that all farmers can conveniently access water at different times.

-

Market-responsive horticultural crops refer to market—driven crop types selected by farmers based on their high demand,

profitability, and suitability to local agroecological conditions. In the SHEP framework, diversification emphasizes strategically selecting
high—value horticultural crops to maximize income and market responsibness rather than producing a wide array of crops regardless of

their market demand.
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Fig. 1. Conceptual framework of the effects of adoption of CSH on aggregate weighted horticulture yield.

yield through adopting climate-smart horticulture
(CSH) practices, such as adjusting irrigation scheduling,
using disease-resistant crop varieties, adjusting planting
and harvesting times, and market—oriented crop diversi-
fication® (Fig. 1). The study employs inverse probabil-
ity-weighted regression adjustment (IPWRA) to esti-
mate average treatment effects by addressing selection
bias. We use quantile regression as a regression adjust-
ment after matching instead of ordinary least squares
(OLS) to capture the heterogeneous effects of SHEP and
CSH adoption across the yield distribution. The frame-
work also considers how farmers’ demographic, socioec-
onomic, and agriculture-related characteristics influence
aggregate weighted horticultural yield across different
quantiles, from the lowest to the highest.

RESEARCH METHODS

Study area setting, sampling procedures, and data

The SHEP intervention has been implemented in
four woredas (districts) and eight kebeles’ within the
Jimma zone of the Oromia region. The intervention
kebeles were not randomly selected when the project
was initially launched, introducing potential selection
bias in assessing its effect on horticulture yield.
Therefore, we employ a quasi—experimental research
design (QERD) to control for selection bias at the kebele
level. Unlike randomized control trials (RCTs), QERD
lacks randomization and instead uses agricultural peculi-
arities or observable characteristics deliberately
employed to select or match counterfactual groups with
the treated groups. We utilized various agricultural

peculiarities, including soil properties, slope, elevation,
irrigation availability, distance to major cities, and road
density, to create equivalent counterfactual kebeles
alongside treated kebeles using satellite geographic
information system (GIS) (Campbell & Stanley, 1963).
These parameters are considered essential for improving
horticultural production and marketing. Based on those
agricultural peculiarities, we created a comparable coun-
terfactual group outside the SHEP intervention woreda,
referred to as “control” groups. The main assumption is
that individuals in the control group are expected to be
located far from the SHEP intervention areas, leading to
minimal social interactions or information sharing among
farmers, thus helping to prevent potential spillover
effects. We followed several procedures to identify
counterfactual kebeles. First, we divided the entire
Oromia region into a grid of 1km by 1km parcels. We
assigned a dummy value of 1 to parcels within the kebe-
les with SHEP interventions, designating these as
“treated” parcels. All other parcels received a dummy
value of 0, representing the “non-treated” parcels.
Second, we considered six essential agricultural charac-
teristics or non—-random attributes, such as soil charac-
teristics and access to infrastructure, at the 1km by
1 km parcel level for both treated and non-treated par-
cels. Third, using R programming software, we applied
the nearest neighbor matching method at the 1km by
1 km mesh level to statistically identify control parcels
that resemble the “treated” parcels based on these key
attributes. Fourth, we calculated the total number of
plots of 1 km by 1 km identified as “control” for each “no
treatment” kebele in the non-intervention woredas,

® Crop diversification can be classified into two types. Conventional crop diversification involves growing a variety of crops primarily
to reduce risks, such as crop failure, without necessarily considering market demand or profitability. In contrast, market-responsive
crop diversification entails the deliberate selection of crops based on market demand and profitability, aiming to maximize income by

focusing on more marketable crops.

? Ethiopia’s administrative system is organized hierarchically into four levels of authority: regions, zones, woredas (districts), and kebeles,

with the kebele being the smallest administrative unit.
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respectively. Finally, we designated a kebele as a “con-
trol” kebele if more than 20% similar to those treated
kebeles, highlighting the confounding factors between
the treated and counterfactual groups to become more
comparable (Fig. 2 and Appendix 1). Thus, this study
used 15 kebeles (eight treated and seven control kebe-
les) across six woredas, comprising 409 smallholder
farmers in horticulture (207 from the treated group and
202 from the pure control group) (Fig. 2). Household
survey data were collected using structured question-
naires from December 2022 to January 2023.

Main variables of interest and their measurement
Aggregate weighted horticulture yield

Weighting in aggregate yield estimation is crucial in
contexts where farmers cultivate multiple horticultural
crops within the same season; for example, farmers in
the study area have grown different horticultural crops,
such as cabbage, onion, potato, tomato, carrot, sweet
potato, and green pepper, on separate plots. It ensures
that crops occupying a larger share of land contribute
more to the overall measure. This approach enhances
comparability across households by standardizing yield
metrics and preventing distortions caused by crops from
small plots. Additionally, it balances representation by
mitigating the risk of overinflating yield for high-yield
crops grown on small plots while ensuring that low—yield
crops cultivated in larger areas are not underrepre-
sented. Furthermore, the sample size in this study for
each horticultural crop is small, which is insufficient for
econometric model estimation for the individual crop;

therefore, we use the aggregate weighted yield to repre-
sent overall household-level horticultural yield. The
ratio of land allocated for each crop to the total horticul-
tural land of the household serves as a weighting factor,
acting as a proxy for the relative importance of each
crop in the farmer’s production strategy. We follow the
following three steps to calculate the household produc-
tion system’s aggregate weighted yield of the horticul-
tural crops.

First, we calculate the yield of each crop produced
by the farmers, which is the ratio of the quantity of har-
vests multiplied by the land allocation of each crop.

(Quantity of harvest measured in kg),;
(Land area measured in hectare),

@®

(Yield), =

Where j denotes the horticultural crop types pro-
duced by farmer i.

Second, we calculate the weighting factor for each
crop to estimate the aggregate yield of farmers' horticul-
ture crops.

(Land allocation);
(Lotal land size for horticulture production);

@

(Weight), =

Third, we aggregate the yield of each crop using the
weight factor for the individual farmers who produced
them in the same season. This approach accounts for
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Fig. 2. Map of the study areas.
Source: Sketched by the authors (2024)
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the relative importance of each crop based on land allo-
cation decisions. It provides a balanced representation
of all crops, preventing overemphasis on high—yielding
crops that might occupy smaller areas.

(Aggregate weighted horticultural yield), =
>, [(Weight), * (Yield),]  (3)

Where i represents the sample farmers and j denotes
the number of horticultural crops produced by the sam-
ple farmers.

Adoption of climate-smart horticulture (CSH)
practices

In this study, the adoption of CSH practices is meas-
ured using dummies (adopters and non-adopters) for
each practice implemented by farmers, such as adjusting
irrigation scheduling, using disease-resistant crop varie-
ties, adjusting planting and harvesting times, and diversi-
fying crops for market orientation. A farmer is consid-
ered an adopter if they employed at least one CSH prac-
tice, while those who did not implement any CSH prac-
tices at all are referred to as non—-adopters.

Econometric model specification

We used an inverse probability weighting regression
adjustment to estimate effects of adopting CSH practices
on aggregate weighted horticultural yield.

Inverse Probability Weighting Regression
Adjustment (IPWRA)
We wused the Inverse Probability Weighted

Regression Adjustment (IPWRA) model to estimate the
effects of adopting CSH practices in a quasi—experimen-
tal design setting, which makes a causal inference by
creating the best possible counterfactual groups. The
IPWRA estimates the Average Treatment Effects on the

Unmatched sample

Z
§21
[=]
1 -
0 L T T T T T T
o] 2 4 6 8 1
Predicted probability
—— Adopters Non-adoplers]

treated, which is the difference in outcome variables of
the adopters and non—-adopters, and it helps as a “ther-
apy” for biases that arise from misspecification of
Propensity Score Matching (PSM) (Ogunniyi et al.,
2023). Misspecification of the propensity score model
occurs when important covariates are excluded, irrele-
vant ones are included, or nonlinear relationships are
assumed linear, leading to poor covariate balance and
biased treatment effect estimates. Similarly, the out-
come model may suffer from missing key covariates,
including irrelevant ones, or failing to capture nonlinear
or heterogeneous effects, resulting in biased estimates of
the Average Treatment Effect on the treated (ATET).
These issues compromise the accuracy of both models,
as the propensity score fails to balance treated and
untreated groups, and the outcome model misestimates
the relationship between covariates and outcomes. The
IPWRA estimator is a “doubly robust” model, indicating
that consistent treatment effects can be estimated even
if one of the two models (treatment and outcome model)
is incorrectly specified (Sibhatu, Arslan, and Zucchini,
2022; Wooldridge, 2010). Thus, this estimator allows us
to estimate the effects of smallholder farmers’ adopting
CSH practices on horticulture production.

Following Ogunniyi et al. (2023), we assume the lin-
ear regression function of the model estimation is Y; = 8,
+ 7, X, + €. Then, we follow three steps to estimate
ATET using the IWPRA: First, we generate the propensity
score using the observable factors p(x; S?) Second, we
calculate the weights for the adopters and non-adopters
using the inverse of the propensity score values to create
balanced pseudo—populations, such as weights for the
treated group 1p(x;y) and weights for the control group
(Fig. 3). Third, we estimate the Average Treated Effects
on the Treated (ATET) using inverse probability weighted
least squares from the adopters and non—-adopters.

Matched sample

Z
22
[=]
1 -
0 1 T T T T T T
0 2 4 6 .8 1
Predicted probability
| —— Adopters Mon-adopters)

Fig. 3. Testing the overlap assumption before and after matching
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min L, (Z-B-n X)/p@V T =1 4
171
min .}, (Z-B-n X)/p@V YT =0 (5

where (8,, 7,) is the estimation for the adapters or
T =1) and (B,, 7,) is the estimation of non-adapters or
T =1.

Then, estimate the ATET, which is the difference
between equations 8 and 9.

ATT= L3 (B Bl (- ) X, (©)

where 7, is the total number oAf smallholder farmers
who adopted the CSH practices, ( 5, '7’1) denotes the esti-
mated inverse probability Weighted parameters for the
adopters are denoted, and (S, 7A’0) and represents the
estimated inverse probability weighted parameters for
the non-adopters.

Fourth, quantile regression is estimated as a regres-
sion adjustment by including the treatment and other
control covariates to assess the robustness of the ATET.

Y=8+0T +oD +7X+¢ M

where T, is the treatment variable (adoption of CSH
practices), and D, is the SHEP intervention (1 = treated
and 0 = otherwise) X, are other control variables.

The outcome variables (Y)) in this model (IWRA) are
aggregate weighted horticultural yield. All sample farm-
ers are included in estimating the Average Treatment
Effect on the Treated (ATET) of adoption to Climate—
Smart Horticulture (CSH) practices on aggregated horti-
cultural production.

After estimating the Average Treatment Effect on
the Treated (ATET) using the Inverse Probability
Weighted Regression Adjustment (IPWRA), we further
investigate the factors influencing aggregated weighted
horticultural yield through quantile regression because
the study setting is a quasi—experiment, there is still
some confounding bias (hidden bias) that has been
inherited after IPW matching. The rationale for using
quantile regression arises from our findings on the
Average Treatment Effect (ATE), which reveal that the
benefits of adopting CSH practices are not uniform
across all smallholder farmers. The mean-based estima-
tors may obscure these heterogeneous effects. In con-
trast, quantile regression allows us to examine how the
effects of various factors differ across the aggregate yield
distribution—from the lowest to the highest quantiles.
In quantile regression estimation, we decompose the
adoptions of CSH practices into four practices: adjusting
irrigation schedule, using disease-resistant crops/varie-
ties, changing sowing and harvesting time, and using
crop diversification. Quantile regression shows the het-
erogeneity effects of the covariates, providing insights
into effects at different aggregate weighted yield distri-
butions, from the lowest to highest levels (Buchinsky,
1998; Fikadu et al., 2025; Koenker & Hallock, 2001;

Ogutu & Qaim, 2019). Following Tabe Ojong et al.
(2022), the standard quantiles were used, encompassing
the median (50™ percentile), quartiles (25" and 75" per-
centiles), and two additional percentiles—one at the
lower end and another at the upper—income level (the
10", 25", 50™ 75" and 90" quantiles).

The quantile regression specification is explained in
Equation (4):

Y, =X B,+u, where; (Y, 1X =X ) ®

where Y, is the aggregate weighted yield; X, is the
set of covariates, including different adoptions of CSH
practices, SHEP intervention, Interaction effects, and
other control covariates such as farmers’ socioeconomic,
demographic, and institutional characteristics; q it is a

quantile with 0< g<1 /5, the parameters to be estimated.

RESULTS AND DISCUSSIONS

Summary of descriptive statistics

Table 1 summarizes various covariates across adop-
ters and non—adopters, highlighting the statistically sig-
nificant differences between the two groups. The aver-
age education level of the household head was over
three years, while non—-adopters were below three years,
suggesting that better education may influence adoption
decisions. The average land area allocated for horticul-
ture production is 0.56 hectares, which is almost similar
for both adopters and non—adopters. The average years
of experience in horticulture farming for adopters were
over eight years, whereas non—-adopters had seven years,
which is a statistically significant mean difference
between them. The farmers who have more years of
experience might have contributed to the likelihood of
adopting new CSH practices. Approximately 60.7% of
the adopters were in the treated group, while about
43.2% were non-adopters, which differs significantly
from the control group, indicating that participation in
the SHEP intervention is strongly associated with adopt-
ing CSH practices. Another essential factor is participa-
tion in farm field demonstrations, which is statistically
significant; a higher percentage of adopters (65.5%)
participated in farm demonstrations compared to non—
adopters (53.6%). This emphasizes the role of hands—on
learning in adaptation. Similarly, the frequency of exten-
sion contact is significant, showing that adopters had
more frequent monthly extension visits than non-adop-
ters, suggesting that greater access to agricultural advice
facilitates the adoption of CSH practices. The distance
to the agriculture office is marginally significant, where
adopters are closer to the agriculture office than non—
adopters, implying that proximity to the agriculture
office may enhance access to resources and support for
adopting CSH practices. Livestock ownership, measured
in Tropical Livestock Units (TLU), is statistically signifi-
cant, showing that adopters own more livestock than
non-adopters, suggesting that wealthier households,
regarding livestock assets, are more likely to adopt CSH
practices. The baseline difference between adopters and
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Table 1. Summary statistics before and after matching

()
Full(sla)mple Adglz)zers Non—sE(gl())pters diff ((24))— 3) sdtl;tl.l?;; glig(;

Sex of the household head (1 = male; 0 = female) 0.92 0.94 0.93 -0.01 0.00
Age of the household head (years) 42.46 42.59 42.46 0.04 0.01
Eldgl)lcation level of the household head (years of school- 3.99 347 9.99 0.43 0.04
Sljssr?lé:li)z;t:)(;n in farm field demonstration in village (1 = 0.64 0.66 054 0.19 %% 0.03
Frequency of extension contact (frequency per month) 6.94 7.18 5.69 1.56 ** 0.01
Land allocation for horticultural crop production (ha.) 0.56 0.59 0.55 0.03 0.04
Experience of horticulture farming (years) 7.87 8.50 7.36 0.61 0.00
Total family size in the household 6.14 5.99 6.11 -0.06 0.06
Road access (number of months passable for vehicles) 10.81 10.83 10.67 0.24 0.00
Distance to agricultural cooperatives (minutes by foot) 34.84 35.65 40.00 -0.86 0.02
Distance to farmers training center (minutes by foot) 30.00 30.81 29.91 -0.27 0.05
Distance to main market (minutes by foot) 78.07 77.98 79.45 441 -0.01
Distance to agriculture office (minutes by foot) 29.87 28.08 31.18 -3.10 ** 0.01
Livestock (in TLU) 4.16 4.37 3.75 0.49 * 0.01

non-adopters was removed after applying matching
(ipw), which indicates that their characteristics are well
balanced. After matching, the standardized mean differ-
ences should be consistently below 0.1 and not statisti-
cally significant for successful matching (Austin, 2009).

Association between adopting CSH practices and
SHEP intervention

We observed a consistent trend of higher adoption of
different practices among farmers in the treated group
compared to those in the control group. The adoption of
irrigation schedule adjustments varies significantly
between the control and treated groups, with approxi-
mately 13% of farmers in the treated group making this
adjustment, compared to 2.9% in the control group (Fig.
4A). This indicates that participation in the treatment
(SHEP intervention) slightly increases the likelihood of
adopting irrigation schedule adjustments, though overall
adoption remains relatively low. Adopting disease—
resistant crop varieties is more prevalent than adjusting
irrigation schedules, with adoption rates of 38.7% in the
treated groups and 28.7% in the control groups (Fig.
4B). This implies that farmers in the SHEP intervention
are more inclined to adopt disease-resistant crop varie-
ties to mitigate disease risks than those in the control
group. Adjusting sowing and harvesting times repre-
sents another adaptation strategy that entails modest
decision—-making. Farmers in the treated group adopted
their sowing and harvesting times at a rate of 21.7%,
while those in the control group reached 14.4% (Fig.
4C). This disparity indicates that SHEP participants
made more informed adoption decisions regarding plant-
ing schedules in response to climate variability. This
shift suggests the intervention’s positive, albeit limited,
impact on promoting adaptive agronomic practices.
Crop diversification, a vital risk management strategy,

exhibits the lowest adoption rates among all practices.
In the treated group, only 15.9% of farmers utilized crop
diversification as a CSH practice, whereas 5.4% of farm-
ers in the control group adopted it (Figure 4D).

Aggregate weighted horticulture yield across
adopters of CSH practices and SHEP groups

Fig. 5 shows the red line (Non-adopters: Control),
which shows the highest peak, indicating a larger pro-
portion of individuals with very low horticultural yields
(up to 2,000kg). The green line (Non-adopters:
Treated) shifts slightly to the right compared to the red
line, suggesting that treatment positively influences the
aggregate weighted horticultural yield of non—-adopters.
The blue line (Adopters: Control) is skewed to the left
but has a longer tail, implying that adopters without
treatment achieve higher production levels than non—
adopters. The purple line (Adopters: Treated) shifts fur-
ther to the right and has the flattest distribution, signify-
ing a significant improvement in the horticultural yield of
adopters due to treatment. Thus, adopters (from
treated and control) consistently demonstrate higher
production levels than non-adopters, underscoring the
benefits of adopting climate—smart horticultural (CSH)
practices. Moreover, the shift from blue (Adopters:
Control) to purple (Adopters: Treated) is more pro-
nounced than the shift from red (Non-adopters:
Control) to green (Non-adopters: Treated), suggesting
that treatment is more effective for adopters compared
to non-adopters.

Average treatment effects of adopting CSH prac-
tices on aggregated weighted horticultural crop
yield

Table 2 presents the estimated impact of adopting
Climate—Smart Horticulture (CSH) practices on aggre-
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Control Treated Control Treated

2.9% 13.0%

28.7% 38.7%

86.96%

71.29% 61.35%

97.03%

|_ Non-adopters [N Adoptersl |— Non-adopters [ Adopters|

A. Adjusting irrigation schedule B. Using disease-resistant varieties
Control Treated Control Treated
14.4% 5.4% 15.9%

21.7%
78.3%
5.6% ’ 94.55% 84.1%

I Non-adopters [N Adoptersl |_ Non-adopters [N Adopters|

C. Changing sowing and harvesting time D. Using crop diversification

Fig. 4. Adoption of different climate-smart horticulture (CSH) practices across the SHEP group.
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Fig. 5. The results of Kernel density estimation: Distribution of horticultural production
between adapters and non-adapters in SHEP groups.
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Table 2. Average treatment effect of adopting CSH practices on aggregated weighted horticulture yield

ATET POMean ATE POMean
Adaptation of CSH 0.430 8.177 0.059 8.248
practices (0.086) *** (0.072) *** (0.051) (0.053) ***
gate weighted horticultural yield, wusing Inverse rather than uniform. Farmers tailor their choices based

Probability Weighted Regression Adjustment (IPWRA).
The Average Treatment Effect on the Treated (ATET) is
0.430, meaning that CSH adopters experience a 43.0%
increase in yield compared to what they would have
experienced had they not adopted these practices. This
confirms that adopting CSH practices significantly
enhances yield among those who adopt them. The
Average Treatment Effect (ATE) is 0.059, indicating that
when considering the entire population, the overall
effect of adopting CSH practices is only a 5.9% increase
and is statistically insignificant, which suggests that
while adopting CSH practices is highly beneficial for
adopters, expanding it to all farmers may not give the
same level of adoption. Compared to the value of ATET,
the small and insignificant ATE highlights heterogeneous
treatment effects, meaning that certain farmers could
benefit more from adopting CSH practices than others.
Thus, this finding underscores that CSH adoption is
highly effective for those who voluntarily adopt it.
However, its benefits might not be uniform across all
farmers; it will likely be heterogeneous. Consequently,
rather than promoting broad or blanket climate change
adaptation policies (one-size—fits—all), policymakers
should focus on context—specific, location—sensitive CSH
interventions. This approach ensures that CSH adapta-
tion strategies align with different farming communities’
socioeconomic and agroecological conditions, maximiz-
ing their effectiveness and long-term sustainability.
Moreover, the potential outcome means (POMean) for
adopters and non-adopters provides additional insights
into the post—-treatment yield levels. The expected yield
level for adopters is 8.177, while for the entire popula-
tion (adopters and non-adopters), it is 8.248. This sug-
gests that the estimated yield levels between the two
groups remain relatively comparable in absolute terms
after accounting for selection bias. However, the posi-
tive and significant ATET effect indicates that adopters
achieve a notable relative advantage due to adopting
CSH practices.

Heterogeneous effects of adopting CSH practices
and SHEP intervention on aggregated horticulture
yield

We decompose the CSH practices into four compo-
nents: (i) adjusting irrigation schedules, (ii) using dis-
ease-resistant crop varieties, (iii) adjusting planting and
harvesting periods, and (iv) implementing crop diversifi-
cation. This disaggregation enables a nuanced assess-
ment of their effects on aggregated weighted horticul-
tural yield (Table 3). By disaggregating CSH practices,
we provide a more realistic representation of farmers’
decision—-making processes, as adoption is often selective

on specific agroecological conditions, resource availabil-
ity, and market incentives, resulting in varying impacts
on horticultural yield. This nuanced approach enhances
the understanding of diverse adaptation pathways, offer-
ing more targeted insights for policy and extension ser-
vices.

Our findings indicate varied results regarding the
effects of adopting various CSH practices through the
SHEP intervention on aggregated weighted yield. For
example, the SHEP intervention positively influences
aggregate weighted horticultural yield across all quan-
tiles except the 10™ quantile, regardless of whether
farmers adopt CSH practices (Table 3: model-1).
Moreover, the interaction effects of the SHEP interven-
tion and the use of disease-resistant crop varieties are
notably significant at the 75" quantile of aggregate
weighted horticultural yield, suggesting that farmers in
the higher yield range benefit the most from the synergy
between market-oriented extensions like the SHEP
intervention and climate-resilient crop choices, such as
adopting disease-resistant crops (Table 3: model-2). On
the other hand, the interaction effects of SHEP and crop
diversification show reverse effects on aggregate yield,
indicating that adopters in the control group exhibit
higher aggregate weighted yield per hectare than those
in the treated group.

Road access has a significant heterogeneous effect
on aggregate weighted yield across all quantiles except
for the lowest (10™ quantile), indicating that better road
infrastructure benefits most farmers by enhancing their
aggregated horticulture yield (Table 3). The distances
to agricultural cooperatives and farmers’ training schools
are crucial factors affecting horticulture yield, particu-
larly in the higher quantiles, such as the 75" and 90" per-
centiles (Table 3: model-2).

DISCUSSIONS

This study examines the effects of SHEP interven-
tion and the adoption of CSH practices on aggregate hor-
ticultural crop yield. Our findings demonstrate that
adopting various CSH practices through the SHEP inter-
vention has different effects on the aggregate weighted
horticultural yield, implying that these effects depend on
the specific CSH practices implemented. On the one
hand, the SHEP intervention boosts yield across all
quantiles except the 10™ quantiles, regardless of the
interaction effects of farmers’ adoption of CSH practices.
Furthermore, the interaction between the SHEP inter-
vention and the adoption of disease-resistant crop varie-
ties shows a significant positive effect at the 75" quan-
tile, indicating that farmers with higher yields benefit the
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Table 3. Factors affecting aggregated weighted horticulture yield using quantile regression estimation

10" 25" 50" 75" 90"
Covariates Model-1 Model-2 Model-1 Model-2 Model-1 Model-2 Model-1 Model-2 Model-1 Model-2
B(SE) JB(SE) B(SE) [B(SE) B(SE) [B(SE) JB(SE) AB(SE) JB(SE) B(SE)

SHEP intervention (1=, 7, 1.016 0.520 0.627 0.419 0.497 0.347 0.388 0.406 0.375

ggf‘;‘;guggo“p; 0=COn- 5 137)  (0.241)%** (0.149)%** (0.188)* (0.117)** (0.135)%* (0.072)*** (0.114)%** (0.101)= (0.144)**

?C‘E;l(fﬂgg(ff“ii?igr_‘ 0451 0052  -0365 -0432  —0436 0519 0014 0449 0066  —-0.453

o =ves; 0= (0316)  (0.287) (0.138)** (0.962) (0.241)* (0.252)" (0.358) (0.203) (0.123)  (0.841)
. o

it e ~0.628 0.086 0.188 0.588 0.493

optimizing | (0.391) (0.982) (0.386) (0.448) (0.858)

Use of disease—resistant ~ 0.541  0.869 0320  0.650 0270 0254 0199 0047 0087  —-0.031

varieties (1=yes; 0=no)  (0.147)** (0.346)** (0.136)** (0.303)** (0.131)** (0.145)* (0.098)** (0.134)  (0.114)  (0.159)

SHEP intervention * ~0.349 —0.419 -0.023 0.309 0.193

Use of disease-resistant %
varieties (0.372) (0.339) (0.226) (0.18D) (0.185)

Adjusting the sowing

and harvesting time 0.392 0.291 0.169 0.006 0.127 0.266 0.280 0.540 0.143 0.282
(use effective crop cal- (0.142)*** (0.347) (0.139) (0.382) (0.199) (0.278)  (0.104)**+ (0.152)*** (0.115)  (0.147)*
ender) (1= yes; 0=no)

SHEP intervention *

PRI 0.156 0.171 0228 0312 0.116
e o (0.358) (0.409) (0.335) (0.331) (0.181)
Use of crop diversifica-  ~0.135  -0.286  0.024 0009 0370 1052 0370 1132 0146 1017
tion (1= yes; 0= no) (0.159)  (0.643) (0835) (0.820) (0.238)  (0.828) (0.069)%* (0.096)=% (0.925) (0.243)%*
JHEF Intervention * 0.109 0.058 0,699 ~1.000 ~1.024
Jse of crop (0.665) (0.493) (0.845) (0.187) 5+ (0.258) 5+
Sex of the housheold = 169 o177 001 0024 0077 0069 0023  -0149 0149  0.138

f‘g{g (I=male; 0=fe- y'ou0y  (0179)  (0202) (0.230) (0282) (0291)  (0.110)  (0.112) (0.182)  (0.175)
Age of the housheold ~ 0.001  -0.000  —0.011  -0.012  -0.001  -0.000  —-0.001  -0.002  -0.008  —-0.007
head measured inyears  (0.07)  (0.005)  (0.006) * (0.005)** (0.006)  (0.005)  (0.003)  (0.004)  (0.005)  (0.004) *

Education level of
the household head 0.061 0.049 0.021 0.032 0.023 0.016 0.017 0.030 0.000 -0.004
measured in years of (0.022)*** (0.016)*** (0.029)  (0.018)*  (0.019) (0.019) (0.011)  (0.012)**  (0.017) (0.015)

schooling

Total family size in the 0.006 0.015 0.021 0.009 0.003 -0.013 0.017 0.020 -0.018 -0.015
household (0.032) 0.023)  (0.029) (0.028)  (0.028)  (0.025) (0.018) (0.018)  (0.020) (0.023)

Road access measured
in number of months
passable for veheciles

~0.010  -0.022  0.094 0.095 0.126 0.147 0.106 0.103 0.103 0.086
(0.034)  (0.033) (0.041)** (0.039)** (0.035)%** (0.031)*** (0.021)*** (0.023)%** (0.035)%** (0.0279)%**

Distance to agricultural ~ -0.003 ~ -0.003  -0.004  -0.005  -0.001  -0.001  -0.002  -0.004  -0.004  —0.004
cooperatives 0.002)  (0.005)  (0.004)  (0.005)  (0.003)  (0.003) (0.002)* (0.002)** (0.003) (0.001)%*
Distance to farmers  0.002 0.002 0.001 0.00l  -0.004  -0.003  -0.006  -0.003  -0.007  -0.007
training school 0.002)  (0.005)  (0.005)  (0.005)  (0.004)  (0.003) (0.002)* (0.003)  (0.003)* (0.003)%*
Constant 6.262 6.190 6.685 6.608 6.730 6.501 7.595 7.670 8.609 8.748
(0.560)% (0.602)*% (0.504)%** (0.528)*** (0.560)%** (0.528)** % (0.289)%* (0.321)*** (0.476)*** (0.422)%**
Pseudo R’ 0.1414  0.1495  0.0810  0.0854  0.0957  0.1048  0.1126  0.1305  0.1199  0.1514

Note: Model-1 is the model estimation “without interaction effects”; Model-2 represents model estimation “with interaction effect”; and SE
indicates the standard error and /3 the coefficients of the covariates. : *** ** and * show the variables’ significance at 1%, 5%, and
10% significant levels, respectively
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most from the combined impacts of market—oriented
extensions like the SHEP intervention and climate-resil-
ient practices, such as cultivating disease-resistant
crops. Disease-resistant varieties reduce yield losses
from pests and diseases, especially in intensively man-
aged horticultural systems, which positively influence
crop yield (Autio et al., 2021). Alternatively, the inter-
action between the SHEP intervention and crop diversi-
fication adoption demonstrates an inverse effect on
aggregate yield, suggesting that adopters in the control
group achieve a higher aggregate weighted yield per
hectare than those in the treated group. This could be
because SHEP is a market—oriented extension approach
aimed at helping farmers cultivate crops that align with
market demand rather than simply maximizing yields.
This market alignment strategy has improved income
and food security (Fikadu et al., 2025). Conversely,
farmers in the control group, who are not part of SHEP’s
market—driven strategy, may focus on crops that do not
necessarily align with market demand. While such crops
may contribute to a higher aggregate yield per hectare,
they may not result in greater income gains. This pat-
tern aligns with previous findings from Shimizutani et al.
(2021), which reported that Kenyan farmers participat-
ing in SHEP transitioned to market-responsive crops,
leading to a 70% increase in horticultural income despite
potential yield reductions. This underscores the notion
that SHEP farmers may prioritize market-responsive
crop selection over indiscriminate crop diversification
for maximizing income, which could explain why adop-
ters in the treated group do not necessarily achieve
higher aggregate yield per hectare.

Road access shows a significant heterogeneous
effect on aggregate weighted yield across all quantiles,
except for the lowest (10" quantile), indicating that
improved road infrastructure generally enhances horti-
cultural yield for most farmers. For those in higher yield
quantiles, better road access increases the likelihood of
generating a marketable surplus by facilitating access to
higher—quality inputs. Moreover, a well-developed road
network encourages input providers to deliver high—
quality agricultural supplies more efficiently, boosting
horticultural yield. This result aligns with the findings of
Wudad et al. (2021); they found that improved road net-
works allow them to access agricultural inputs, exten-
sion services, and higher-value urban markets, further
enhancing yield and income gain in Dedo woreda of
Jimma zone, Ethiopia.

The proximity to agricultural cooperatives and farm-
ers’ training schools is critical in influencing horticultural
yield, especially at higher quantiles, such as the 75" and
90™ percentiles. It indicates that farmers close to the
agricultural cooperatives are more likely to get various
agricultural inputs, including improved seed, fertilizer,
technical training, and market linkages, which could con-
tribute to higher aggregate yield. Moreover, farmers in
the upper yield quantiles tend to possess the resources
and knowledge necessary to leverage cooperative mem-
bership and training programs fully. This enables them
to optimize input usage, adopt advanced agronomic

practices, and enhance post-harvest handling. This
finding aligns with the study of Akinola et al. (2023),
who highlighted that farmers who are members of agri-
cultural cooperatives have significantly improved their
tomato yield than non-member farmers in Nigeria. In
another study by Abate et al. (2014), agricultural coop-
eratives play a crucial role in improving farm efficiency
in Ethiopia by providing easy access to improved inputs
and embedded supports, including information and
training on applying these inputs to their farms. In line
with this, the farmer’s training center significantly posi-
tively affects crop productivity in Ethiopia (Wonde et al.,
2022).

CONCLUSIONS AND POLICY IMPLICATIONS

This study examines the relationship between
adopting climate-smart horticulture (CSH) practices
and participation in the Smallholder Horticulture
Empowerment and Promotion (SHEP) intervention.
The findings show that 41.3% of farmers adopted CSH
practices, with a notably higher adoption rate among the
SHEP-treated group (50.7%) than the control group
(33.7%). Disaggregated analysis indicates that farmers
in the SHEP group more frequently adopt specific CSH
practices—such as adjustments to irrigation schedules
and disease-resistant crop varieties, as well as adjust-
ments in sowing and harvesting times. However, crop
diversification demonstrates the lowest adoption rates
among all practices. The SHEP intervention significantly
increases the likelihood of adopting irrigation schedule
adjustments and crop diversification, emphasizing its
market—oriented approach to crop selection. The
Average Treatment Effect on the Treated (ATET)
reveals a 43.0% increase in yield among adopters com-
pared to non-adopters. The SHEP intervention signifi-
cantly improved aggregate horticulture yield across all
quantiles, regardless of its interaction with CSH adop-
tion. Furthermore, considering the interaction effects of
SHEP with adopting CSH practices reveals more signifi-
cant aggregate yield gains for farmers in the SHEP group
who adopt disease-resistant crop varieties. In contrast,
the interaction between SHEP and crop diversification is
negatively associated with yield, likely due to SHEP’s
focus on strategic market—oriented crop selection
instead of maximizing aggregate yields after addressing
hidden biases. Road access, proximity to agricultural
cooperatives, and farmers’ training schools influence
aggregate horticulture yield. These findings underscore
the necessity for targeted, market—oriented extension
strategies that balance yield optimization with context—
specific and market—oriented climate—smart practices
rather than applying blanket adaptation policies. Such a
strategy would ensure the scalability of CSH practices
among smallholder farmers to enhance horticulture
yield.

The study provides robust insights into the effects of
adopting CSH practices and implementing SHEP inter-
ventions to improve horticultural crop yield. We also
highlight the heterogeneous effects of various adoption
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of CSH practices and SHEP interventions on horticul-
tural yield. This study utilized aggregate weighted yield,
demonstrating the comparability of aggregate crop yield
among smallholder farmers. While the method considers
land allocation and offers a balanced representation of
all crops, it assumes that weighting by land area ade-
quately reflects the significance of each crop in the farm-
er’s production strategy. This assumption may overlook
differences in crop-specific factors such as input inten-
sity, labor requirements, or market value, as the
approach aggregates all horticultural crops harvested by
smallholder farmers into a single metric. Consequently,
valuable insights into the relative performance of spe-
cific crops, their economic contributions, and direct
comparisons of individual crop yields across farmers will
be examined in future research.
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Appendix 1 Summary statistics of key agricultural attributes used
in the matching process at kebele level for control
group identification

. Unmatched Treated Matched

Variables control
kebeles kebeles
kebeles

Soil Clay Depth (%) 36.30 46.37 43.20
Soil Nitrogen Depth (%) 1.61 2.36 1.70
Soil Carbon Depth (%) 2491 34.10 30.54
Soil pH*10 65.17 56.56 58.69
Distance to nearest 317.05 251.43 214.38
major city (km)
Slope (degree) 6.64 5.71 5.64
Elevation (m) 1609.33 1803.35 1721.97
Distance to River (m) 139442.24 65830.29 69727.16
Length road network 1786.18 6425.73 4278.63




