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Abstract

Little is known about how data-driven greenhouse horticulture impacts profit efficiency. Furthermore, the
interaction between technical change (e.g., adoption of ECDs) and scale effects (e.g., farmland size) remains
underexplored, particularly during periods of high fuel costs. Thus, by investigating the adoption of
environmental control devices and farmland size, this study aims to determine whether technical changes (TC)
and scale effects (SEs) contribute positively to profit effciency. Therefore, we hypothesize that both factors, TC
and SEs, synergistically enhance profit efficiency. For our study, we observed both technical change affecting
profit efficiency between 2017 and 2019. However, the technical change effect diminished in recent years,
especially since 2020, due to increased input costs. Further, scale effects were rather limited as we observed an
inverted U-shaped relationship between profit efficiency and farm size, the optimal farm size being equal and
more than 41 and less than 46 are. The input costs negatively impacting the profit efficiency, namely repair and
labor hiring costs, should be the foremost urgent issues to be resolved for TC and SEs to take place in the
family-based facilitated greenhouse eggplant production in Japan.

Keywords: stochastic frontier profit analysis, profit inefficiency, eggplant, Japan
1. Introduction
1.1 Introduce the Problem

In recent years, data-driven efforts have been made to improve the efficiency of horticultural production in Japan.
Greenhouse horticultural farms in Japan have adopted the environmental control system since the 1980s to
control on-farm information such as temperature, humidity, and CO, at the individual farm level. The
environmental control system was developed to increase agricultural productivity by controlling the environment
inside plastic greenhouses. Specifically, environmental factors such as temperature, humidity, and solar radiation
are monitored, and it optimizes the growing environment in the greenhouse through the activation of other
environmental control devices (ECDs) such as carbon dioxide gas generators (gas machine), ventilation windows,
irrigation equipment (water machine), etc. However, adoption of ECDs has been relatively slow in Japan. The
total area of greenhouses with ECE is 39,452 ha (2.9%) out of the total facility-based horticulture, an increase of
0.7% compared to 2015 (MAFF, 2022).

However, fuel oil prices fluctuate widely due to exchange rates and international commodity market conditions,
making it difficult to forecast future prices for production materials and the profit of horticultural production.
Fuel costs account for a high proportion of management costs in horticulture, which is easily affected by fuel
price hikes. In particular, the income of horticulture facility farmers who grow winter/spring vegetables is
strongly affected by fuel oil prices because heavy oil is used for heating equipment to maintain a constant indoor
temperature, and kerosene or liquefied petroleum gas is used for carbon dioxide gas generation equipment. Thus,
the need to stabilize profit margins amidst rising input costs underscores the importance of identifying and
addressing key variables affecting profit efficiency.

Despite the challenges, facility-based horticulture remains a viable business model for small-scale family farms
in Japan. The average production land area of facility-based horticultural vegetables in Japan is 24.9 are (2490
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m?), which is not large. However, the specific impact of data-driven agriculture on profit efficiency and optimal
land size in facility-based horticultural crop production at the time of the current high fuel costs remains to be
not yet discussed. To address the impact of data-driven production and the land size at the time of the high input
costs, the theory of efficiency through technical change or scale change could be useful. Previous research in the
U.S. (Schimmelpfennig, 2016) and Brazil (Griffin & Lowenberg-Deboer, 2005) has examined the effect of
precision agriculture on profits, with varying results depending on the technology adopted. In facility-based
horticulture, farmers utilize several technologies. For facility-based horticulture, the technologies can range from
electronic automation to ECS that regulates the environment inside a greenhouse (Achour et al., 2021).
Improving resource use efficiency in agriculture can enhance profit efficiency through technical changes (TC)
and scale effects (SEs). This increases productivity as farmers optimize inputs based on the specific environment.
Parikoglou et al. (2022) conducted a study on precision dairy agriculture, finding that milk recording improved
resource utilization and productivity in Ireland. The researchers observed rapid productivity growth through TC
and efficiency improvements rather than scale effects. To comprehend profitability efficiency, it is crucial to
determine whether profit efficiency improvement is driven by TC, SEs, or both.

In the case of Japan, little is known about how data-driven greenhouse horticulture impacts profit efficiency.
Furthermore, the interplay between technical change (e.g., adoption of ECDs) and scale effects (e.g., land size)
remains underexplored, particularly during periods of high fuel costs. Thus, by investigating the degree of ECD
adoption, this study aims to shed light on the relationship between technology adoption and land size on profit
efficiency at a time of high fuel costs. Specifically, it seeks to determine whether technical changes (adoption of
ECDs) and scale changes (land size) contribute positively to profitability, especially under high input cost
conditions. Therefore, we hypothesize that both factors, technical advancements and optimal scale,
synergistically enhance profit efficiency. By addressing this research gap, the study will provide valuable
insights into the economic benefits of adopting data-driven technologies in greenhouse horticulture. It will also
offer practical recommendations for policymakers and farmers on improving resource use efficiency and
profitability during periods of volatile fuel prices. Additionally, the findings may inform strategies for scaling up
the adoption of ECS and optimizing land use to achieve sustainable agricultural practices in Japan. For the
remaining paper, the next section discusses methodology, followed by a description of the study area in the third
section. The fourth section explains our analytical results, followed by a discussion and conclusion.

2. Method
2.1 Study Area and Data Collection

Kochi enjoys a mild climate with long hours of sunlight, making it ideal for growing a wide variety of crops,
namely eggplant, green pepper, sweet chili green pepper, Japanese ginger, cucumber, and Chive. The region’s
hilly terrain and coastal plains are well-suited for agriculture, providing diverse microclimates that enable the
cultivation of both seasonal and off-season crops. These conditions have made Kochi a hub for the production of
high-quality greenhouse vegetables, fruits, and flowers. Kochi produces the largest amount of eggplant, shishito,
and myoga for the market in Japan (MAFF, 2022). These crops are produced with high productivity and
profitability due to their climatic conditions and the introduction of advanced technology. In particular, facility
horticultural crops shipped in the winter/spring season often fetch high prices in markets throughout Japan.
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Figure 1. Kochi Prefecture (created by the authors using GoogleMaps)

Among them, eggplant is an essential vegetable in Japan. The prices of 13 important crops, including eggplant,
are monitored because of their impact on price indexes and the consumer price index (CPI) in Japan. Kochi has
279 ha of eggplant (Figure 2) and 1.5 tons per ha in 2022, which is the highest productivity in Japan (Figure 3).
Although the proportion of family-based eggplant production is decreasing in Kochi prefecture, they are still the
core of domestic eggplant production as their production accounts for 34% of the total yield of facility-based
eggplant production in Japan.
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Figure 2. Top five eggplant cultivation by prefecture
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Figure 3. Top five eggplant productivity

2.2 Sampling Procedures and Sample Size

Data is provided by the Kochi prefecture, and farmers’ tax return data was used, with their personal identities
being anonymous. Data between 2017 and 2021 had 90 samples, while 2022 had only 77. Also, as we wanted to
capture the impact of the high fuel costs, we separately analyzed data from 2017-2019 and 2020-2022. Thus, the
sample size for the 2017-2019 data was 270, whereas the sample size for the 2020-2022 data was 257. The
farmers mainly produced eggplant for commercial purposes and had a small plot of rice fields for house
consumption.

2.3 Analytical Framework
2.3.1 Profit Function (Profit Frontier Equation)

A stochastic frontier profit function model is applied in this study. The stochastic frontier analysis (SFA) was
introduced initially by Meeusen and van Den Broeck (1977) and Aigner, Lovell, and Schmidt (1977) as follows:

Vi=fX,pexp(vi-u) i=1,,N (M

where, Y; represents the output variable, and X; represents a sector of input variables. f is the elasticity of the
input factors, reflecting the influence of input factors on the output. v; accounts for measurement errors, usually
assumed to follow a normal distribution. u; is a non-negative random variable that represents the lack of
technical efficiency, which is assumed to follow various distributions, such as a half-normal distribution (Aigner
et al., 1977), gamma distribution (Greene, 1990), and truncated distribution (Stevenson, 1980).

Battese and Coelli (1995) extend the SFA of cross-sectional to panel data. They define a stochastic frontier
production function for panel data, in which the non-negative technical inefficiency is assumed to be a function
of individual-specific variables and time variables. The time-varying stochastic frontier function model is
presented in the form.

Yy =X, Bexp(vi - wy) i=1,--Nyt=1,--T ()
where, Y;; denotes the output index of the farmer ‘7~ at time “¢”. X, is a (1 x k) vector of values of known
functions of production inputs and those of other explanatory variables associated with the farmer “i” at time “#”.
p is a (k x 1) vector of unknown parameters to be estimated. v;, is assumed to be N (0, ¢2) random errors that
are independently distributed of u;. u; is a non-negative random variable associated with the technical
inefficiency of production, which is assumed to be independently distributed.

Production profits are used as the output variable in the stochastic frontier profit function, thus rewriting
Equation (2) as follows:

m, = (X, pexp(vy - u,)  i=1,--N;t=1,-T 3)
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[T

where, 7; denotes the production profit of farmer “7” in the year “¢’. u;, represents the technical inefficiency of
production profits for the farmer “7” at time “#”. It is worth noting that the profits and input indicators used are
expressed in terms of amount, not quantity. Therefore, input and output prices are not included in the model. In

addition, all the indicators are standardized.

Regarding f(Xj,,f) settings, two choices usually exist the Cobb-Douglas production function (CD function) and
the transcendental logarithm function (Translog function). The CD function adds only the first-order terms of
input variables. In contrast, the Translog function overcomes the defect of the CD function, in which the
elasticity of substitution is fixed to 1, by adding the cross-multiplication terms and square terms of all input
variables in addition to the first-order terms. According to the results of the likelihood ratio test, the Translog
production model is adopted to conduct this study’s empirical research. Equation (3) is rewritten as,

Inz; = By + XL BInXix +3 200 Xy By InXi i InX;, ) - uy “
where, Inz;, is the logarithmic form of the production profits (Profits). InX;, represents the logarithmic form
of the k-th input variable, X;, comprises Seedling, Fertilizer, Equip, Pesticide, Material, Fix, Power utility,

Depreciation, Transportation, and Hiring fee. The regression coefficients and error terms are clustered at the
farmer level to control for potential heteroskedasticity and serial correlation.

2.3.2 Profit Inefficiency Equation

According to Battese and Coelli (1995), the profit efficiency PE;, for the farmer ‘7 at time “¢” is defined by the
following equation:

PE,=EXP(-u;) i=1,N;t=1-T 5)

If PE; =1, the farm is fully profit-efficient, meaning operating on the profit frontier. If PE; <1, inefficiency
reduces the farm’s profit. Further, profit inefficiency accounts for both technical inefficiency and allocative
inefficiency, meaning it considers how well the farmer chooses input combinations to maximize profit. The
profit inefficiency model is presented as,

u;, = 0y + 0, Landsize;, + O,InLabor;, + ¥>_, n,ECDs;iq+ & (6)

[T

where, u;, represents the inefficiency term of production profits for the farmer “/” at time “#’. A larger u;,
replies greater deviation from the profit frontier. The following variables are used to explain the extent of any
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inefficiency. Labor;, is the number of laborers of farmer household “i” at time “#”.

To improve profit efficiency, eggplant farmers are encouraged to use gas machines, automated roof windows,
environmental-measuring machines, and water machines in the greenhouse production process. Thus, ECDs;,,
it represents the dummy four types of devices adopted. They are namely carbon dioxide gas generators (Gas),
ventilation windows (Ventilation), and irrigation equipment (Water), which the local government extension
collects annual change of such data over time. Landsize is divided into eight categories: 0-24, 25, 26-30, 31-35,
36-40, 41-45, 46-50, and 51-70 are. The 26-30 are group is set as the control group and assigned a value of “0”
to indicate the farm-size group to which farmers belong. The remaining farm-size groups are assigned a value of
“1”. Finally, €, is the error term of the model.

There are two methods for estimating Equation (4) in academia: the “one-step” method and the “two-step”
method. The “two-step” method does not consider factors affecting technical and allocative inefficiency in the
first step; it first estimates Equation (4) to obtain the profit inefficiency term u;,, and then, the second step is to
estimate the impact of influence factors as the dependent variables on the profit inefficiency. Wang and Schmidt
(2002) state that a defect of this method is that the technical inefficiency distribution is different in the two stages,
leading to inconsistent estimation results. Thus, we use the “One-step” method proposed by Coelli and Battese
(1996), that is, substituting Equation (6) into Equation (4) to directly perform one-step estimation to obtain more
accurate results than the “Two-step” method.

3. Results
3.1 Descriptive Summary of Variables

Table 1 summarizes all the definitions of dependent and independent variables, measurement units, and summary
statistics. The profitspa was calculated by subtracting the total input cost from the total revenue per 10 are (1000
m?), which is a standard unit used for horticultural production analysis in Japan. On average, the profit was
2,167,691.0 JPY (13,735.04 USD) per 10 are, ranging from 169,041.5 JPY (1071.09 USD) to 5,096,416.0 JPY
(32,292.18 USD) per 10 are. 37 farmers fall under 1,000,000 JPY (6336.25 USD) per 10 are. The mean Land
size is 29.677 are.
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Table 1. Descriptive summary of variables used in the study (n = 527) unit = per 10 are (1000 m?)

Variables Definition Mean Standard Deviation Minimum Maximum

Profit Function

profitspa Net income (yen) 2,167,691.0 859,925.7 169,041.5 5,096,416.0
seedlingspa Seedlings 174,632.6 51,737.0 0.0 424,705.9
fertilizerpa Fertilizer 419,464.2 169,807.8 82,985.3  1,030,556.0
pesticidepa Pesticide 175,143.7 78,402.1 27,6923  736,428.6
materialpa Material 419,647.4 208,832.5 3,030.3 1,211,116.0
repairpa Repair 146,488.9 126,437.9 0.0 1,009,053.0
clothespa Clothes 31,5523 28,866.3 0.0 173,333.3
power_fuelspa Fuels 595,466.9 283,397.7 86,091.2 1,756,044.0
farm_equippa Equipment 80,790.4 111,294.4 0.0 752,800.0
depreciationpa Depreciation 451,592.5 284,521.1 0.0 1,602,941.0
transportationpa Transportation 872,514.6 793,418.8 0.0 2,855,390.0
hiring_feepa Labor hire 75,518.4 179,522.2 0.0 2,492,770.0
Profit Inefficiency Function
dventilation 1 = Have automated ventilation, 0 = Do not have  0.069 0.253 0 1
dirrigation 1 = Have automated irrigation, 0 = Do not have ~ 0.248 0.432 0 1

dgas 1 = Have automated CO, gas, 0 = Do not have 0.359 0.480 0 1

land_size Land size 29.677 10.753 10 70

landsize <20 dummy of Land size < 20 0.239 0.427 0 1

landsize > 20 and <26 dummy of Land size > 20 and < 26 0.130 0.336 0 1

landsize > 26 and <31 dummy of Land size > 26 and <31 0.180 0.384 0 1

landsize > 31 and <36 dummy of Land size > 31 and < 36 0.159 0.366 0 1

landsize > 36 and <41 dummy of Land size > 36 and <41 0.176 0.381 0 1

landsize > 41 and <46 dummy of Land size > 41 and <46 0.035 0.184 0 1

landsize > 46 dummy of Land size > 46 0.081 0.274 0 1

labor Labor number 2.751 0.932 1 5

In terms of inputs, seedlingspa cost 174,632.6 JPY (1106.52 USD) per 10 are, with a range from 0 to 424,705.9
JPY (2691.04 USD) per 10 are. The fertilizer, fertilizerpa, costs 419,464.2 JPY (2657.83 USD) per 10 are, with
a range from 82,985.3 (525.82 USD) to 1,030,556.0 JPY (6529.86 USD) per 10 are. The pesticide, pesticidepa
costs 175,143.7 JPY (1109.75 USD) per 10 are, with a range from 27,692.3 (175.47 USD) to 736,428.6 JPY
(4666.20 USD) per 10 are. The cost of various materials for greenhouse horticulture is one of the most expensive
inputs and refers to the cost of vinyl for plastic greenhouses and consumables such as insect nets, cold gauze,
mulch, rope, wire, etc. The mean materialpa costs 419,647.4 JPY (2658.99 USD) ranging from 3,030.3 JPY
(19.20 USD) to 1,211,116.0 JPY (7673.94 USD). The repair expenses, repairpa, refer to the cost of repairing
previously purchased items. The mean repair costs 146,488.9 JPY (928.29 USD), with a range of 0 and
1,009,053.0 JPY (6394.27 USD) per 10 are. The clothes, clothespa, are expenses for work clothing such as work
clothes, boots, hats, gloves, and tabi socks can be charged to expenses as “work clothing expenses”. The mean
clothes costs is 31,552.3 JPY (199.94 USD), ranging from 0 to 173,333.3 JPY (1098.40 USD) per 10 are. The
power_fuelspa is the fuel costs used for greenhouses. The mean fuels cost 595,466.9 JPY (3773.41 USD) per 10
are, ranging from 86,091.2 JPY (545.55 USD) to 1,756,044.0 JPY (11,127.88) and standard deviation is large.

Agricultural equipment expenses for facility horticulture refer to the cost of purchasing agricultural equipment
such as farm machinery and agricultural warchouses. Expenses that can be recorded as farming equipment
expenses are the purchase of farming equipment with a useful life of less than one year or an acquisition cost of
less than 100,000 yen (633.69 USD). The mean farm_equippa, costs 80,790.4 JPY (511.96) per 10 are, ranging
from 0 to 752,800.0 JPY (4770.42 USD) per 10 are. Depreciation of greenhouse horticulture is an account used
to record the cost of purchasing assets used in facility horticulture by dividing the cost of such assets over future
periods. Tractors, mowers, haulers, etc., are uniformly depreciated over a period of 7 years. Vinyl greenhouses:
Depreciation depends on the material of the skeleton part and is calculated over 14 years for steel frame
greenhouses, 5 years for wooden greenhouses, and 8 years for other materials. The mean depreciation,
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depreciationpa, costs 451,592.5 JPY (2861.70 USD), ranging between 0 to 1,602,941.0 JPY (10157.68 USD) per
10 are. Also, the standard deviation of depreciation is large.

Packing and freight charges in facility horticulture refer to transportation costs, transportationpa, freight, and
fees incurred when shipping and selling agricultural products. Specifically, it refers to the cost of purchasing
packing materials (cardboard, duct tape, etc.), shipping costs for courier services etc., fees paid to shipping
(receiving) agencies, country fixed costs, and costs associated with sales measures. The mean transportation
costs is 872,514.6 JPY (5529.04 USD) ranging from 0 to 2,855,390.0 JPY (18,094.32 USD) per 10 are. Among
the input costs, the standard deviation of the transportation is the largest, 793,418.8 JPY (5027.82 USD). On
October 1, 2019, with the transition of the consumption tax rate from 8% to 10%, a reduced tax rate was
introduced to the sector for certain parts of the transaction. As a result, a reduced tax rate of 8% will be applied
to a portion of taxable sales, while the consumption tax rate will be 10% for items not subject to the reduced rate.
Until September 30, 2019, the flat 8% rate allowed agricultural products shipped to agricultural cooperatives to
be considered taxable sales minus consignment sales fees. After October 1 of the same year, the tax rate was
different, and the consignment sales commission was also recorded. Therefore, packing and freight charges
before and after FY2020 are different, and sales are likewise different. Thus, for the analysis, we separately
analyze the dataset between 2017 and 2019 and another dataset between 2020 and 2022. Finally, labor hire is
75,518.4 JPY (478.55 USD) ranging from 0 to 2,492,770.0 JPY (15,796.43 USD) per 10 are.

For the profit inefficiency function, the dventilation is a dummy variable that, if farmers have automated
ventilation, indicates 1 and, if not, 0. The dirriagation is a dummy variable that, if farmers have automated
irrigation, indicates 1 and, if not, 0. The dgas is a dummy variable that, if farmers have automated CO, gas
emitter, indicates 1 and, if not, 0. The mean land_size is 29.677 are, ranging from 10 are to 70 are. The landsize
< 20 is land size segment dummy if land size is less than 20. The /andsize > 20 and < 26 is land size segment
dummy if land size > 20 and < 26. The landsize > 26 and < 31 is land size segment dummy if Land size > 26 and
< 31. The landsize > 31 and < 36 is land size segment dummy if land size > 31 and < 36. The landsize > 36 and <
41 is land size segment dummy if land size > 36 and < 41. The landsize > 41 and < 46 is land size segment
dummy if land size > 41 and < 46. The landsize > 46 is land size segment dummy if land size > 46. The
proportion is 23.9%, 13.0%, 18.0%, 15.9%, 17.6%, 3.5%, and 8.1%, respectively. Finally, the labor is the
number of family members contributing to eggplant farming.

3.2 Statistic Frontier Profit Function Model Estimation

Table 2 presents the estimated parameters for the stochastic frontier profit efficiency translog model. The
coefficients and standard errors for different variables are reported, along with their significance levels. We
prepare two models to estimate the influence of pre-2020, i.e., the 2017-2019 dataset as model 1 and the
2017-2020 dataset as model 2. In particular, we estimated the technical changes to profit inefficiency function of
the technical variable, namely “dventilation”, “dirrigation”, and “dgas”, as well as the scale variable, “land”
segment dummies “landsize”.
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Table 2. The estimated parameters for the eggplant profit per 10 are stochastic frontier translog model (n = 141)

Model 1 (n=270) Model 2 (n =462)
Variables Year 2017-2019 Year 2017-2022
Coef. Std. Err. Coef. Std. Err.
Frontier
Inseedlingspa -0.13 (0.11) 0.18 (0.14)
Infertilizerpa -0.04 (0.11) 0.13 (0.11)
Inpesticidepa 021 * (0.02) -0.04 (0.12)
Inmaterialpa 0.00 (0.12) -0.08 (0.08)
Inrepairpa -0.14  F** (0.08) -0.23  HE* (0.05)
Inclothespa 0.01 (0.05) 0.08  *** (0.02)
Inpower_fuelspa -0.20 ** (0.03) -0.06 (0.09)
Infarm_equippa 0.00 (0.09) 0.01 (0.02)
Indepreciationpa -0.08 (0.07) 0.04 (0.05)
Intransportationpa 0.04 * (0.02) 0.10  H** (0.03)
Inhiring feepa -0.09  kx* (0.03) -0.10 ** (0.04)
Cons. 14.80 *** 0.21) 14.72 *** (0.304)
2017 base base
2018 -0.10 ** (0.05) -0.05 (0.06)
2019 -0.08 (0.07) -0.12 (0.08)
2020 -0.24  ** (0.10)
2021 -0.19 * (0.10)
2022 -0.31 ¥ (0.10)
Profit Inefficiency
dventilation -0.15 (0.12) 0.16 * (0.08)
dirrigation 0.01 (0.07) -0.06 (0.06)
dgas -0.10 * (0.06) -0.01 (0.06)
landsize > 20 and < 26 0.06 (0.08) -0.13 * (0.07)
landsize > 26 and <31 -0.37  HF** (0.07) -0.37  HF** (0.06)
landsize > 31 and < 36 -0.40 F** (0.08) -0.61 F** (0.07)
landsize > 36 and < 41 -0.27 k** (0.09) -0.60 F** (0.09)
landsize > 41 and < 46 -1.04 (0.70) -0.82  HF** (0.12)
landsize > 46 -0.54 HFx* (0.13) -0.75 HF*x* (0.11)
labor -0.25  HF** (0.04) -0.17  *** (0.03)
Cons. 1.71  *** (0.19) 1.95 (19.16)
‘Usigmacons. 368 R ©095) 528 ae1sy
Vsigma cons. -3.20 *** (0.54) 226 *FF* (0.79)
Sigma_u 0.16  ** (0.08) 0.07 (0.58)
Sigma_v 020  *F** (0.05) 032 ** (0.13)
Lamda 0.78  *** (0.13) 0.22 (0.70)
Log-likelihood 2984 31395

Note. In is the natural logarithm; standard errors are in parentheses; significant at *** p < 0.01, ** p <0.05, * p <
0.10, respectively.

In the frontier function of the determinants of profit efficiency, we see the effects of various input costs and years
on profit efficiency. The coefficient of seedlings (seedlingspa) is insignificant in both models, indicating that
changes in seedling costs have no statistically significant impact on profit efficiency. For fertilizer (fertilizerpa):
In Model 1, the effect is insignificant. In Model 2, it is positive but also insignificant. For pesticides
(pesticidepa), in Model 1, a significant positive coefficient (p < 0.10) suggests higher pesticide use improves
profit efficiency. In Model 2, the effect becomes negative and insignificant, showing that the impact may vary
over different years. For, materials (materialpa), the variable is insignificant in both models, indicating that
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material costs do not strongly affect profit efficiency. For repair costs (repairpa), it is negative and significant in
both models (p < 0.01), suggesting that higher repair expenses reduce profit efficiency. This may imply
inefficiencies associated with frequent or high repair costs. For, clothing costs (clothespa), in Model 2, the
positive and significant coefficient (p < 0.01) implies that spending on clothing improves efficiency, perhaps by
improving working conditions. For fuel costs (power_fuelspa), it indicates negative and significant in Model 1 (p
< 0.05), suggesting that higher fuel expenses reduce profit efficiency. However, the effect is insignificant in
Model 2, indicating that the impact may vary over different years. On the other hand, for transportation costs
(transportationpa), are positive and significant in both models at the 10% level and the 1% level, respectively,
indicating that efficient transportation and related logistics improve profit efficiency. Finally, labor hiring costs
(hiring_feepa) show negative and significant in both models, at the 1% significant level and the 5% significant
level, respectively, indicating that higher labor hiring costs reduce profit efficiency. This could reflect
inefficiencies in hired labor use.

Also, based on the ML random-effects time-varying inefficiency effects model (Battese & Coelli, 1995), we also
observed year effects. In Model 1, 2018 shows a slight decline in profit efficiency (p < 0.05) compared to 2017,
while 2019 is insignificant. In Model 2, the entire study years (2017-2022) show significant declines in profit
efficiency, with the most substantial decline observed in 2022 (p < 0.01). This reflects declined prices due to
weather factors and oversupply.

Now, we look at the profit inefficiency function to estimate the determinants of inefficiency in profit generation.
First, we check the technical changes of greenhouse production. For automated ventilation (dventilation), in
Model 2, having automated ventilation increases inefficiency (p < 0.10). This counterintuitive result may suggest
improper or inefficient use of the technology. The automated irrigation (dirrigation) shows insignificant in both
models, indicating no clear impact on efficiency in profit generation. The automated CO, Gas (dgas) indicates,
having automated gas emitter increases efficiency (p < 0.10) in Model 1. However its effect diminishes in Model
2. For landsize as a scale variable, larger land sizes generally reduce inefficiency. For example, segments
landsize > 26 and < 31, landsize > 31 and < 36, and landsize > 36 and < 41 have consistently negative and
significant coefficients, suggesting larger farms are more efficient. The most significant efficiency gains occur in
the largest land sizes (landsize > 41 and < 46 and landsize > 46), but the coefficient of landsize > 41 and < 46 is
larger than that of landsize > 46. Finally, for labor (labor), it shows negative and highly significant in both
models (p < 0.01). This indicates that having more labor (family or otherwise) reduces inefficiency, possibly due
to better resource allocation and management.

Sigma u and Sigma_v represent variance components of inefficiency (u) and noise (v). Both are significant in
Model 1, indicating meaningful variation due to inefficiency and random noise. Lambda suggests the ratio of
inefficiency variance to noise variance, which is significant in Model 1, indicating inefficiency contributes
significantly to overall variance in profit. On the other hand, Lambda is insignificant in Model 2; when we
include 2020-2022 data in the dataset, profit inefficiency determinants no longer contribute significantly to the
overall variance in profit.

3.3 Profit Efficiency Score

Table 3 summarizes the mean, minimum, and maximum levels of profit efficiency, revealing an average
efficiency score of 0.562, with values ranging from 0.210 to 0.964 for 2017-2019. This indicates that producers
could reduce their input usage by approximately 43.8% while maintaining current output levels if they achieved
full efficiency, thereby increasing their gross margins.

Additionally, this average score suggests that profitability could improve by 93.05% [(0.562 — 1)/0.562 x 100] if
full efficiency were attained. On average, profit efficient producers could lower their costs by 41.70% [(1 —
0.518/0.964) x 100], assuming they optimized costs to match the highest efficiency level. Furthermore, the least
efficient producers, with a profit efficiency of 0.210, could achieve cost savings of 78.22% [(1 — 0.210/0.964) x
100] if they matched the maximum efficiency level of their peers, improving from 0.210 to 0.964.

Table 3 summarizes the profit efficiency score for the year 2017-2022. It is clear from the mean minimum and
maximum that the profit efficiency has declined when 2020-2022 is included. Based on the Table 3, profitability
could improve by 179.89% [(0.357 — 1)/0.357 x 100] if full efficiency were attained. On average, profit efficient
producers could lower their costs by 50.1% [(1 — 0.357/0.715) x 100], assuming they optimized costs to match
the highest efficiency level. Furthermore, the least efficient producers, with a profit efficiency of 0.147, could
achieve cost savings of 79.67% [(1 — 0.147/0.715) x 100] if they matched the maximum efficiency level of their
peers, improving from 0.147 to 0.715.
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Table 3. Profit efficiency scores summary (n = 270) year 2017-2019

Mean Std. Min. Max.
pE® 0.518 0.193 0.210 0.964
Note. (1) Profit Efficiency.

Table 4. Profit efficiency scores summary (n = 462) year 2017-2022
Mean Std. Min. Max.
PE" 0.357 0.141 0.147 0.715
Note. (1) Profit Efficiency.

Table 5 presents the profit efficiency scores categorized by whether farmers have ECDs or not. Prior to 2020, in
Model 1, having an automated irrigation system and a CO, gas emitter resulted in higher profit efficiency scores
than those who did not. However, Model 2 shows that while having an automated irrigation system and a CO,
gas emitter resulted in similar results as Model 1, farmers who have automated ventilation have lower profit
efficiency than those who do not.

Table 5. Profit efficiency scores by having ECDs or not

Model 1 (n=270) Model 2 (n = 462)
. Year 2017-2019 Year 2017-2022
Variables Not have Have Not have Have
t-test t-test
Mean  Std. Err. Mean  Std. Err. Mean  Std. Err. Mean  Std. Err.

dventilation 0.52 0.01 0.56 0.01 0.36 0.01 0.27 0.01 Hokk
dirrigation 0.5 0.01 0.58 0.02 Hokk 0.34 0.01 0.40 0.02 Hokok
dgas 0.48 0.01 0.59 0.02 Hokk 0.33 0.01 0.40 0.02 Aok

Note. based on the two-tailed test.

Next, the two tables (Tables 6 and 7) present the profit efficiency (PE) scores categorized by land size for two
different periods, 2017-2019 and 2017-2022. We conducted a sensitivity analysis for other peak points of land
size, namely landsize < 20, landsize > 21 and < 26, landsize > 26 and < 31, landsize > 31 and < 36, landsize > 36
and < 41, landsize > 41 and < 46, and landsize > 46. Table 6 of the years 2017-2019, profit efficiency scores
increase as the land size increases, indicating that producers with larger land sizes tend to operate more
efficiently. The lowest PE mean score (0.30) is observed for the smallest land size group, landsize < 21, while
the highest PE mean score (0.92) is observed for landsize > 41 and < 46. Producers with medium to large land
sizes (landsize > 26 and < 31, landsize > 31 and < 36, landsize > 36 and < 41, landsize > 41 and < 46) are more
profit efficient than those with smaller land sizes. A slight decline in efficiency is observed for the largest land
size group (landsize > 46), which might indicate diminishing returns to scale or management challenges
associated with larger operations.

Now, we look at Table 7 of the year 2017-2022. Similar to Table 4, profit efficiency increases with land size, but
the efficiency levels are generally lower compared to the shorter period (2017-2019). The lowest PE mean score
(0.20) is observed for Landsize (< 21), while the highest PE mean scores (0.56) are observed for both landsize >
41 and < 46 and landsize > 46. Although overall efficiency declined when we include recent years’ data, to gain
profitability, increased land size seems to capture higher profit efficiency.
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Table 6. Profit efficiency scores by land size (n = 270) for year 2017-2019

Density Obs Mean Std. Err. Min. Max.
landsize< 20 59 0.30 0.07 0.21 0.49
landsize > 20 and < 26 38 0.34 0.08 0.23 0.57
landsize > 26 and < 31 46 0.54 0.07 0.31 0.66
landsize > 31 and < 36 42 0.59 0.12 0.38 0.81
landsize > 36 and < 41 57 0.63 0.11 0.38 0.81
landsize > 41 and < 46 11 0.92 0.03 0.86 0.96
landsize > 46 17 0.78 0.13 0.52 0.93

Table 7. Profit efficiency scores by land size (n = 462) for years 2017-2022

Density Obs Mean Std. Err. Min. Max.
landsize< 20 116 0.20 0.03 0.15 0.29
landsize > 20 and < 26 65 0.26 0.03 0.21 0.34
landsize > 26 and < 31 90 0.32 0.04 0.24 0.38
landsize > 31 and < 36 72 0.45 0.07 0.30 0.63
landsize > 36 and < 41 70 0.51 0.05 0.41 0.62
landsize > 41 and < 46 19 0.56 0.08 0.46 0.72
landsize > 46 30 0.56 0.10 0.36 0.65

4. Discussion and Policy Implication

In this section, we discuss the results relating to our hypothesis that both factors, technical change (TC) and scale
effects (SEs), synergistically enhance profit efficiency. First, we examine whether TC enhance profit efficiency.
Among ECDs, namely the automated ventilation and the automated irrigation system, and the CO, gas emitter, at
least until 2019, the CO, gas emitter was contributing to the profit efficiency according to Model 1 of Table 2.
However, in Model 2, for the data of the year 2017-2022, the CO, gas emitter is no longer contributing to the
profit efficiency. Also, the automated ventilation was causing profit inefficiency.

One of the main reasons is that market prices have not risen as much as the cost of agricultural production
materials has risen in recent years. Looking at the price trends in the Tokyo Metropolitan Central Wholesale
Market, the average annual price per kilogram of eggplant was 435 JPY (2.77 USD) in 2020, except in 2020,
when eggplant consumption increased due to the stay-at-home demand in the first year of COVID-19 (Figure 4).
The eggplant price was 375 yen per kilogram in 2022, a difference of 60 JPY (0.38 USD) per kilogram. That
means the total sales were 19,575,000 JPY (124,550.64 USD) in 2020 and then 16,875,000 JPY (107,371.24
USD), which caused a loss of 2,700,000 (17,179.40 USD) in sales. As a result, the profit margin also diminished
since 2017, from 0.43 to 0.29 in 2022.
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Figure 4. The annual average wholesale price of eggplant and the ratio of mean profit margin

Second, we examine the scale effect to enhance the profit efficiency. Table 2 shows the optimal farm size is
equal to more than 41 and less than 46, which shows the negative, largest coefficient, which indicates profit
efficiency. The optimal farm size is equal and more than 41 and less than 46 are was not significant in Model 1,
but significant and largest coefficient in Model 2. The farm size larger than 46 is not able to capture the largest
profit efficiency indicating that the scale effect seems prevented by high input prices and low wholesale market
of the eggplant. Further, Tables 6 and 7 of profit efficiency scores by land size also confirm an inverted U-shaped
relationship between profit efficiency and farm size. Initially, profit efficiency gradually increases with the
expansion of the scale, but it starts to decline after reaching the optimal farm size.

In sum, our result confirms a synergistic effect of both technical change and scale on profit efficiency up to 2019.
However, due to the recent lower wholesale market of the commodity and increased input prices, both factors
have a limited effect on profit efficiency. To overcome this, market prices should rise as much as the cost of
agricultural production materials. Exogenous factors such as weather and temperature influence commodity
prices, and that is a challenge that is always faced by the agricultural sector. We cannot control for oversupply.
However, decreasing the input costs, which significantly negatively affects profit efficiency, is possible—namely,
repair cost, the cost of repairing previously purchased items, and the hiring fee. Farmers need to repair
horticultural facilities occasionally, especially if typhoons or unexpected torrential rains damage them. To
mitigate the unexpected repair, they should have insurance. Regarding the hiring fee, this is consistent with
earlier studies, which reported that the extensive use of and increased wages for labor could reduce the net profit
of rice production (Rahman, 2003; Okoruwa et al., 2009). On the other hand, as food prices increase, the hiring
fee should be increased with influation. Also, hiring labor fees is also essential to reducing the burden of
household labor. Therefore, optimizing the hiring fee while maximizing profit should be a necessary
investigation in our future study.

Finally, our study is limited as we do not have socio-economic factors such as age and farming experience of the
farmers. For further study, we can collect socio-economic factors influencing profit effciency in detail. Also, it
may require monitoring for a long time to evaluate the TC and SEs effects. To see TC in terms of adopting ECDs,
further training in machine use may be required to fully capture profit by using the machine to capture the
learning-by-doing or training effect for human resource development (Nanseki, 2019) in the long term.

5. Conclusion

The study result indicates a decreased profit efficiency in recent years in family-based eggplant production in
Japan. Improving resource use efficiency in agriculture can enhance profit efficiency through technical changes
(TC) and scale effects (SEs). For our study, we observed both technical change affecting profit efficiency
between 2017 and 2019. However, the technical change effect has diminished in recent years, especially since
2020. Further, scale effects were rather limited as we observed an inverted U-shaped relationship between profit
efficiency and farm size, the optimal farm size being equal and more than 41 and less than 46. We argue that the
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inputs, namely repair cost and hiring cost, which are negatively affecting profit efficiency, should be reduced.
Although the proportion of family-based eggplant production is decreasing in Kochi prefecture, they are still the
core of domestic eggplant production as their production accounts for 34% of the total yield of facility-based
eggplant production in Japan. The decrease in profit efficiency and profit margin directly impacts the
family-based eggplant farmers. The input cost factors negatively impacting the profit efficiency, namely repair
and labor hiring costs, should be the foremost urgent issues to be resolved for TC and SEs to take place in the
facilitated greenhouse eggplant production in Japan.
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