# 九州大学学術情報リポジトリ Kyushu University Institutional Repository

# Photochemical Removal of Acrolein Using a Headon Type of 172-nm Xe\_2 Excimer Lamp in Air at Atmospheric pressure

# TSUJI, Masaharu

Institute for Materials Chemistry and Engineering, Kyushu University

# KAMO, Naohiro

Department of Applied Science for Electronics and Materials, Kyushu University : Graduate Student

# MIYANO, Masato

Department of Applied Science for Electronics and Materials, Kyushu University : Graduate Student

https://doi.org/10.15017/7385431

出版情報:九州大学大学院総合理工学報告. 47 (1), pp.17-23, 2025-09. 九州大学大学院総合理工学府バージョン:

権利関係:



# Photochemical Removal of Acrolein Using a Head-on Type of 172-nm Xe<sub>2</sub> Excimer Lamp in Air at Atmospheric pressure

Masaharu TSUJI,\*1,2† Naohiro KAMO\*3 and Masato MIYANO\*3

†E-mail of corresponding author: tsuji@cm.kyushu-u.ac.jp

(Received Aug 18, 2025, accepted Aug 30, 2025)

The photochemical removal of acrolein ( $C_2H_3CHO$ ) was investigated in air ( $O_2$  5–20%) at atmospheric pressure using a head-on type of 172-nm Xe<sub>2</sub> excimer lamp. When 172-nm light was irradiated to  $C_2H_3CHO$ , HCHO, HCOOH, CO, CO<sub>2</sub>, and O<sub>3</sub> were observed in FTIR spectra. The dependence of product concentrations on the irradiation time indicated that  $C_2H_3CHO$  is converted to  $CO_2$  via HCHO, HCOOH, and CO intermediates. The initial removal rates of  $C_2H_3CHO$  increased from 0.80 to 1.43 min<sup>-1</sup> with decreasing the O<sub>2</sub> concentration from 20 to 5%. Besides direct photolysis of  $C_2H_3CHO$ , O( $^3P$ ), O( $^1D$ ), and O<sub>3</sub> are possible active species of  $C_2H_3CHO$  removal. The contribution of O( $^1D$ ) was examined from the total pressure dependence of the residual amount of  $C_2H_3CHO$ , and that of O<sub>3</sub> was obtained from the O<sub>3</sub> +  $C_2H_3CHO$  reaction in the same apparatus. It was inferred that  $C_2H_3CHO$  is initially decomposed by direct vacuum ultraviolet (VUV) photolysis of  $C_2H_3CHO$  and the O( $^3P$ ) +  $C_2H_3CHO$  reaction. It was oxidized further by reactions of H, O( $^3P$ ,  $^1D$ ), OH, and O<sub>3</sub> with various intermediates such as HCHO, HCOOH, and CO, leading to  $CO_2$  as a final product.

**Key words:** VOC, Acrolein, Oxidation, VUV photolysis, Head-on type of 172 nm Xe<sub>2</sub> excimer lamp,  $O(^3P)$ ,  $O(^1D)$ ,  $O_3$ , CO, CO<sub>2</sub>

### 1. Introduction

Volatile organic compounds (VOCs) are emitted as gases from certain solids or liquids. VOCs include a variety of chemicals, some of which may have short- and long-term adverse health effects. Current removal techniques of VOCs are thermal oxidation, adsorption, biofiltration, non-thermal plasma, photodegradation, catalysts, photocatalysis.<sup>1-7)</sup> Removal of VOCs by using VUV photons is a new promising technique. In discharge plasmas in air, where energetic electrons are major active species, N<sub>2</sub> molecules are decomposed, and active N atoms are formed. Therefore, toxic NOx molecules are generated through the N +  $O_2$  and NO +  $O_3$  reactions during removal of VOCs. An advantage of 172nm VUV photolysis in air is that N2 molecules are not decomposed, so that no NOx molecules are formed during photolysis. We have studied

removal of such typical VOCs as CH<sub>4</sub>, C<sub>2</sub>H<sub>4</sub>, and aldehydes using head-on and/or side-on types of 172-nm VUV excimer lamps.<sup>8-14)</sup> Results demonstrated that these VOC can be removed efficiently in air at atmospheric pressure and at low temperatures without using any catalysts.

Acrolein ( $C_2H_3CHO$ ) is a highly toxic VOC which should be removed efficiently. In this study, 172-nm VUV photolysis of acrolein in air is studied using a head-on type of 172-nm excimer lamp. Removal rates of  $C_2H_3CHO$  in air are measured at 20, 10, or 5%  $O_2$ . Results obtained are compared with our previous data obtained using a side-on type of 172-nm excimer lamp.<sup>11)</sup>

In 172-nm photolysis in air, ground state  $O(^3P)$  atoms and metastable  $O(^1D)$  atoms are formed by photolysis of  $O_2.^{15,16)}$   $O_3$  molecules are formed by the subsequent three-body  $O(^3P)$  +  $O_2$  +  $N_2$  (or  $O_2$ ) reactions. Therefore, in addition to direct VUV photodissociation, reactions of  $O(^3P,^1D)$  and  $O_3$  with  $C_2H_3CHO$  might be responsible for  $C_2H_3CHO$  removal in the initial decomposition reactions. The contribution of  $O(^1D)$  is examined by measuring the dependence of the residual amount on the total pressure. To examine the contribution of

<sup>\*1</sup> Institute for Materials Chemistry and Engineering, and Research and Education Center of Green Technology

<sup>\*2</sup> Department of Applied Science for Electronics and Materials

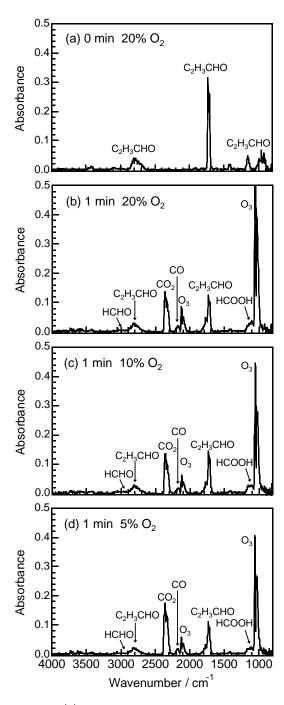
<sup>\*3</sup> Department of Applied Science for Electronics and Materials, Graduate Student

 $O_3$ , the  $O_3$  +  $C_2H_3$ CHO reaction is studied using the same apparatus. Based on these experiments, major active species under 172-nm photolysis of  $C_2H_3$ CHO are determined and the oxidation mechanism of  $C_2H_3$ CHO is discussed. All reaction rate constants and branching ratios of products used for discussion have been measured at about 300 K.<sup>17)</sup>

# 2. Experimental

The VUV photolysis apparatus used in this work was the same as that reported previously.<sup>9,10)</sup> We used a head-on type of 172nm excimer lamp with an input power of 20 W. Light from an unfocused 172-nm Xe<sub>2</sub> lamp (50) mW/cm<sup>2</sup>, 155-200 nm range, UER20H172; Ushio Inc.) was irradiated into the photolysis through a quartz window. Experiments were conducted using a closed batch chamber at atmospheric pressure with a chamber volume of 184 mL. The C<sub>2</sub>H<sub>3</sub>CHO concentration diluted in N<sub>2</sub>/O<sub>2</sub> mixtures (20, 10, or 5% O2) was 500 ppm in most experiments. Product gases in the photolysis chamber were analyzed using a gas analysis system (FG122-LS; Horiba Ltd.) equipped with a Fourier transform infrared (FTIR) spectrometer. The spectra in the 800-4000 cm<sup>-1</sup> region were monitored. The CO, CO<sub>2</sub>, HCHO, and C<sub>2</sub>H<sub>3</sub>CHO concentrations were calibrated using standard gases. On the other hand, the O<sub>3</sub> and HCOOH concentrations were evaluated by reference to standard spectral data supplied by Horiba Ltd.

We have also studied the  $O_3$  +  $C_2H_3CHO$  reaction using the same technique reported previously.<sup>10)</sup> The initial  $C_2H_3CHO$ ,  $O_2$ , and  $O_3$  concentrations in a  $C_2H_3CHO$ /air mixture were 260 ppm, 20%, and 0.69%, respectively. The total pressure was 50 kPa.


We used the following gases:  $N_2$  (purity >99.9998%; Taiyo Nippon Sanso (TNS) Corp.),  $O_2$  (purity >99.9995%; TNS Corp.), and  $C_2H_3CHO$  (4800 ppm in  $N_2$  buffer gas; TNS Corp.).  $C_2H_3CHO$  was diluted in air (5, 10, or 20%) before use.

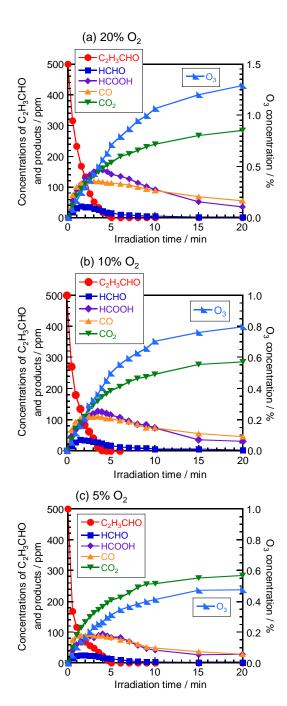
# 3. Results and discussion

# 3.1 $C_2H_3CHO$ removal by 172-nm VUV phtons in air at 20, 10, or 5% $O_2$

The 172-nm photolysis of C<sub>2</sub>H<sub>3</sub>CHO in air was conducted at 20, 10, or 5% O<sub>2</sub>. As an example, Fig. 1(a) shows a typical FTIR spectrum of C<sub>2</sub>H<sub>3</sub>CHO (500 ppm) at 20% O<sub>2</sub> before photoirradiation, where a strong

C<sub>2</sub>H<sub>3</sub>CHO peak at about 1730 cm<sup>-1</sup> and a few weak C<sub>2</sub>H<sub>3</sub>CHO peaks are observed in the 1100–2800 cm<sup>-1</sup> region. FTIR spectra at 10 or 5% O<sub>2</sub> before photoirradiation were essentially identical with Fig. 1(a). Figures 1(b)–1(d) show FTIR spectra obtained after photoirradiation for 1 min at 20, 10, or 5% O<sub>2</sub>, respectively. After




**Fig. 1.** (a) FTIR spectra of  $C_2H_3CHO$  and products (a) before 172-nm photoirradiation in 20%  $O_2$  and (b)–(d) after photoirradiation for 1 min at 20%  $O_2$ , 10%  $O_2$ , and 5%  $O_2$ , respectively.

photolysis for 1 min, the  $C_2H_3CHO$  peaks decrease their intensities by 54–77%, whereas CO, CO<sub>2</sub>, HCHO, HCOOH, and O<sub>3</sub> peaks appear. The concentration of O<sub>3</sub> decreases with decreasing the O<sub>2</sub> concentration.

Figures 2(a)-2(c) show the dependence of the concentrations of C<sub>2</sub>H<sub>3</sub>CHO, HCHO, HCOOH, CO, CO<sub>2</sub>, and O<sub>3</sub> on the irradiation time at O<sub>2</sub> concentrations of 20, 10, and 5%, respectively. Results show that the concentration C<sub>2</sub>H<sub>3</sub>CHO rapidly decreases to zero at about 5 min in all cases. Time profiles of the concentrations of HCHO, HCOOH, and CO at 20 and 10% O<sub>2</sub> are similar and give peaks at 1.5, 3.5, and 2.5 min, respectively. The concentrations of HCHO, HCOOH, and CO at 5% O2 give peaks at 2.0, and 2.5min, respectively. concentration of CO2 increases to about 285 ppm at 20 min in all cases. The concentration of  $O_3$  increases to 1.29, 0.80, and 0.48% at 20, 10, and 5% O<sub>2</sub>, respectively, after 20 min irradiation. These time profiles imply that C<sub>2</sub>H<sub>3</sub>CHO is finally converted to CO<sub>2</sub> via HCHO, HCOOH and CO through consecutive reactions.

Assuming pseudo-first order decay, the initial  $C_2H_3CHO$  removal rate constants  $k_p$ were ascertained from slopes of  $-\ln(C_t/C_0)$  vs. irradiation time, where  $C_0$  is the initial concentration of  $C_2H_3CHO$ . The  $k_p$  values were 0.80, 0.87, and 1.43 min<sup>-1</sup> at the  $O_2$ concentration of 20, 10, and 5%, respectively. These values were smaller than those obtained using a side-on lamp by factors of 10.5, 13.4, and 11.6, respectively. 11) A major reason for the small removal rates is that the window area of the head-on lamp (8.0 cm<sup>2</sup>) was smaller than that of the side-on type one (78.5 cm<sup>2</sup>) by about one order of magnitude. 9,10) Therefore, reaction volume in the head-on lamp experiments is about one order of magnitude smaller than that in the side-on ones.

With decreasing the  $O_2$  concentration from 20% to 10, and 5%, the light transmittance distance above 95% increases, respectively, from  $\approx 1$  cm to  $\approx 2$ , and  $\approx 4$  cm.  $^{9,10)}$  Therefore, the reaction volume increases concomitantly with decreasing the  $O_2$  concentration because the VUV light penetrates into the reaction chamber with decreasing the  $O_2$  concentration. VUV photolysis of  $O_2$  and  $C_2H_3CHO$  occur in a large reaction volume uniformly with decreasing the  $O_2$  concentration. This uniformity is a major reason why the  $C_2H_3CHO$  removal rate increases concomitantly with decreasing the  $O_2$  concentration.



**Fig. 2.** Dependence of concentrations of  $C_2H_3CHO$ , products, and  $O_3$  on the irradiation time at (a) 20%  $O_2$ , (b) 10%  $O_2$ , and (c) 5%  $O_2$ .

## 3.2 Effects of O(1D) atoms in C<sub>2</sub>H<sub>3</sub>CHO removal

The effect of  $O(^{1}D)$  was examined by changing the total operating pressure of the reaction chamber.  $O(^{1}D)$  atoms are formed by 172-nm photolysis of  $O_{2}$  (1). The  $O(^{1}D)$  +  $C_{2}H_{3}CHO$  reaction (3) competes with the quenching reactions by  $N_{2}$  (3) and  $O_{2}$  (4).

$$\begin{array}{ll} O_2 + hv(172\text{-nm}) \rightarrow O(^3P) + O(^1D) & (1) \\ O(^3P) + C_2H_3CHO \rightarrow Products & (2) \\ (k_2 = 4.01 \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})^{17)} \\ O(^1D) + C_2H_3CHO \rightarrow Products & (3) \\ O(^1D) + N_2 \rightarrow O(^3P) + N_2 & (4) \\ (k_4 = 2.6 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})^{17)} \\ O(^1D) + O_2 \rightarrow O(^3P) + O_2 & (5) \\ (k_5 = 4.0 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})^{17)} \end{array}$$

Although the rate constant of the  $O(^3P)$  +  $C_2H_3CHO$  reaction (2) has been reported, that of the  $O(^1D)$  +  $C_2H_3CHO$  reaction (3) has not been measured. With decreasing the total pressure, the relative contribution of process (3) to those of (4) and (5) increases because electronic quenching reactions (4) and (5) are suppressed at low  $N_2/O_2$  pressures.

Figure 3 presents the dependence of the residual amount of  $C_2H_3CHO$  defined by  $C_t/C_0$ and the concentration of O3 on the total pressure of air (20% O<sub>2</sub>) after 1 min photoirradiation. If the  $O(1D) + C_2H_3CHO$ reaction (3) plays a major role in the C<sub>2</sub>H<sub>3</sub>CHO removal as in the case of the  $O(1D) + CH_4$ reaction, 12) the residual amount of C<sub>2</sub>H<sub>3</sub>CHO is expected to decrease with decreasing the total pressure. No significant decrease in the residual amount of C2H3CHO is found with decreasing the total pressure from 100 to 10 kPa, indicating that O(1D) atoms play no major role for the C<sub>2</sub>H<sub>3</sub>CHO removal. The O<sub>3</sub> concentration decreases from 0.14 to 0.0064% with decreasing the total pressure from 100 to 10 kPa because three-body  $O(^{3}P) + O_{2} + X (X =$  $N_2$ ,  $O_2$ ) reactions leading to  $O_3$  are suppressed with decreasing the total pressure. Results

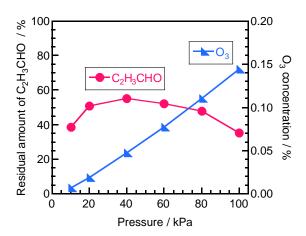
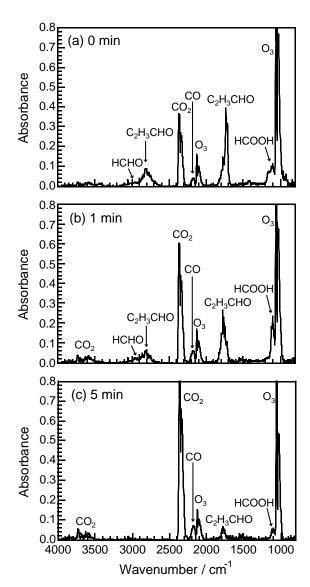



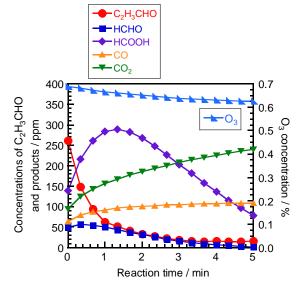

Fig. 3. Dependence of residual amount of  $C_2H_3CHO$  and the concentration of  $O_3$  on the total pressure of air (20%  $O_2$ ) after 1 min photoirradiation. The initial concentration of



**Fig. 4.** (a) FTIR spectra of C<sub>2</sub>H<sub>3</sub>CHO and products by the O<sub>3</sub> + C<sub>2</sub>H<sub>3</sub>CHO reaction at reaction times of 0, 1, and 5 min, respectively.

demonstrate that the residual amount of  $C_2H_3CHO$  after 1 min photoirradiation is essentially independent of the  $O_3$  concentration. This implies that  $O_3$  molecules are not major active species in the initial stage below 1 min.

### 3.3 Effects of O<sub>3</sub> on C<sub>2</sub>H<sub>3</sub>CHO removal


To confirm the contribution of  $O_3$  for the  $C_2H_3CHO$  removal, the  $O_3+C_2H_3CHO$  reaction was studied at an initial  $O_3$  concentration of 0.69%. Figures 4 respectively depict FTIR spectra of  $C_2H_3CHO$  obtained from the  $O_3+C_2H_3CHO$  reaction at reaction times of 0, 1, and 5 min, respectively, where HCHO, HCOOH, CO, CO<sub>2</sub>, and  $O_3$  peaks are observed. The reaction starts immediately after mixing  $O_3$ 

with C<sub>2</sub>H<sub>3</sub>CHO. Therefore, HCHO, HCOOH, CO, and CO<sub>2</sub> peaks appear even at 0 min during measurement of FTIR spectra.

Figure 5 shows the dependence of concentrations of  $O_3$  and products on the reaction time in the  $O_3$  +  $C_2H_3CHO$  reaction. The  $C_2H_3CHO$  concentration slowly decreases exponentially. The concentrations of HCHO and HCOOH increase up to about 0.33 and 1.33 min, respectively, and then decrease thereafter. The  $CO_2$  concentration increases more rapidly than the CO concentration with increasing the reaction time. These results suggest that intermediate HCHO, HCOOH, and CO species are finally converted to  $CO_2$  in the  $O_3$  +  $C_2H_3CHO$  reaction.

O<sub>3</sub> molecules are formed through the threebody reactions (6) and (7) and are consumed by photolysis (8) and by the reactions with O(3P) (9), C<sub>2</sub>H<sub>3</sub>CHO (10), and other products (11).

$$\begin{array}{c} {\rm O} + {\rm O}_2 + {\rm N}_2 \to {\rm O}_3 + {\rm N}_2 & (6) \\ (k_6 = 6.01 \times 10^{-34} \ {\rm cm}^6 \ {\rm molecule}^{-2} \ {\rm s}^{-1})^{9)} & {\rm O} + {\rm O}_2 + {\rm O}_2 \to {\rm O}_3 + {\rm O}_2 & (7) \\ (k_7 = 6.20 \times 10^{-34} \ {\rm cm}^6 \ {\rm molecule}^{-2} \ {\rm s}^{-1})^{9)} & {\rm O}_3 + {\rm hv} \ (172 \ {\rm nm}) \to {\rm O}(^3{\rm P}, ^1{\rm D}) + {\rm O}_2 & (8) \\ {\rm O}_3 + {\rm O}(^3{\rm P}) \to 2{\rm O}_2 & (9) \\ (k_9 = 1.28 \times 10^{-14} \ {\rm cm}^3 \ {\rm molecule}^{-1} \ {\rm s}^{-1})^{17)} & {\rm O}_3 + {\rm C}_2{\rm H}_3{\rm CHO} \to {\rm products} & (10) \\ (k_{10} = 3.63 \times 10^{-19} \ {\rm cm}^3/{\rm molecule}^{-1} \ {\rm s}^{-1})^{17)} & {\rm O}_3 + {\rm HCHO}, \ {\rm HCOOH}, \ {\rm CO}, \ {\rm and} & {\rm other\ intermediates} \to {\rm products} & (11) \\ \end{array}$$



**Fig. 5**. Dependence of concentrations of  $C_2H_3CHO$ , products, and  $O_3$  on the reaction time in air (20%  $O_2$ ). The initial concentration of  $O_3$  was 260 ppm.

The rate constant of the  $O_3$  +  $C_2H_3CHO$  reaction (10) at 298 K is known to be very small. It is smaller than that of the  $O(^3P)$  +  $C_2H_3CHO$  reaction (2) by a factor of  $1.1 \times 10^6$  times. Thus it is expected that the contribution of the  $O_3$  +  $C_2H_3CHO$  reaction (10) is small under our conditions.

If O<sub>3</sub> molecules are consumed only by the O<sub>3</sub> + C<sub>2</sub>H<sub>3</sub>CHO reaction (10), little change in the O<sub>3</sub> concentration is expected because of its very small rate constant. However, we found a slow decay of O<sub>3</sub> in the 0-5 min range. Probably ozonides are initially formed by the  $O_3$  + C<sub>2</sub>H<sub>3</sub>CHO reaction and multiple-step reactions of O<sub>3</sub> with unstable intermediates including ozonides leading to HCOOH, CO, and CO<sub>2</sub> occur. Under such a condition, O<sub>3</sub> is consumed not only by the initial O<sub>3</sub> + C<sub>2</sub>H<sub>3</sub>CHO reaction but also by many other  $O_3$  + intermediates reactions. Therefore, the apparent removal rate of C<sub>2</sub>H<sub>3</sub>CHO by O<sub>3</sub> molecules becomes large in comparison with that expected from the rate constant of the O<sub>3</sub> + C<sub>2</sub>H<sub>3</sub>CHO reaction obtained under single collision conditions.

# 3.4 Possible decomposition mechanisms of $C_2H_3CHO$ under 172-nm photolysis in air

Scheme 1 shows possible oxidation processes of C2H3CHO in air. There are two oxidation mechanisms. One is the direct VUV photolysis (A) and the other is H,  $O(^{3}P,^{1}D)$ , OH, and  $O_{3}$ reactions (B). The contribution of direct VUV photolysis was estimated using the absorption coefficients at 172-nm for  $O_2$  ( $\sigma = 4.63 \times 10^{-19}$ cm<sup>2</sup>/molecule)<sup>15)</sup> and for C<sub>2</sub>H<sub>3</sub>CHO ( $\sigma = 1.3 \times$  $10^{\text{-}17}$  cm<sup>2</sup>/molecule<sup>18)</sup> and concentrations of  $O_2$ (5–20%) and C<sub>2</sub>H<sub>3</sub>CHO (500 ppm) from  $\sigma_i N_i$ values.<sup>10)</sup> Here,  $\sigma_i$  and  $N_i$  are absorption cross section of a molecule i, and its number density, that respectively. Results show contribution of initial absorption of incident light by C<sub>2</sub>H<sub>3</sub>CHO increases from 6.6% to 12.3 21.9% with decreasing and the  $O_2$ concentrations from 20% to 10 and 5%, respectively. Therefore, the contribution of direct photolysis by 172-nm VUV photons is not large even at 5% O2. To the best of our knowledge, there is no information on photolysis products of C<sub>2</sub>H<sub>3</sub>CHO at 172-nm. Since such products as HCO, CO, and H have been obtained under 193-nm ArF laser photolysis.<sup>19)</sup> it is likely that similar products are formed via processes (12a)–(12c) in Scheme 1 under 172-nm photolysis of C<sub>2</sub>H<sub>3</sub>CHO. It should be noted that active H radicals are formed in process (12c).

# (A) Direct photolysis at 172 nm $C_2H_3 + HCO \qquad (12a)$ $C_2H_4 + CO \qquad (12b)$ $C_2H_3CO + H \qquad (12c)$ (B) H, O( $^3P$ , D), OH, and O $_3$ reactions $O(^3P) + C_2H_3CHO \longrightarrow C_2H_3CO + OH \qquad (13)$ $OH + C_2H_3CHO \longrightarrow C_2H_3CO + H_2O \qquad (16a)$ $other intermediates \qquad (16b)$ H, O( $^3P$ ), OH, O $_3$ + C $_2$ H $_3$ CO, other intermediates $\longrightarrow HCHO, HCOOH, CO, other intermediates$ H, O( $^3P$ , D), OH, O $_3$ + HCHO, HCOOH, CO, other intermediates

**Scheme 1**. Possible oxidation processes of acrolein in air.

— → CO₂ (final product)

Major oxidation processes are initiated by the 172-nm photolysis of  $O_2$  into  $O(^3P) + O(^1D)$ (1). The contribution of initial absorption of incident light by O<sub>2</sub> was 93.4, 87.7, and 78.1% at  $O_2$  concentrations of 20, 10, and 5%, respectively. After photolysis of O<sub>2</sub>, O(<sup>3</sup>P, <sup>1</sup>D) and O<sub>3</sub> are formed. Results show that the contribution of O(1D) atoms and O3 molecules to the C<sub>2</sub>H<sub>3</sub>CHO removal is small in the initial stage. It is therefore reasonable to assume that the C<sub>2</sub>H<sub>3</sub>CHO decomposition starts from the O(3P) + C<sub>2</sub>H<sub>3</sub>CHO reaction (2). Although no information on products of the O(3P) + C<sub>2</sub>H<sub>3</sub>CHO reaction has been reported, it is reasonable to assume that OH radicals are formed though H-abstraction reaction (13) as in the cases of the O(3P) + HCHO and O(3P) + CH<sub>3</sub>CHO reactions (14) and (15).<sup>10,14)</sup>

O(3P) + C<sub>2</sub>H<sub>3</sub>CHO 
$$\rightarrow$$
 OH + C<sub>2</sub>H<sub>3</sub>CO (13)  
O(3P) + HCHO  $\rightarrow$  OH + HCO (14)  
( $k_{14} = 1.67 \times 10^{\cdot 13} \text{ cm}^3 \text{ molecule}^{\cdot 1} \text{ s}^{\cdot 1})^{17}$   
O(3P) + CH<sub>3</sub>CHO  $\rightarrow$  OH + CH<sub>3</sub>CO (15)  
( $k_{15} = 4.47 \times 10^{\cdot 13} \text{ cm}^3 \text{ molecule}^{\cdot 1} \text{ s}^{\cdot 1})^{17}$ 

The rate constant of OH +  $C_2H_3$ CHO reaction (16) is larger than that of the O( $^3$ P) +  $C_2H_3$ CHO reaction (2) by a factor of  $^{49.17}$ )

OH + C<sub>2</sub>H<sub>3</sub>CHO 
$$\rightarrow$$
 Products (16)  
( $k_{16} = 1.96 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ )<sup>17)</sup>

Therefore, it is highly likely that OH radicals play a major role for the C<sub>2</sub>H<sub>3</sub>CHO removal in our conditions. Further decomposition and oxidation of such intermediates as HCHO, HCOOH, and CO by H, OH, O(<sup>3</sup>P, <sup>1</sup>D), and O<sub>3</sub>

provide  $CO_2$  as a final product. It is known that the  $O(^1D)$  + CO reaction leading to  $CO_2$  is fast.

(18)

$$O(^{1}D) + CO \rightarrow CO_{2}$$
 (19)  
 $(k_{19} = 8.00 \times 10^{-11} \text{ cm}^{3} \text{ molecule}^{-1} \text{ s}^{-1})^{17)}$ 

Therefore, O(1D) atom is added as active species in the final step (18) in Scheme 1.

# 4. Summary and Conclusion

Removal of C<sub>2</sub>H<sub>3</sub>CHO by a head-on type 172nm VUV photoirradiation was investigated to develop a photochemical removal technique of VOC at atmospheric pressure and room temperature. At 5-20% O<sub>2</sub> in air, C<sub>2</sub>H<sub>3</sub>CHO was oxidized to CO<sub>2</sub> via HCHO, HCOOH, and CO. Under 172-nm photolysis of  $O_2$ ,  $O(^3P,^1D)$ and O<sub>3</sub> can be active species for the C<sub>2</sub>H<sub>3</sub>CHO removal. Results demonstrated that direct photolysis and O(3P) take part in the initial decomposition of C<sub>2</sub>H<sub>3</sub>CHO, although the contribution of direct photolysis is less than about 20%. H, O(3P,1D), OH, and O3 contribute to the further oxidation of such intermediates as HCHO, HCOOH and CO leading to a final product CO<sub>2</sub>. The highest initial removal rate of C<sub>2</sub>H<sub>3</sub>CHO in air, 1.43 min<sup>-1</sup>, was obtained at a low  $O_2$  concentration of 5%. These findings provide fundamental data required for the development of practical removal apparatus of C<sub>2</sub>H<sub>3</sub>CHO using a head-on type of 172-nm VUV lamp in air at atmospheric pressure.

# Acknowledgments

This work was supported by NEDO (project number NCJJ200049, 2008–2009,), and City Area Project from Fukuoka Prefecture (2009).

### References

- Q. Hong, S. Dezhi, and C. Guoqing, J. Environ. Sci., 19, excimer lamp at atmospheric pressure 1136 (2007).
- L. Yang, Z. Liu, J. Shi, Y. Zhang, H. Hu, and W. Shangguan, Sep. Purif. Techonol., 54, 204 (2007).
- P. Fu, P. Zhanga, and J. Li, Appl. Catal. B Environ., 105, 220 (2011).
- M. Y. Wang, Y. W. Lu, F. Wu, X. J. Zhang, and C. X. Yang, Procedia Eng., 121, 521 (2015).
- Z. Zhang, Z. Jiang, W. Shangguan, Catal. Today, 264, 270 (2016).
- 6) S. Cheng, Y. Li, C. Yuan, P. Tsai, H. Shen, and C. Hung, Aerosol and Air Quality Research, 18, 3220 (2018).
- B. Robert and G. Nallathambi, *Environ. Chem. Lett.*, 19, 2551 (2021).
- M. Tsuji, T. Kawahara, N. Kamo, and M. Miyano, *Bull. Chem. Soc. Jpn.*, 83, 582 (2010).
- M. Tsuji, T. Kawahara, K. Uto, N. Kamo, M. Miyano, J. Hayashi, and T. Tsuji, *Environ. Sci. Pollut. Res.*, 25, 18980 (2018).
- M. Tsuji, M. Miyano, N. Kamo, T. Kawahara, K. Uto, J. Hayashi, and T. Tsuji, *Environ. Sci. Pollut. Res.*, 26, 11314 (2019).

- 11) M. Tsuji, M. Miyano, N. Kamo, T. Kawahara, K. Uto, J. Hayashi, and T. Tsuji, *Int. J. Environ. Sci. Technol.*, 16, 7229 (2019).
- 12) M. Tsuji, N. Kamo, M. Miyano, and M. Kawahara, Engineering Sciences Reports, Kyushu University, 46, 19 (2024).
- 13) M. Tsuji, N. Kamo, and M. Miyano, *Engineering Sciences Reports, Kyushu University*, 47, 1 (2025).
- 14) M. Tsuji and M. Miyano, Engineering Sciences Reports, Kyushu University, 47, 9 (2025).
- H. Okabe, "Photochemisty of Small Molecules", John Wiley & Sons, New York (1978).
- 16) J. B. Nee, P. C. Lee, J. Phys. Chem. A, 101, 6653 (1997).
- 17) NIST Chemical Kinetics Database on the Web, Standard Reference Database 17, Version 7.1 (Web Version), Release 1.6.8, Data Version 2025. http://kinetics.nist.gov/kinetics/index.jsp.
- 18) O. Geßner, E. t.-H. Chrysostom, A. M. D. Lee, D. M. Wardlaw, M.-L. Ho, S.-J. Lee, B.-M. Cheng, M. Z. Zgierski, I.-C. Chen, J. P. Shaffer, C. C. Hayden, and A. Stolow, *Faraday Discuss.*, 127, 193 (2004).
- 19) C. Chaudhuri and S. H. Lee, *Phys. Chem. Chem. Phys.*, 13, 7312 (2011).