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Abstract

We provide a numerical validation method of blow-up solutions for finite dimensional vec-
tor fields admitting asymptotic quasi-homogeneity at infinity. Our methodology is based
on quasi-homogeneous compactifications containing quasi-parabolic-type and directional-type
compactifications. Divergent solutions including blow-up solutions then correspond to global
trajectories of associated vector fields with appropriate time-variable transformation tending
to equilibria on invariant manifolds representing infinity. We combine standard methodology
of rigorous numerical integration of differential equations with Lyapunov function validations
around equilibria corresponding to divergent directions, which yields rigorous upper and lower
bounds of blow-up time as well as rigorous profile enclosures of blow-up solutions.

Keywords: parabolic compactifications, quasi-homogeneous desingularizations, blow-up solu-
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1 Introduction

Our concern in this paper is blow-up solutions of the following initial value problem of an au-
tonomous system of ordinary differential equations (ODEs) in Rn:

dy(t)

dt
= f(y(t)), y(0) = y0, (1.1)

where t ∈ [0, T ) with 0 < T ≤ ∞, f : Rn → Rn is a C1 function and y0 ∈ Rn. We shall call a
solution {y(t)} of the initial value problem (1.1) a blow-up solution if

tmax := sup
{
t̄ | a solution y ∈ C1([0, t̄)) of (1.1) exists

}
< ∞.
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The maximal existence time tmax is then called the blow-up time of (1.1). Blow-up solutions can
be seen in many dynamical systems generated by (partial) differential equations like nonlinear heat
equations or Keller-Segel systems. These are categorized as the presence of finite-time singularity
in dynamical systems, and many researchers have broadly studied these phenomena from mathe-
matical, physical, numerical viewpoints and so on (e.g. [9, 12, 18, 23] from theoretical viewpoints
and e.g. [1, 2, 3, 4, 24] from numerical viewpoints). Fundamental questions for blow-up prob-
lem are whether or not a solution blows up and, if does, when, where, and how it blows up. In
general blow-up phenomena depend on initial data. Rigorous concrete detection of fundamental
information of blow-up solutions as functions of initial data remains a nontrivial problem.

Recently, authors and their collaborators have provided a numerical validation procedure based
on interval and affine arithmetics for calculating rigorous blow-up profiles and their blow-up time
[21]. The approach is based on compactification of phase space; embedding the original phase
space into a compact manifold M , possibly with boundary. In this methodology, the infinity on
the original phase space can correspond to a point on E ≡ ∂M or a specified point on M called
a point at infinity. Combining a compactification with an appropriate time-scale transformation,
called time-variable desingularization, suitable for given vector field, divergent solutions including
blow-up solutions are characterized as global trajectories of the transformed vector field on M
tending to a point, such as an equilibrium x∗, on E . Finally, the Lyapunov function validation
([17]) around x∗ ∈ E is applied to derivation of a re-parameterization of trajectories so that we
can validate rigorous lower and upper bounds of blow-up time tmax with numerical validations.
In this methodology, (i) rigorous numerical integration of ODEs, (ii) eigenvalue validations, and
(iii) polynomial estimates essentially realize numerical validations of blow-up solutions with their
blow-up time. A remarkable point of the above methodology is that, unlike the approximation
method mentioned above, the final numerical validation results contain mathematically rigorous
information of solutions. Therefore the methodology rigorously detect the nature of blow-up so-
lutions. However, applicability of the proposed methodology there is restricted to vector fields
which are asymptotically homogeneous at infinity, since applied compactifications are assumed to
respect homogeneous scalings. In other words, verifications of blow-ups for differential equations
possessing, say quasi-homogeneous scaling laws such as h(u, v) := u2 − v may return meaningless
information1. If we apply such a numerical validation methodology to a broad class of differ-
ential equations, we have to choose appropriate compactifications which appropriately extracts
information of dynamics at infinity.

Inspired by the above work, the first author has discussed blow-up solutions for differential
equations which are asymptotically quasi-homogeneous at infinity from the viewpoint of dynamical
systems [16]. There a new quasi-homogeneous compactification called quasi-Poincaré compactifi-
cation is defined as a quasi-homogeneous analogue of well-known Poincaré compactifications and
as a global compactification alternative of well-known local compactifications which shall be called
directional compactifications (e.g., [7] with a terminology Poincaré-Lyapunov disks). By using
the same essence as previous works about blow-up solutions [8, 21], several blow-up solutions for
asymptotically quasi-homogeneous vector fields can be characterized by trajectories on stable man-
ifolds of “hyperbolic invariant sets” on the boundary E of a manifold M . Moreover, such blow-up
solutions characterize their blow-up rates from the growth rate of original vector fields. The same
characterizations also make sense for dynamical systems with directional compactifications. A se-

1The function has a scaling law h(ru, r2v) = r2h(u, v) holds for all r ∈ R.
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ries of studies involving characterization of blow-up solutions in [16] contain blow-up results in the
previous work [8], and the applications to numerical validations of blow-up solutions for systems
of asymptotically quasi-homogeneous differential equations are expected.

Our present aim is to provide numerical validation methodology of blow-up solutions for sys-
tems of differential equations with asymptotic quasi-homogeneity at infinity. It turns out that
fundamental features of a good class of quasi-homogeneous compactifications enable us to apply
the same methodology as [21] to the present blow-up validations. Note that there is another di-
rection for characterizing blow-up solutions with computer assistance [5], where the detection of
blow-up behavior is reduced to the existence of bounded time-periodic solutions with an appro-
priate transformation. There the problem is reduced to the zero-finding one for an appropriate
equation in functional analytic setting, while our present approach is based on integration of initial
value problems for a certain general class of autonomous ODEs as well as topological arguments
using Lyapunov functions (e.g. [17]).

The rest of this paper is organized as follows. In Section 2, we provide tools for our treatments of
blow-up solutions. First we review a class of vector fields called asymptotically quasi-homogeneous
vector fields discussed in [16], and define an admissible class of compactifications with given quasi-
homogeneous type. We see that our admissible class admits the same asymptotic properties at
infinity as quasi-Poincaré compactifications introduced in [16]. As a nontrivial example, we also
introduce a concrete compactification which is admissible in our sense, called a quasi-parabolic com-
pactification. This compactification is a quasi-homogeneous analogue of (homogeneous) parabolic
compactifications [8, 21]. Directional compactifications, which are defined only in subsets of the
whole space, are also reviewed. In Section 3, we study vector fields and dynamics on compactified
manifolds. Under our admissible compactifications, we have a good correspondence of dynamical
systems between on original phase spaces and on compactified manifolds. Moreover, as in the
case of quasi-Poincaré compactifications, we can define desingularized vector fields on compactified
manifolds so that dynamics at infinity makes sense. Here we have a new essential result that, for C1

vector field f in the original problem, the desingularized vector field g with quasi-parabolic com-
pactifications becomes C1 including the boundary of compactified manifolds corresponding to the
infinity. This property is very crucial because the desingularized vector field g with quasi-Poincaré
compactifications is not always C1 even if f is sufficiently smooth. Details are shown in [16]. The
feature of quasi-parabolic compactifications enables us to study stability analysis for dynamical
systems without any obstructions of regularity of vector fields. In Section 4, we provide criteria for
validating blow-up solutions and numerical validation procedure for blow-up solutions with their
blow-up time. Our criteria consists of not only pure mathematical arguments but also numerical
validation implementations for blow-up solutions. Our arguments indicate that blow-up solutions
correspond to trajectories on stable manifolds of asymptotically stable equilibria on E , which can
be validated by standard techniques of dynamical systems with computer assistance. We review a
fundamental tool called Lyapunov function, which validates level surfaces around equilibria and is
essential to estimate explicit enclosures of blow-up time. We conclude Section 4 by providing con-
crete validation steps for blow-up solutions. Finally, we demonstrate several numerical validation
examples of blow-up solutions in Section 5 to show applicability of our methodology to blow-up
solutions with various morphology.
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2 Compactifications

In this section, we introduce several compactifications of phase spaces which are appropriate for
studying dynamics at infinity. There are mainly two types of compactifications that are defined on
the whole phase space Rn or just on subsets of Rn. The main aim of this section is to introduce
a general, globally defined, compactifications of quasi-homogeneous type, while locally defined
ones are well known and well applied to various systems for studying complete dynamics through
dynamics at infinity (e.g. [7, 14]).

As an example of such appropriate ones, we introduce the quasi-parabolic compactification.
This compactification is an alternative of admissible, homogeneous ones discussed in e.g., [8, 10],
and of quasi-Poincaré compactifications derived in [16]. Our present compactification is based
on an appropriate scaling of vector-valued functions at infinity and quasi-homogeneous desingu-
larization of singularities in dynamical systems (e.g., [6]). Moreover, it overcomes the lack of
smoothness of (transformed) vector fields at infinity, which is mentioned later. Firstly, we briefly
review quasi-homogeneous vector fields discussed in [16]. Secondly, we introduce a class of com-
pactifications called (admissible global) quasi-homogeneous compactifications which are defined on
the whole phase space. Thirdly, we define the quasi-parabolic compactification. Finally, we review
a well-known quasi-homogeneous (local) compactification which shall be called directional com-
pactification. Once we know that divergent solutions has an identical sign for some component,
the latter type of compactifications make our blow-up problem much simpler than globally defined
ones.

2.1 Quasi-homogeneous vector fields

First of all, we review a class of vector fields in our present discussions.

Definition 2.1 (Quasi-homogeneous vector fields, e.g., [6]). Let f : Rn → R be a smooth function.
Let α1, · · · , αn, k ≥ 1 be natural numbers. We say that f is a quasi-homogeneous function of type
(α1, · · · , αn) and order k if

f(rα1x1, · · · , rαnxn) = rkf(x1, · · · , xn), ∀x ∈ Rn, r ∈ R.

Next, let X =
∑n

j=1 fj(x)
∂

∂xj
be a smooth vector field on Rn. We say that X, or simply

f = (f1, · · · , fn) is a quasi-homogeneous vector field of type (α1, · · · , αn) and order k + 1 if each
component fj is a quasi-homogeneous function of type (α1, · · · , αn) and order k + αj .

For applications to general vector fields, in particular for dynamics near infinity, we define the
following notion.

Definition 2.2 (Asymptotically quasi-homogeneous vector fields at infinity, [16]). Let f = (f1, · · · , fn) :
Rn → Rn be a smooth function. We say that X =

∑n
j=1 fj(x)

∂
∂xj

, or simply f is an asymptotically

quasi-homogeneous vector field of type (α1, · · · , αn) and order k + 1 at infinity if

lim
r→+∞

r−(k+αj)
{
fj(r

α1x1, · · · , rαnxn)− rk+αj (fα,k)j(x1, · · · , xn)
}
= 0

holds uniformly for (x1, · · · , xn) ∈ Sn−1 for some quasi-homogeneous vector field fα,k = ((fα,k)1, · · · , (fα,k)n)
of type (α1, · · · , αn) and order k + 1.
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The asymptotic quasi-homogeneity at infinity plays a key role in consideration of (polyno-
mial) vector fields at infinity, which is shown later. Throughout successive sections, consider the
(autonomous) polynomial vector field

y′ = f(y), (2.1)

where f : Rn → Rn be a smooth function. We further assume that f is an asymptotically quasi-
homogeneous vector field of type α = (α1, · · · , αn) and order k+ 1 at infinity. The next step is to
determine an appropriate transform of the phase space so that we can consider dynamics at infinity
in an appropriate sense. One approach for realizing appropriate transformation of the vector field
is based on the choice of appropriate compactifications with the type associated with that for f .

2.2 Admissible global quasi-homogeneous compactifications

Here we define a class of globally defined compactifications.

Definition 2.3 (Admissible global quasi-homogeneous compactification). Fix natural numbers
α1, · · · , αn. Let β1, · · · , βn be natural numbers2 such that

α1β1 = α2β2 = · · · = αnβn ≡ c ∈ N. (2.2)

Define a functional p(y) as

p(y) :=
(
y2β1

1 + y2β2

2 + · · ·+ y2βn
n

)1/2c

.

Define the mapping T : Rn → Rn as

T (y) = x, xi :=
yi

κ(y)αi
,

where κ = κ(y) is a C1 positive function. We say that T is an (admissible) global quasi-homogeneous
compactification (of type α) if all the following conditions hold:

(A0) κ(y) = q ◦ p(y) for some positive, smooth function q = q(R) defined on R ≥ 0 which is
strictly increasing in R > 0, and κ(y) > p(y) holds for all y ∈ Rn,

(A1) For any sequence {yn}n≥1 ⊂ Rn with p(yn) → ∞ as n → ∞, limn→∞ {p(yn)/κ(yn)} = 1
holds,

(A2) ∇κ(y) = ((∇κ(y))1, · · · , (∇κ(y))n) satisfies

(∇κ(y))i ∼
1

αi

y2βi−1
i

p(y)2c−1
as p(y) → ∞.

(A3) Letting yα = (α1y1, · · · , αnyn)
T for y ∈ Rn, we have 〈yα,∇κ〉 < κ(y) holds for any y ∈ Rn.

2The simplest choice of the natural number c is the least common multiple of α1, · · · , αn. Once we choose such
c, we can determine the n-tuples of natural numbers β1, · · · , βn uniquely. The choice of natural numbers in (2.2) is
essential to desingularize vector fields at infinity, as shown below.
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In the present argument, the notation f(x) ∼ g(x) means that there exists a constant K > 1
such that K−1g(x) < f(x) < Kg(x) for large x.

The admissibility conditions (A0) ∼ (A3) come from fundamental properties of quasi-Poincaré

compactifications T = TqP introduced in [16], which is defined by κ(y) =
(
1 + p(y)2c

)1/2c
. This

definition is also expressed as κ(y) = q◦p(y) with q(R) =
(
1 +R2c

)1/2c
. From (2.2), it immediately

holds that p(y)2c = κ(y)2cp(x)2c and hence p(x) → 1 holds as p(y) → ∞, which follows from the
requirement (A1). By the condition (A0), T maps Rn into

D := {x ∈ Rn | p(x) < 1}.

In particular, the following proposition holds.

Proposition 2.4. The admissible global quasi-homogeneous compactification T is a bijection from
Rn onto D = {x ∈ Rn | p(x) < 1}.

Proof. See Appendix C.13.

Remark 2.5. The present definition of compactifications is relatively too restrictive to well-known
definitions of homogeneous type compactifications due to the requirement κ(y) = q ◦ p(y) in (A0),
which will be categorized as radial-type (cf. [8]). Although this restriction can be ultimately re-
moved, we make this assumption for the following reasons. One is the technical simplicity for
arguments below. On the other hand, in many applications, only radial-type (global) compacti-
fications are used, which is the second reason for making the present assumption. If one needs
non-radial-type compactifications in future problems, the generalization should be introduced.

Remark 2.6. For given C > 0, admissible global quasi-homogeneous compactifications onto the
set DC ≡ {x ∈ Rn | p(x) < C} can be also considered, in which case our requirements in Definition
2.3 are replaced by the following:

(A0)C κ(y) = qC ◦ p(y) for some positive, smooth function qC = qC(R) defined on R ≥ 0 which
is strictly increasing in R > 0, and κ(y) > C−1p(y) holds for all y ∈ Rn,

(A1)C For any sequence {yn}n≥1 ⊂ Rn with p(yn) → ∞ as n → ∞, limn→∞ {p(yn)/κ(yn)} = C
holds,

(A2)C ∇κ(y) = ((∇κ(y))1, · · · , (∇κ(y))n) satisfies

(∇κ(y))i ∼
1

Cαi

y2βi−1
i

p(y)2c−1
as p(y) → ∞.

(A3)C Letting yα = (α1y1, · · · , αnyn)
T for y ∈ Rn, we have 〈yα,∇κ〉 < κ(y) holds for any y ∈ Rn.

For example, in case of the quasi-Poincaré compactification, the corresponding functional κ is

replaced by κ(y) =
(
1 + (C−1p(y))2c

)1/2c
.

3It should be noted that the condition (A2) is not used in the proof. (A2) needs the characterization of desingu-
larized vector fields, which is stated in Lemma 3.2. See the proof of the lemma for details.
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The infinity in the original coordinate then corresponds to a point on the boundary

E = {x ∈ Rn | p(x) = 1}.

Definition 2.7 (cf. [16]). We call the boundary E the horizon.

The horizon determines directions where solution trajectories diverge.

Definition 2.8. We say that a solution orbit y(t) of (2.1) with the maximal existence time (a, b),
possibly a = −∞ and b = +∞, tends to infinity in the direction x∗ ∈ E (associated with T ) (as
t → a+ 0 or b− 0) if

p(y(t)) → ∞,

(
y1

κ(y)α1
, · · · , yn

κ(y)αn

)
→ x∗ as t → a+ 0 or b− 0.

Note that the above argument is completely parallel to arguments of bijectivity of the quasi-
Poincaré compactification [16]. Four properties (A0) ∼ (A3) in Definition 2.3 will play central roles
in the theory of, which shall be called, global quasi-homogeneous compactifications and associated
dynamics. Indeed, in the case of homogeneous compactifications, namely α1 = · · · = αn = β1 =
· · · = βn = 1, these conditions describe admissibility of compactifications [8], which play central
roles in dynamics at infinity. The Poincaré compactification; namely the quasi-Poincaré compacti-
fication of type (1, · · · , 1), is the prototype of other admissible homogeneous compactifications such
as parabolic ones (e.g., [8, 21]), and hence properties (A0) ∼ (A3) which quasi-Poincaré compact-
ifications possess will be appropriate to define an “admissible”class of global quasi-homogeneous
compactifications.

2.3 Quasi-parabolic compactification

Here we introduce an example of global quasi-homogeneous compactifications other than quasi-
Poincaré ones, which is an analogue of parabolic compactifications discussed in [8, 21].

Let the type α = (α1, · · · , αn) ∈ Zn
>0 fixed. Let {βi}ni=1 and c be a collection of natural numbers

satisfying (2.2). For any x ∈ D, define y ∈ Rn by

S(x) = y, yj =
xj

(1− p(x)2c)αj
, j = 1, · · · , n.

Let κ̃α(x) := (1 − p(x)2c)−1, which satisfies κ̃α(x) ≥ 1 for all x ∈ D. Moreover, y 6= 0 implies
κ̃α(x) > 1. We also have

p(y)2c = κ̃α(x)
2cp(x)2c = κ̃α(x)

2c

(
1− 1

κ̃α(x)

)
. (2.3)

This equality indicates that p(y) = p(S(x)) < κ̃α(x) holds for all x ∈ D.

Lemma 2.9. Let F (κ;R) := κ2c −κ2c−1 −R2c for R ≥ 0. Then, for any R ≥ 0, there is a unique
κ = q(R) satisfying q(0) = 1 such that F (q(R);R) ≡ 0. Moreover, q(R) > 1 holds for all R > 0
and q(R) is smooth with respect to R ≥ 0.
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Proof. Observe that F (1; 0) = 0, F (1;R) = −R2c < 0 and F (R;R) = −R2c−1 < 0 as long as
R > 0. Moreover,

∂F

∂κ
(κ;R) = 2cκ2c−1 − (2c− 1)κ2c−2 > 2cκ2c−2(κ− 1) ≥ 0 (if κ ≥ 1), (2.4)

which shows that F (·;R) is strictly increasing in {κ ≥ 1}. Therefore the Implicit Function Theorem
(IFT) shows that there is a small neighborhood4 U of 0 in R and the uniquely determined function
κ = q(R) such that q(0) = 1 and that, for any R ∈ U , F (q(R);R) ≡ 0 holds. Smoothness property
is trivial since F (κ;R) is just a polynomial of κ. Since c is a positive integer, the positivity in (2.4)
holds for sufficiently small U . Here consider the following two cases.

Case 1: 0 ≤ R < 1. If U is chosen sufficiently small, this is the case for R ∈ U .

If a constant cR ≥ 1 is chosen sufficiently large, we have

F (cR;R) = c2cR − c
(2c−1)
R −R2c > c2cR − c

(2c−1)
R − 1 > 0.

Case 2: R ≥ 1.

Also in this case, choosing a positive constant cR sufficiently large we have

F
(
cRR

2c/(2c−1);R
)
= c2cRR4c2/(2c−1) − (c2c−1

R + 1)R2c ≥ {c2cR − (c2c−1
R + 1)}R2c

and c2cR − (c2c−1
R + 1) > 0, which implies F

(
cRR

2c/(2c−1);R
)
> 0.

In both cases, the Intermediate Theorem can be applied to the existence of a function q̃ = q̃(R)
satisfying F (q̃(R);R) = 0 for each R. Since F (1;R) = −R2c < 0 for any R 6= 0 and F (κ;R) is
increasing for κ ≥ 1, then q̃(R) has to be greater than 1. Thus the inequality (2.4), and hence IFT
is applied to show that q̃(R) is uniquely determined and is locally smooth for any R > 0. On the
other hand, q̃(R) = q(R) holds for R ∈ U , and hence we conclude that q̃(R) = q(R) holds for all
R ≥ 0.

Now we have κ̃α(x) satisfies F (κ̃α(x); p(y)) = 0. By the uniqueness of κ(y) = q(R) with respect
to R = p(y), for any y ∈ Rn \ {0}, κ(y) ≡ κ(S(x)) := κ̃α(x) is well defined. We are then ready to
introduce the new compactification mapping.

Definition 2.10 (Quasi-parabolic compactification). Let the type α = (α1, · · · , αn) ∈ Zn
>0 fixed.

Let {βi}ni=1 and c be a collection of natural numbers satisfying (2.2). Define Tpara : Rn → D as

Tpara(y) := x, xi =
yi

κ(y)αi
,

where κ = κ(y) = κ̃α(x) is the unique zero of F (κ; p(y)) = 0 given in Lemma 2.9. We say Tpara

the quasi-parabolic compactification (with type α).

Theorem 2.11. Let the type α = (α1, · · · , αn) ∈ Zn
>0 fixed. Let {βi}ni=1 and c be a collection of

natural numbers satisfying (2.2). Then the quasi-parabolic compactification Tpara is an admissible
global quasi-homogeneous compactification. In particular, T−1

para = S.
4Since R is included in F as R2c, the present argument makes sense for R ∈ R.
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Proof. By construction in the proof of Lemma 2.9, κ(y) indeed has the form κ(y) = q(p(y))
satisfying F (κ(y); p(y)) ≡ 0. For κ ≥ max{1, p(y)}, we have

κ(y)2c − p(y)2c = κ(y)2c−1 > 0.

Since p = p(y) is smooth, then κ = κ(y) can be regarded as the composition of smooth functions
R = p(y) and q = q(R). In particular, κ = κ(y) is C1 with respect to y. Moreover, differentiating
the identity F (q(R);R) = q(R)2c − q(R)2c−1 −R2c ≡ 0 with respect to R, we obtain

2cq(R)2c−1 dq

dR
− (2c− 1)q(R)2c−2 dq

dR
= 2cR2c−1,

namely,
dq

dR
=

2cR2c−1

2cq(R)2c−1 − (2c− 1)q(R)2c−2
.

The denominator of the right-hand side is positive for q = q(R) ≥ 1 and hence the above expression
makes sense. This expression shows that q is strictly increasing for R > 0. As a consequence,
κ = κ(y) satisfies (A0).

From (2.3), we have p(y) → ∞ as p(x) → 1 and vice versa. Moreover, from the identity
p(y)2c = κ(y)2cp(x)2c, we have p(y)/κ(y) → 1 as p(x) → 1, equivalently p(y) → ∞, which shows
(A1).

Differentiating κ(y) = q(p(y)) ≡ q(R) with respect to y, we have

(∇yκ(y))j =
dq

dR

∂p

∂yj
=

2cp2c−1

2cq(R)2c−1 − (2c− 1)q(R)2c−2
· 1

2c
q(R)1−2c · 2βjy

2βj−1
j

=
2βjy

2βj−1
j

2cq(R)2c−1 − (2c− 1)q(R)2c−2
=

2βjy
2βj−1
j

2cκ(y)2c−1
(
1− 2c−1

2c κ(y)−1
) .

By (A1), we have R/q(R) → 1 as R → ∞, equivalently p(y)/κ(y) → 1 as p(y) → ∞, and hence

(∇yκ(y))j ∼
2βjy

2βj−1
j

2cp(y)2c−1
=

y
2βj−1
j

αjp(y)2c−1
as p(y) → ∞,

which shows (A2).
Next, check (A3). We have

〈yα,∇yκ〉 =
n∑

j=1

αjyj
2βjy

2βj−1
j

2cκ(y)2c−1
(
1− 2c−1

2c κ(y)−1
) =

2cp(y)2c

2cκ(y)2c−1
(
1− 2c−1

2c κ(y)−1
)

and it is sufficient to show κ(y)
{
2cκ(y)2c−1

(
1− 2c−1

2c κ(y)−1
)}

> 2cp(y)2c for our statement. Let

G(y) := κ(y)

{
2cκ(y)2c−1

(
1− 2c− 1

2c
κ(y)−1

)}
− 2cp(y)2c.

Then

G(y) = 2cκ(y)2c − (2c− 1)κ(y)2c−1 − 2cp(y)2c > 2c{κ(y)2c − κ(y)2c−1 − p(y)2c} = 0

9



and we obtain (A3).

As a consequence, Tpara is an admissible global quasi-homogeneous compactification. In par-
ticular, Tpara : Rn → D is a surjective C1-diffeomorphism by Proposition 2.4. Observe that

S ◦ Tpara(y) = S

(
y1

κ(y)α1
, · · · , yn

κ(y)αn

)
=

(
y1

κ(y)α1(1− p̃2c)α1
, · · · , yn

κ(y)αn(1− p̃2c)αn

)
= (y1, · · · , yn) ≡ y,

where

p̃2c =
p(y)2c

κ(y)2c
= p(x)2c and (1− p̃2c)−1 = κ̃α(x) ≡ κ(y). (2.5)

Similarly,

Tpara ◦ S(x) = Tpara

(
x1

(1− p(x)2c)α1
, · · · , xn

(1− p(x)2c)αn

)
=

(
x1

(1− p(x)2c)α1κ(y)α1
, · · · , xn

(1− p(x)2c)αnκ(y)αn

)
= (x1, · · · , xn) ≡ x,

which follows from the identity (2.5). Consequently, S = T−1
para holds and the proof is completed.

Remark 2.12. The name quasi-“parabolic” in Tpara comes from the homogeneous parabolic-type
compactification; namely, Tpara with (α1, · · · , αn) = (1, · · · , 1) and c = 1. In the homogeneous
case, Tpara is the composite of the mapping from Rn to a parabolic hypersurface {x2

1 + · · ·+ x2
n =

xn+1} ⊂ Rn+1 and the projection (x1, · · · , xn, xn+1) 7→ (x1, · · · , xn). In the homogeneous case

α = (1, · · · , 1) and c = 1, κ = κ(y) is explicitly given as κ(y) = 1
2

(
1 +

√
1 + 4

∑n
i=1 y

2
i

)
, which

is also calculated from F (κ; y) = 0. See [8, 21] for details. Illustrations of parabolic and quasi-
parabolic compactifications in two-dimensional situations are shown in Figure 1.

The origin of parabolic-type compactifications comes from realization of approximations of un-
bounded functions discussed in [10]. Parabolic compactification (of homogeneous type, namely of
type α = (1, · · · , 1)) is turned out to be a good tool for approximations of unbounded functions
by rational functions, like Weierstrass’ approximations of continuous functions on closed intervals.
One of the main features for realizing such approximations is that parabolic compactification maps
rational functions to rational ones, which is not the case of Poincaré-type ones. The quasi-parabolic
compactification is a nontrivial example of admissible global quasi-homogeneous compactifications.
The biggest difference from quasi-Poincaré compactification is that the functional κ̃α(x) does not
contain any radicals. This property unconditionally guarantees the C1 smoothness of the desin-
gularized vector field of good f on D. In particular, the stability analysis at infinity is available
without particular restrictions to f . Details are discussed in Section 3.
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(a) (b)

Figure 1: Parabolic and quasi-parabolic compactifications with type (2, 1) for R2

Surfaces drawn here are (a): H = {(y1, y2, ζ) | y21 + y22 = ζ} (parabolic compactification), and (b):
Hα = {(y1, y2, ζ) | y21 + y42 = ζ} (quasi-parabolic compactification with type (2, 1)).
In both figures, the original phase space corresponds to R2 × {0} ⊂ R2+1 in the extended space. In
the case of (a), the type α is chosen to be (1, 1). The point P (M) show the intersection point between
(0, 0, 1) and the given point M ∈ R2 on H and Hα respectively, through the curve Cα(y) = {((1−
ζ)α1y1, (1− ζ)α2y2, ζ)}. Note that the curve Cα is just a straight line in the case of homogeneous
compactification α = (1, 1). The projections of P (M) onto the original phase space; (x, 0), are
the images of (quasi-)parabolic compactifications, respectively. These observations can be easily
generalized to Rn.
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2.4 Directional compactifications

There are several other compactifications reflecting (asymptotic) quasi-homogeneity of vector fields
at infinity. For example, the transform y = (y1, · · · , yn) 7→ Td(y) = (s, x̂) ≡ (s, x̂1, · · · , x̂i−1, x̂i+1, · · · , x̂n)
given by

yj =
x̂j

sαj
(j 6= i), yi = ± 1

sαi
(2.6)

is a kind of compactifications5, which corresponds the infinity to the subspace {s = 0} ≡ E . We
shall call such a compactification a directional compactification with the type α = (α1, · · · , αn),
according to [16]. The set E = {s = 0} is called the horizon. This compactification is geometrically
characterized as a local coordinate of quasi-Poincaré hemisphere of type α:

Hα :=

{
(y1, · · · , yn, s) ∈ Rn+1 | 1

(1 + p(y)2c)

n∑
i=1

y2βi

i + s2c = 1

}
,

at (x1, · · · , xn, s) = (0, · · · , 0, xi = ±1, 0, · · · , 0, 0). See [16] for details. Note that, unlike admissible
global quasi-homogeneous compactifications in Definition 2.3, the coordinate representation (2.6)
only makes sense in {±yi > 0}, in which sense directional compactifications are local ones. In
particular, whenever we consider trajectories whose yi-component can change the sign, we have to
take care of transformations among coordinate neighborhoods, which is quite tough for numerical
integration of differential equations. Nevertheless, this compactification is still a very powerful tool
if we consider solutions near infinity whose yi-component is known a priori to have identical sign.

3 Dynamics at infinity through compactifications

In this section, we calculate the vector field (2.1) through quasi-homogeneous compactifications.
The main idea is twofold. First, we apply quasi-homogeneous compactifications associated with the
type of f . Direct calculations then yield a transformed vector field, where the rate of divergence or
decay at infinity is completely mapped into those on the horizon. We apply time-scale transforma-
tion determined by compactifications and the order k+1 of f as the second step. Then we obtain
vector fields which are continuous including the horizon, as already mentioned in [16] in several
cases. In particular, we can consider dynamics at infinity through such transformed vector fields,
which shall be called desingularized vector fields. Moreover, in case of quasi-parabolic compact-
ifications and typical directional compactifications we mention here, the resulting desingularized
vector fields are as smooth as f on the horizon. Therefore dynamics at infinity including stability
analysis of equilibria or general invariant sets can be studied in the similar way to standard theory
of dynamical systems.

3.1 Desingularized vector field with admissible global quasi-homogeneous
compactifications

Regard κ in the definition of T as a function of y. Integers {βi}ni=1 and c in the definition of T are
assumed to satisfy (2.2). Differentiating x = T (y) with respect to t, we have

5Although Td is not a compactification in the topological sense, we shall use this terminology for Td from its
geometric interpretation shown below.
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x′
i =

( yi
καi

)′
=

y′i
καi

− αiyiκ
αi−1

κ2αi
κ′

=
y′i
καi

− αiyi
καi+1

〈∇κ, y′〉

=
fi(y)

καi
− αiyi

καi+1
〈∇κ, f(y)〉.

Namely,
x′ = Aα

(
fi(y)− κ−1〈f,∇κ〉yα

)
, (3.1)

where

Aα = diag(κ−α1 , · · · , κ−αn), yα = (α1y1, · · · , αnyn)
T .

We have the one-to-one correspondence of bounded equilibria, which helps us with detecting
dynamics at infinity.

Proposition 3.1. An admissible global quasi-homogeneous compactification T maps bounded equi-
libria of (2.1) in Rn into equilibria of (3.1) in D, and vice versa.

Proof. See Appendix C.2.

Next we discuss the dynamics at infinity. Denoting

f̃j(x1, · · · , xn) := κ−(k+αj)fj(κ
α1x1, · · · , καnxn), j = 1, · · · , n, (3.2)

we have

x′
i =

κk+αi f̃i(x)

καi
− αiκ

αixi

καi+1

n∑
j=1

(∇κ)jκ
k+αj f̃j(x)

= κkf̃i(x)− αixi

n∑
j=1

(∇κ)jκ
k+αj−1f̃j(x). (3.3)

Since κ → ∞ as p(x) → 1, then the vector field has singularities at infinity, while f̃j(x) themselves
are continuous on D because of the asymptotic quasi-homogeneity of f . Nevertheless, admissibility
of compactifications yields the following observation.

Lemma 3.2. The right-hand side of (3.3) is O(κk) as κ → ∞. In other words, the order with
respect to κ is independent of i.

Proof. See Appendix C.3.

Lemma 3.2 leads to introduce the following transformation of time variable.

Definition 3.3 (Time-variable desingularization). Define the new time variable τ depending on
y by

dτ = κ(y(t))kdt (3.4)
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namely,

t− t0 =

∫ τ

τ0

dτ

κ(y(τ))k
,

where τ0 and t0 denote the correspondence of initial times, and y(τ) is the solution trajectory y(t)
under the new time variable τ . We shall call (3.4) the time-variable desingularization of (3.3) of
order k + 1.

ẋi ≡
dxi

dτ
= f̃i(x)− αixi

n∑
j=1

(∇κ)jκ
αj−1f̃j(x) ≡ gi(x). (3.5)

Summarizing the above observation, we have the extension of dynamics at infinity.

Proposition 3.4 (Extension of dynamics at infinity). Let τ be the new time variable given by
(3.4). Then the dynamics (2.1) can be extended to the infinity in the sense that the vector field g
is continuous on D.

Proof. The component-wise desingularized vector field (3.5) is obviously continuous on D since
this consists of product and sum of continuous functions xi’s and f̃i’s on D.

Example 3.5 (Extension of vector fields via quasi-parabolic compactifications). In the case of
quasi-parabolic compactification (Definition 2.10), ∇κ is given by

(∇yκ(y))j =
2βjy

2βj−1
j

2cκ(y)2c−1
(
1− 2c−1

2c κ(y)−1
)

=
κ(y)2c−αjx

2βj−1
j

αjκ(y)2c−1
(
1− 2c−1

2c κ(y)−1
) =

x
2βj−1
j

αjκ(y)αj−1
(
1− 2c−1

2c κ(y)−1
) .

We can see that g in (3.5) can be extended to be C0 on E = D.

Proposition 3.4 shows that the “dynamics and invariant sets at infinity” make sense. For
example, “equilibria at infinity” defined below are well-defined.

Definition 3.6 (Equilibria at infinity). We say that the vector field (2.1) has an equilibrium at
infinity in the direction x∗ if x∗ is an equilibrium of (3.5) on ∂D.

Now divergent solutions are described in terms of trajectories asymptotic to equilibria on the
horizon for desingularized vector fields.

Theorem 3.7 (Divergent solutions and asymptotic behavior). Let y(t) be a solution of (2.1) with
the interval of maximal existence time (a, b), possibly a = −∞ and b = +∞. Assume that y tends
to infinity in the direction x∗ as t → b− 0 or t → a+ 0. Then x∗ is an equilibrium of (3.5) on E.

Proof. See Appendix C.4.

This theorem shows that divergent solutions in the direction x∗ correspond to trajectories
of (3.5) on the stable manifold W s(x∗)

6 of the equilibrium x∗. This correspondence opens the

6The stable set W s(p) of a point p is characterized as {x = x(0) | d(x(τ), p) → 0 as τ → ∞} with a metric d
on the phase space. If p is an equilibrium, the (center-)stable manifold theorem indicates that the set W s(p) is, at
least locally, has a smooth manifold structure, which is called a (local) stable manifold of p.
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door to applications of various results in dynamical systems to divergent solutions. Several useful
properties of dynamics at infinity are shown in Theorem 3.15 in [16], which are also valid for general
admissible compactifications through the same arguments.

3.2 Desingularized vector field with quasi-parabolic compactifications

In the case of quasi-parabolic compactifications, there is an alternative time-variable desingular-
ization given below. In what follows, let κpara(y) be the functional κ = κ(y) given in Definition
2.10.

Definition 3.8 (Time-variable desingularization for quasi-parabolic compactifications). Let y(t)
be a solution of (2.1) with an asymptotically quasi-homogeneous vector field f of type α and order
k + 1. Let also x = Tpara(y) be the image of y via the quasi-parabolic compactification of type α.
Define the new time variable τ depending on y = y(t) by

dτpara = κpara(y)
k

(
1− 2c− 1

2c
κpara(y)

−1

)−1

dt

= (1− p(x)2c)−k

(
1− 2c− 1

2c
(1− p(x)2c)

)−1

dt. (3.6)

We shall call (3.6) the quasi-parabolic time-variable desingularization of (3.3).

The resulting desingularized vector field is given as follows:

dxi

dτpara
=

(
1− 2c− 1

2c
(1− p(x)2c)

)
f̃i(x)− αixi

n∑
j=1

x
2βj−1
j

αj
f̃j(x) ≡ gpara,i(x). (3.7)

In the case of quasi-Poincaré compactifications, the desingularized vector field g associated
with the vector field f is not always C1 even if f is sufficiently smooth because of the presence of
radicals in κ. See Remark 4.2 in [16] for details. On the other hand, in the case of quasi-parabolic
compactifications, if f is smooth, the corresponding desingularized vector field gpara can be always
smooth on D with the alternative time-variable desingularization. This big difference is one of the
reasons why we introduce an alternative quasi-homogeneous compactifications, which is mentioned
again in Section 4.

Proposition 3.9. Let f be an asymptotically quasi-homogeneous, C1 vector field f of type α and
order k+1. Let x = Tpara(y) be a new variable through quasi-parabolic compactification. Then the
vector field gpara given in (3.7), associated with (3.3) and τpara-timescale given in (3.6), is C1 on
D.

Proof. See Appendix C.5.

3.3 Desingularized vector field with directional compactifications

The desingularized vector field associated with f is also considered with directional compactifica-
tions like (2.6). For simplicity, set i = n in (2.6). Let

f̂j(s, x̂1, · · · , x̂n−1) := sk+αjfj(s
−α1 x̂1, · · · , s−αn−1 x̂n−1, s

−αn), j = 1, · · · , n. (3.8)
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By the similar desingularization process to (3.2), we obtain the desingularized vector field for
directional compactifications whose details are shown in [16].

Definition 3.10 (Time-variable desingularization: directional compactification version). Define
the new time variable τd by

dτd = s(t)−kdt (3.9)

equivalently,

t− t0 =

∫ τ

τ0

s(τd)
kdτd,

where τ0 and t0 denote the correspondence of initial times, and s(τd) is the solution trajectory s(t)
under the parameter τ . We shall call (3.9) the time-variable desingularization of order k + 1.

The desingularized vector field in τd-time scale is
ds
dτd
dx1

dτd
...

dxn−1

dτd

 =


−s 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

B


f̂1
f̂2
...

f̂n

 ≡ gd(s, x̂1, · · · , x̂n−1), (3.10)

where B is the inverse7 of the matrix
α1x̂1 1 0 · · · 0
α2x̂2 0 1 · · · 0
...

...
...

. . .
...

αn−1x̂n−1 0 0 · · · 1
αn 0 0 · · · 0

 .

Equilibria at infinity under directional compactifications are then characterized as equilibria for
(3.10) on the horizon E = {s = 0}. Note that gd is smooth on {s ≥ 0} × Rn−1 if f is smooth.

Remark 3.11. In [16], the topological equivalence among desingularized vector fields with quasi-
Poincaré compactifications and with directional compactifications including the horizon is dis-
cussed. In other words, dynamics of desingularized vector fields around the horizon is topologi-
cally identical among these compactifications. An essence of such a result is the admissibility in
the sense of Definition 2.3 for the equivalence, which indicates that the equivalence result is also
valid for quasi-parabolic compactifications.

4 Blow-up criterion and numerical validation procedure

Theorem 3.7 indicates that divergent solutions are described as trajectories on stable manifolds of
equilibria on the horizon E for (3.5). On the other hand, Theorem 3.7 itself does not distinguish
blow-up solutions from divergent solutions. Under additional assumptions to equilibria on E , we
can characterize blow-up solutions from the viewpoint of dynamical systems. In this section, we
firstly review a criterion of blow-ups discussed in [16]. Then we provide a methodology for explicit
estimates of maximal existence time tmax. Finally, we give an algorithm for validating blow-up
solutions with computer assistance.

7The existence of B immediately follows by cyclic permutations and the fact that αn > 0.
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4.1 Blow-up criterion

Firstly we review an abstract result of blow-up criterion via quasi-homogeneous-type compactifi-
cations. For a squared matrix A, Spec(A) denotes the set of eigenvalues of A.

Proposition 4.1 (Stationary blow-up, [16]). Assume that (2.1) has an equilibrium at infinity in
the direction x∗. Suppose that the desingularized vector field g in (3.5) is C1 on D, and that x∗
is hyperbolic for (3.5); namely all elements in Spec(Dg(x∗)) are away from the imaginary axis.
Then the solution y(t) of (2.1) whose image x = T (y) is on W s(x∗) in the desingularized vector
field (3.5) satisfies tmax < ∞; namely, y(t) is a blow-up solution. Moreover,

p(y(t)) ∼ C(tmax − t)−1/k as t → tmax,

where k + 1 is the order of asymptotically quasi-homogeneous vector field f . Finally, if the i-th
component (x∗)i of x∗ is not zero, then we also have

yi(t) ∼ C(tmax − t)−αi/k as t → tmax.

In the above original version of blow-up criterion stated as above, the C1-smoothness of the
desingularized vector field g in (3.5) is assumed, because such a smoothness is nontrivial for quasi-
Poincaré compactifications even if f is sufficiently smooth, as mentioned in Section 3.2. On the
other hand, Proposition 3.9 shows that stability analysis of equilibria at infinity always makes sense
with quasi-parabolic compactifications, because in which case the desingularized vector field gpara
is always C1 on D if f is C1. Needless to say, the above proposition does not provide information
of concrete blow-up time tmax depending on initial data. In the successive subsections, we provide
a validation procedure of blow-up solutions with estimates of explicit blow-up time.

4.2 Lyapunov functions around asymptotically stable equilibria

Our main tool for validating blow-up time is Lyapunov function, which describes the monotonous
behavior of trajectories in terms of its value. As the general setting, consider the vector field

dx

dt
= f(x), f : Rn → Rn: smooth. (4.1)

For x ∈ Rn, Df(x) denotes the Jacobian matrix of f at x.

Proposition 4.2 (Lyapunov function for stable equilibria, [17]). Let x∗ be an equilibrium for (4.1)
in a compact star-shaped set N ⊂ Rn. Assume that there is a real symmetric matrix Y such that
the matrix

A(x) := Df(x)TY + Y Df(x) (4.2)

is strictly negative definite for all x ∈ N . Then the functional L : Rn → R given by

L(x) := (x− x∗)
TY (x− x∗) (4.3)

is a Lyapunov function on N such that dL/dt vanishes at x∗. In particular, x∗ is the unique
equilibrium in N . If further the matrix Y is chosen to be positive definite, then the equilibrium x∗
is asymptotically stable.
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We shall call the compact set N satisfying the assumption in Proposition 4.2 a Lyapunov
domain of x∗.

Remark 4.3 (The present choice of L(x)). Roughly speaking, the matrix Y contains information
of sign of the real part of each Spec(Df(x)) and a matrix representing change of coordinates. In
the present case, we only treat asymptotically stable equilibria, which indicates that signs of Reλ
for any λ ∈ Spec(Df(x)) should be identically negative. Before validating an equilibrium x∗, it
should be usually computed in a numerical (i.e., non-rigorous computation) sense with associated
eigenvalues for finding candidates of validating equilibrium.

When we numerically compute eigenvalues of a Jacobian matrix, say Df(x), we also compute
eigenvectors to construct the eigenmatrix X, which represents change of coordinates to an or-
thogonal one. In [17], the matrix Y in (4.3) is typically defined as Y = Re(X−HX−1), where
X−H := (X−1)H and ∗H denotes the Hermitian transpose of the object (vectors or matrices).
Note that, in which case, the equilibrium x∗ is shown to be asymptotically stable in N . However,
there are cases that an eigenvalue has multiplicity larger than 1, in which cases the validation is
failed because the computed eigenmatrix X typically becomes singular. Indeed, our example below
contains such a case.

One way to avoid such difficulty is to use the real Schur decomposition of the matrix Df(x)
instead of eigenpair computations. See Appendix A about a quick review of Schur decompositions
of matrices. Let Q be a matrix such that QTDf(x)Q is a real upper triangle matrix for some point
x. Then we can check the sign of Reλ for all λ ∈ Spec(Df(x)). We then choose the matrix Q as
a change of coordinates instead of the eigenmatrix X. In such a case, the corresponding matrix Y
is Y = Re(Q−HQ−1). When we use the real Schur decomposition, Q is an orthogonal real matrix.
Then we take Y = I: the identity matrix, which shows that our Lyapunov function L becomes
L(x) = ‖x− x∗‖2. This fact also shows that x∗ is asymptotically stable in N .

There can be another choice of L(x) other than (4.3). The present choice of L(x) shows an
example for validating rigorous enclosure of blow-up solutions and their blow-up time, and the
other type of Lyapunov functions can be applied provided we can calculate the explicit upper
bound of tmax − tN , an example of which is shown below.

Once we have validated a Lyapunov function L as well as the Lyapunov domain Ñ of an
asymptotically stable equilibrium x∗, we can easily characterize global trajectory asymptotic to x∗.
For a positive number ϵ > 0, assume that N := {x ∈ Rn | L(x) ≤ ϵ} ⊂ Ñ . Let {x(t)}t∈[0,tN ]

be a trajectory of vector field (4.1) for some tN > 0 and assume that x(tN ) ∈ intN . Then the
trajectory x(t) behaves so that it strictly decreases L. Since N = {x ∈ Rn | L(x) ≤ ϵ}, then the
trajectory can be continued until it tend to a point on {L = 0}, in which case x = x∗. Therefore
the trajectory {x(t)}t∈[0,tN ] is extended to the global trajectory {x(t)}t∈[0,∞) satisfying x(t) → x∗
as t → ∞, as desired.

4.3 Estimate of explicit blow-up time with computer assistance

Here we provide an explicit estimate methodology of blow-up time. The basic idea is Lyapunov
tracing discussed in [17, 21]; namely, computation of the maximal existence time

tmax =

∫ ∞

0

dτ

κ(T−1(x(τ)))k
, or td,max =

∫ ∞

0

s(τ)kdτd,
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of trajectory {y(t) = T−1(x(t))} in terms of Lyapunov functions around an equilibrium x∗ on
the horizon E . Theorem 4.1 shows that blow-up solutions correspond to trajectories on stable
manifolds of hyperbolic equilibria on E . According to this fact and preceding methodology in [21],
we validate asymptotic behavior of blow-up solutions by the following steps. An admissible global
quasi-homogeneous compactification T : Rn → D and time-variable desingularization are assumed
to be given in advance.

1. Validate an equilibrium x∗ ∈ E .

2. Validate a Lyapunov function of the form (4.3) around x∗ as well as its Lyapunov domain
Ñ .

Now we are ready to validate blow-up time with computer assistance. Let T be an admissible
global quasi-homogeneous compactification with type α. Assume that the desingularized vector
field (3.5) is C1 on D, which is always the case when T = Tpara and f is C1. Let x∗ ∈ E be an
equilibrium on the horizon for (3.5). Explicit estimates of maximal existence time tmax actually
depend on the choice of compactifications T and time-variable desingularizations. In what follows
we fix T as the quasi-parabolic compactification Tpara (associated with type α) and quasi-parabolic
time-variable desingularization (3.6).

Assume that we have computed the global trajectory {x(τpara)}τpara∈[0,∞) for (3.7) such that

x(τpara) ∈ N = {x ∈ D | L(x) ≤ ϵ} ⊂ Ñ for all τpara ∈ [τpara,N ,∞) and some ϵ > 0, where

τpara,N > 0 and Ñ is a Lyapunov domain of an asymptotically stable equilibrium x∗ ∈ E8. The
maximal existence time of x(τ) in t-timescale is then

tpara,max = tpara,N +

∫ ∞

τpara,N

(
1− 2c− 1

2c
κpara(y)

−1

)
dτpara

κpara(T−1(x(τpara)))k

= tpara,N +

∫ ∞

τpara,N

(
1− 2c− 1

2c
(1− p(x(τ))2c)

)
(1− p(x(τ))2c)kdτpara,

where

tpara,N =

∫ τpara,N

0

(
1− 2c− 1

2c
(1− p(x(τ))2c)

)
(1− p(x(τ))2c)kdτpara. (4.4)

Then compute an upper bound of tmax by

0 < tpara,max − tpara,N ≤ 1

cÑc1

∫ L(x(τN ))

0

Cn,α,N (L)k

L
dL

≤ 1

cÑc1

∫ ϵ

0

Cn,α,N (L)k

L
dL ≡ Cn,α,k,N (ϵ), (4.5)

where L = L(x) is the value of validated Lyapunov function at x ∈ N , c1 and cÑ are constants
involving eigenvalues of Y and A(x) whose details are shown in [21]. This inequality comes from
the property of Lyapunov function following the definition:

dL

dτpara
(x(τpara))τ=0 ≤ −c1cÑL(x(0)),

8In this case, the set N is contained in the stable manifold W s(x∗) of x∗.
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which is strictly negative as long as x(0) 6= x∗. See [21] for the detail. A function Cn,α,N (L)
depends on the value L of Lyapunov function satisfying∣∣1− p(x)2c

∣∣ ≤ Cn,α,N (L) for x ∈ Ñ .

Concrete estimates of the function Cn,α,N (L) we have used in practical validations are derived
in Appendix B. Since L(x(τpara,N )) ≤ ϵ, the rightmost side of (4.5) is an integral on a compact
interval. If we can estimate the right-hand side of (4.5) being finite, we obtain a finite upper
bound of tpara,max, which shows that the trajectory {y(t)}t∈[0,tmax) = {T−1

para(x(τpara))}τpara∈[0,∞)

is a blow-up solution of the original initial value problem (2.1) with blow-up time tpara,max ∈
[tpara,N , tpara,N + Cn,α,k,N (ϵ)].

The similar estimate is also derived for directional compactifications. In such a case with the
same setting as above, the maximal existence time tmax is computed as

td,max =

∫ ∞

0

s(τd)
kdτd = td,N +

∫ ∞

τd,N

s(τd)
kdτd,

where td,N =
∫ τd,N
0

s(τd)
kdτd. Assume that the trajectory {(s(τd), x̂(τd))}τd∈[0,τd,N ] enters inside

intN := {L(s, x̂) < ϵ} ⊂ Ñ , where Ñ is a Lyapunov domain of (0, x̂∗) ∈ E . Then we have∫ ∞

τd,N

s(τd)
kdτd ≤

∫ ∞

τd,N

(|s|2 + ‖x̂− x̂∗‖2)kdτd

≤
∫ ∞

τd,N

{c1L(s(τd), x̂(τd))}k/2 dτd

≤ −
∫ 0

L(s(τd,N ),x̂(τd,N ))

{c1L}k/2
dL

c̃Nc1L

=
c
k/2−1
1

c̃N

∫ L(s(τd,N ),x̂(τd,N ))

0

L
k
2−1dL

≤ c
k/2−1
1

c̃N

[
2Lk/2

]ϵ
0
=

2c
k/2−1
1

c̃N
ϵk/2 ≡ Cn,k,N (ϵ). (4.6)

The rightmost quantity gives an upper bound of tmax = td,max. More precisely, the blow-up time
td,max is a value in [td,N , td,N + Cn,k,N (ϵ)].

4.4 Validation procedure of blow-up solutions

Now we have obtained an estimate of explicit blow-up time. Theorem 3.7 indicates that blow-up
solutions correspond to trajectories on stable manifolds of (hyperbolic) equilibria at infinity, which
can be validated by standard numerical validation techniques of dynamical systems (e.g., [13]).

Our algorithm for validating blow-up solutions is the following, which is essentially same as
that in the preceding work [21].

Algorithm 1 (Validation of blow-up solutions with quasi-parabolic compactifications). Let f :
Rn → Rn be an asymptotically quasi-homogeneous, smooth vector field of type α = (α1, · · · , αn)
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and order k+1. Choose natural numbers β1, · · · , βn, c ∈ N so that (2.2) holds. Let Tpara : Rn → D
be a quasi-parabolic compactification and dx

dτpara
= gpara(x) be the associated desingularized vector

field with time-variable desingularization (3.6).

1. Validate an equilibrium at infinity x∗; namely, a zero of gpara on E = ∂D.

2. Construct a compact, star-shaped set Ñ ⊂ D containing x∗ so that the negative definiteness of
(4.2) on Ñ with a positive definite, real symmetric matrix Y is validated as large as possible.
If we cannot find such a set Ñ , return failed.

3. Let L(x) = (x − x∗)
TY (x − x∗) be the validated Lyapunov function on Ñ . Set ϵ > 0 as the

maximal value so that N := {x ∈ Rn | L(x) ≤ ϵ} ⊂ Ñ . Integrate the ODE (dx/dτpara) =
gpara(x) with initial data x0 ∈ D until τ = τN so that x(τN ) ∈ intN . If we cannot find such
x(τN ), return failed.

4. Compute Cn,α,k,N (ϵ). Simultaneously, compute tN following (4.4). If Cn,α,k,N (ϵ) can be
validated to be finite, return succeeded.

The similar algorithm with directional compactifications is derived as follows.

Algorithm 2 (Validation of blow-up solutions with directional compactifications). Let f : Rn →
Rn be an asymptotically quasi-homogeneous, smooth vector field of type α = (α1, · · · , αn) and order
k + 1. Let Td : U → {s > 0} × Rn−1 be a directional compactification determined by (2.6) and
d(s,x̂)
dτd

= gd(s, x̂) be the associated desingularized vector field with time-variable desingularization

(3.4), where U is a domain of definition of Td chosen so that it is compatible with Td.

1. Validate an equilibrium at infinity (0, x̂∗); namely, a zero of gd on E = {s = 0}.

2. Construct a compact, star-shaped set Ñ ⊂ {s ≥ 0} × Rn−1 containing (0, x̂∗) so that the
negative definiteness of (4.2) on Ñ with a positive definite, real symmetric matrix Y is
validated as large as possible. If we cannot find such a set Ñ , return failed.

3. Let L(s, x̂) = ((s, x̂)− (0, x̂∗))
TY ((s, x)− (0, x̂∗)) be the validated Lyapunov function on Ñ .

Set ϵ > 0 as the maximal value so that N := {(s, x̂) ∈ {s ≥ 0} × Rn−1 | L(s, x̂) ≤ ϵ} ⊂ Ñ .
Integrate the ODE (d(s, x̂)/dτd) = gd(s, x̂) with initial data (s0, x̂0) ∈ {s > 0} × Rn−1 until
τd = τd,N so that (s(τd,N ), x̂(τd,N )) ∈ intN . If we cannot find such (s(τd,N ), x̂(τd,N )), return
failed.

4. Compute Cn,k,N (ϵ). Simultaneously, compute td,N =
∫ τd,N
0

s(τd)
kdτd. If Cn,k,N (ϵ) can be

validated to be finite, return succeeded.

Under the successful operations of Algorithm 1 or 2, we have the following results, which show
the validation of blow-up solutions. The proofs immediately follow from properties of compactifi-
cations and Lyapunov functions.

Theorem 4.4 (Validation of blow-up solutions with quasi-parabolic compactifications). Let y0 ∈
Rn. Assume that Algorithm 1 returns succeeded with x0 = Tpara(y0). Then the solution {y(t) =
T−1
para(x(t))} of (2.1) with y(0) = y0 such that

{x(τpara) | τpara ∈ [0,∞), x(τpara) → x∗ as τpara → ∞}
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via a time-variable desingularization (3.6) and an asymptotically stable equilibrium x∗ ∈ E is a
blow-up solution with the blow-up time tpara,max ∈ [τpara,N , τpara,N + Cn,α,k,N (ϵ)].

Theorem 4.5 (Validation of blow-up solutions with directional compactifications). Let y0 ∈ Rn.
Assume that Algorithm 2 returns succeeded with (s0, x̂0) = Td(y0). Then the solution {y(t) =
T−1
d (s(t), x̂(t))} of (2.1) with y(0) = y0 such that

{(s(τd), x̂(τd)) | τd ∈ [0,∞), s(τd) → 0, x̂(τd) → x̂∗ as τd → ∞}

via a time-variable desingularization (3.9) and an asymptotically stable equilibrium (0, x̂∗) ∈ E is
a blow-up solution with the blow-up time tmax = td,max ∈ [τd,N , τd,N + Cn,k,N (ϵ)].

Finally we remark that our validations do not contain those of hyperbolicity for equilibria on
E . Indeed, we only verify negative definiteness of the symmetrization of Df(x) or an associated
matrix in (4.2). In particular, our validation does not directly provide rigorous blow-up rates of
blow-up solutions mentioned in Proposition 4.1. Nevertheless, Proposition 4.1 provides a guideline
for focusing on our targeting objects for validations, and Lyapunov function validations yield the
asymptotic stability of equilibria and rigorous estimates of blow-up time, as mentioned.

5 Validation examples

In this section, we demonstrate our procedure with several test problems. We have three validation
examples, which aim at demonstrating the following, respectively:

• Section 5.1 shows an application of quasi-parabolic compactifications for quasi-homogeneous
vector fields. In particular, sign-changing profiles are validated. Using the above compacti-
fication, we do not need to care about sign-changing nature for computing blow-up profiles.

• Section 5.2 shows an application of quasi-parabolic compactifications for asymptotically
quasi-homogeneous vector fields. As mentioned in Proposition 3.9, quasi-parabolic compact-
ifications and the associated time-scale desingularizations map the original smooth vector field
into the desingularized one with the same smoothness, which is not the case of Poincaré-type
compactifications (cf. [16, 21]).

• Section 5.3 shows the effectiveness of directional compactifications for blow-up profiles,
provided we have a priori knowledge that some components have an identical sign.

All computations were carried out on macOS Sierra (ver. 10.12.5), Intel(R) Xeon(R) CPU E5-1680
v2 @ 3.00 GHz using the kv library [13] ver. 0.4.41 to rigorously compute the trajectories of ODEs.

5.1 Example 1

The first example is the following two-dimensional ODE:{
u′ = u2 − v,

v′ = 1
3u

3.
(5.1)

This vector field is the special case of (5.3) discussed in the next example. It immediately holds
that the vector field (5.1) is quasi-homogeneous of type (1, 2) and order 2. The numerical study of
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complete dynamics including infinity is shown in [16]. Our purpose here is to validate a blow-up
solution observed there. We introduce the quasi-parabolic compactification of type (1, 2) given by

u =
x1

1− p(x)4
, v =

x2

(1− p(x)4)2
, p(x)4 = x4

1 + x2
2.

Then the corresponding desingularized vector field (3.7) is given by the following:{
ẋ1 = (x2

1 − x2)F (x)− x1G(x)

ẋ2 = 1
3x

3
1F (x)− 2x2G(x)

, ˙=
d

dτpara
, (5.2)

where

F (x) =
1

4

{
1 + 3(1− p(x)4)

}
, G(x) = x3

1(x
2
1 − x2) +

1

6
x3
1x2.

We are then ready to validate blow-up solutions, following Algorithm 1. In the similar way to [16],
it turns out that the system (5.2) admits exactly four equilibria at infinity, one of which is a sink9,
the other one of which is a source10 and the rest of two are saddles11. Here we compute the sink
on the horizon satisfying

x∗ ∈
(

[0.98913699589497727, 0.98913699589497773]
[0.20675855700518036, 0.2067585570051809]

)
,

where [·, ·] denotes a real interval. In the next step, we validate a Lyapunov function as well as its
Lyapunov domain including N = {x ∈ D | L(x) ≤ ϵ} around the sink and a solution trajectory x(τ)
which enters N in a finite time τN . The initial data are given by (x1(0), x2(0)) = (−0.1, 0.0001)
and (−0.1,−0.1). Table 1 shows validated results of blow-up solutions for (5.1). See also Figure 2.

Table 1: Validated results for (5.1): numerical validations prove x(τpara,N ) ∈ intN and (4.5) yields
the inclusion of the blow-up time tpara,max. Subscript and superscript numbers in the table denote
lower and upper bounds of the interval, respectively.

Initial data ϵ τpara,N Inclusion of tpara,max Exec. time
(−0.1, 0.0001) 5.6700023252180213× 10−5 343.57935744230372 84.083853417007874706663650346 1.42 s
(−0.1,−0.1) 5.6700023252180213× 10−5 32.05598188250481 6.20124429388612610761835235443 1.11 s

Validated results in this example show the efficiency of quasi-parabolic compactifications for
validating sign-changing solutions, compared with directional compactifications. As indicated in
[16] and Figure 2, validated trajectories can change the sign. Numerical computations as well
as rigorous validations of trajectories with directional compactifications require the assumption
that (at least) one of components never change the sign and that, even if it is the case, one
knows such a component in advance. If we deal with sign-changing trajectories, coordinate-change
transformations have to be incorporated into the whole computations, which are not easy tasks
for numerical integration of differential equations. On the other hand, there is no such worry
with quasi-parabolic compactifications because they provide globally defined charts on embedding
manifolds. Trajectories can be therefore validated without any assumptions about their signs.

9An equilibrium p with Spec(Dgpara(p)) ⊂ {λ ∈ C | Reλ < 0}.
10An equilibrium p with Spec(Dgpara(p)) ⊂ {λ ∈ C | Reλ > 0}
11Hyperbolic equilibria which are not neither sinks nor sources.
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(a) (b)

(c) (d)

Figure 2: A blow-up trajectory for (5.1)
A blow-up trajectory with the initial data (u(0), v(0)) = T−1

para(x), (x1(0), x2(0)) = (−0.1, 0.0001)
are drawn. Horizontal axis is the original time variable t, and vertical axis is the value of variables
u and v. (a): the u-component of the blow-up trajectory. (b): the u-component of the blow-
up trajectory in a vicinity of u = 0. (c): the v-component of the blow-up trajectory. (d): the
v-component of the blow-up trajectory in a vicinity of v = 0.
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Remark 5.1. Even for non-rigorous computations of divergent solutions of ODEs, treatment of
coordinate transform among directional compactifications with different directions is not a trivial
task, which can cause lengthy and inefficient arguments, and accumulation of numerical errors.
On the other hand, quasi-Poincaré ([16]) and quasi-parabolic compactifications define one global
charts including the horizon, and hence they can work effectively for computing divergent solutions
for general systems as the first step. Even if the targeting divergent and blow-up solutions turn
out to have an identical sign in a certain direction during time evolution, it is still worth applying
quasi-Poincaré and quasi-parabolic compactifications to detecting the direction where the sign is
identical during evolution.

5.2 Example 2

The second example is the following two-dimensional ODE:{
u′ = u2 − v − su− c1,

v′ = 1
3u

3 − u− sv − c2,
(5.3)

where (c1, c2) = (c1L, c2L) or (c1R, c2R) are constants with{
c1L = u2

L − vL − suL,

c2L = 1
3u

3
L − uL − svL,

{
c1R = u2

R − suR − vR,

c2R = 1
3u

3
R − uR − svR.

The system (5.3) is well-known as the traveling wave equation derived from the Keyfitz-Kranser
model [15], which is the following initial value problem of the system of conservation laws:

∂u

∂t
+

∂

∂x
(u2 − v) = 0,

∂v

∂t
+

∂

∂x

(
1

3
u3 − u

)
= 0,

(u(x, 0), v(x, 0)) =

{
(uL, vL) x < 0,

(uR, vR) x > 0.
(5.4)

In particular, our attentions are restricted to solutions of the form

u(x, t) = ũ(ξ), v(x, t) = ṽ(ξ), ξ = x− st (5.5)

satisfying the following boundary condition:

lim
ξ→−∞

(
ũ(ξ)
ṽ(ξ)

)
=

(
uL

vL

)
, lim

ξ→+∞

(
ũ(ξ)
ṽ(ξ)

)
=

(
uR

vR

)
. (5.6)

The governing system with the ansatz (5.5)-(5.6) derives the system (5.3).

Remark 5.2. The system (5.1) in the previous example actually extracts the quasi-homogeneous
part of (5.3). Solutions (5.5) of (5.3) satisfying (5.6) correspond to shock waves with speed s for
the Riemann (initial value) problem (5.4) satisfying viscosity profile criterion. The boundary con-
dition (5.6) is known as the Rankine-Hugoniot condition which weak solutions of (5.4) admitting
discontinuity must be satisfied. On the other hand, it is well-known that the Riemann problem
(5.4) admits shock wave solutions with Dirac-delta singularities called singular shock waves. Such
solutions satisfy only a part of (5.6); called Rankine-Hugoniot deficit, and such structure corre-
sponds to the presence of blow-up solutions for (5.3) with (c1, c2) = (c1L, c2L) or (c1R, c2R), which
inspires our considerations herein. See e.g., [15, 20] for details about (5.4).
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It immediately holds that, as in the previous example, the vector field (5.3) turns out to be
asymptotically quasi-homogeneous at infinity with type α = (1, 2) and order 2. The desingularized
vector field with quasi-parabolic compactifications is calculated as follows. Introduce the quasi-
parabolic compactification of type (1, 2) given by

u =
x1

1− p(x)4
, v =

x2

(1− p(x)4)2
, p(x)4 = x4

1 + x2
2

and nonlinear functions f̃1(x), f̃2(x) by

f̃1(x) := x2
1 − x2 − sκ−1x1 − κ−2c1, f̃2(x) :=

1

3
x3
1 − κ−2x1 − sκ−1x2 − c2κ

−3,

where κ−1 = κ(x)−1 = (1−p(x)4)1/4, the desingularized vector field associated with (5.3) becomes{
ẋ1 = (x2

1 − x2 − sκ−1x1 − κ−2c1)F (x)− x1G̃(x)

ẋ2 =
(
1
3x

3
1 − κ−2x1 − sκ−1x2 − c2κ

−3
)
F (x)− 2x2G̃(x)

, ˙=
d

dτpara
,

where

F (x) =
1

4

{
1 + 3(1− p(x)4)

}
,

G̃(x) = x3
1(x

2
1 − x2 − sκ−1x1 − κ−2c1) +

1

2
x2

(
1

3
x3
1 − κ−2x1 − sκ−1x2 − c2κ

−3

)
.

In the present validation, we applied (c1, c2) = (c1L, c2L) as well as the speed parameter s are set
as

uL = [1.46777062491], vL = [0.238709208571], s ∈ 0.44819467507505512461,

c1L ∈ 1.257794420461445135, c2L ∈ −0.520727975341759856075

following the Rankine-Hugoniot relation (e.g., [15]), where [a] denotes the point interval consisting
of a value a, and subscript and superscript numbers denote lower and upper bounds of the interval,
respectively. We then compute an equilibrium on the horizon which satisfy

x∗ ∈
(

[0.98913699589497727, 0.98913699589497773]
[0.20675855700518036, 0.2067585570051809]

)
.

Finally, validate blow-up solutions in the same way as the previous example. Our validation result
is listed in Table 2.

Table 2: Validated results for (5.3): numerical validations prove x(τpara,N ) ∈ intN and (4.5) yields
the inclusion of the blow-up time tpara,max.
(x1(0), x2(0)) ϵ τpara,N tpara,max Exec. time

(−0.1,−0.8) 0.00011049230488192128 11.55312519434721 0.94469739415956034239514010626 0.86 s

Validated results in this example show the efficiency of quasi-parabolic compactifications for
asymptotically quasi-homogeneous vector fields at infinity. As indicated in [16], quasi-Poincaré
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compactifications; namely, the case κ(y) = κPoin(y) = (1 + p(y)2c)1/2c, require calculations of
radicals because of the presence of κ−1

Poin in desingularized vector fields. Such terms cause the
lack of smoothness of desingularized vector fields on the horizon, which indicates that the stability
analysis of equilibria there in terms of Jacobian matrices makes no sense. In particular, blow-up
arguments cannot be developed within the present argument. Details of this point are discussed in
Remark 4.2 in [16]. On the other hand, quasi-parabolic compactifications guarantees the smooth-
ness of desingularized vector fields derived from original ones under their smoothness, including
the horizon, by Proposition 3.9. This property can reflect a good correspondence between rational
functions through parabolic-type compactifications [10]. Blow-up arguments including numerical
validations with quasi-parabolic compactifications can be therefore applied to vector fields which
are not quasi-homogeneous but asymptotically quasi-homogeneous, since quasi-parabolic compact-
ifications keep the smoothness of vector fields between the original one and the desingularized
one.

5.3 Example 3

The final example is a finite dimensional approximation of the following system of partial differential
equations: 

ut = r1−d
(
rd−1 (ur − uvr)

)
r
, r ∈ (0, L), t > 0,

vt = r1−d
(
rd−1vr

)
r
− v + u r ∈ (0, L), t > 0,

ur = vr = 0, r = 0, L, t > 0,
u(r, 0) = u0(r), v(r, 0) = v0(r), r ∈ (0, L)

(5.7)

for some L > 0, which is the well-known Keller-Segel model on the d-dimensional ball with homo-
geneous Neumann boundary condition and radially symmetric anzatz:

ut = ∆u−∇ · (u∇v), x ∈ Ω, t > 0,
vt = ∆v − v + u, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(5.8)

where Ω = {x ∈ Rd | |x| < L}.
Zhou and Saito [24] has proposed a finite volume discretization scheme so that blow-up solutions

for (5.7) of the parabolic-elliptic (namely, vt = 0) type can be computed.

Remark 5.3. It is known that solutions of the Keller-Segel system (5.8) with positive initial data
u0(x) > 0, v0(x) > 0 must be positive. Moreover, the system (5.8) possesses an L1-conservation law
for u; namely

∫
Ω
u(x, t)dx =

∫
Ω
u0(x)dx holds for all t ≥ 0. However, L1-conservative discretization

schemes for (5.8) are known to possess no numerical blow-up solutions typically. The choice of
the present scheme aims at computations of blow-up behavior for Keller-Segel type system. It is
reported in [24] that the corresponding scheme provide the positivity of solutions if the spatial
grid size h and the temporal grid size τ are sufficiently small and numerical solutions are far from
blow-up profile, while the positivity breaks down as solutions approach to blow-up.
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We consider a parabolic-parabolic alternative of the discretization defined below:

du1

dt
=

r1−d
1

h

(
rd−1
1+ 1

2

u2 − u1

h

)
− r1−d

1

h

(
rd−1
1+ 1

2

v2 − v1
h

u1

)
du2

dt
=

r1−d
2

h

(
rd−1
2+ 1

2

u3 − u2

h
− rd−1

2− 1
2

u2 − u1

h

)
− r1−d

2

h

(
rd−1
2+ 1

2

v3 − v2
h

u2 − rd−1
2− 1

2

v2 − v1
h

u1

)
...

dui

dt
=

r1−d
i

h

(
rd−1
i+ 1

2

ui+1 − ui

h
− rd−1

i− 1
2

ui − ui−1

h

)
− r1−d

i

h

(
rd−1
i+ 1

2

vi+1 − vi
h

ui − rd−1
i− 1

2

vi − vi−1

h
ui−1

)
...

duN

dt
=

r1−d
N

h

(
−rd−1

N− 1
2

uN − uN−1

h

)
−

r1−d
N

h

(
−rd−1

N− 1
2

vN − vN−1

h
uN

)
,

and

dv1
dt

=
r1−d
1

h

(
rd−1
1+ 1

2

v2 − v1
h

)
− v1 + u1

dv2
dt

=
r1−d
2

h

(
rd−1
2+ 1

2

v3 − v2
h

− rd−1
2− 1

2

v2 − v1
h

)
− v2 + u2

...

dvi
dt

=
r1−d
i

h

(
rd−1
i+ 1

2

vi+1 − vi
h

− rd−1
i− 1

2

vi − vi−1

h

)
− vi + ui

...

dvN
dt

=
r1−d
N

h

(
−rd−1

N− 1
2

vN − vN−1

h

)
− vN + uN .

We name the system (FvKS). The corresponding spatial discretization is based on the scheme
stated in [24]. The precise setting (FvKS) is as follows: letting N ∈ N and h = L/N , the mesh of
the interval (0, L) ⊂ R is defined by

0 = r 1
2
< r1+ 1

2
< · · · < rN−1+ 1

2
< rN+ 1

2
= L,

where ri+ 1
2
= ih (i = 0, 1, . . . , N). In this example, we set L = 1. Here, (ri+ 1

2
, ri+1+ 1

2
) (i =

0, 1, . . . , N − 1) is called the control volume with its control point ri+1 = (i + 1
2 )h. The semi-

discretization of the space variable yields the approximation satisfying ui(t) ' u(ri, t) and vi(t) '
v(ri, t) (i = 1, 2, . . . , N , t > 0).

Remark 5.4. We briefly gather several facts about blow-up behavior in the Keller-Segel systems
of the parabolic-parabolic type (5.8). In [12], radially symmetric blow-up solutions for (5.7) with
d ≥ 2 are constructed constitutively. In [19], the Keller-Segel system with d = 1 is proved to admit
no blow-up solutions. In [23], criteria for blow-ups of radial-symmetric solutions for (5.7) with
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d ≥ 3 are provided. In [18], radially symmetric blow-up solutions for (5.7) with d = 2 is proved to
be of so-called type II; namely, asymptotics near blow-up is not determined only by nonlinearity
of vector fields. See references therein and others for more details.

It should be noted that, in the present argument, we cannot discuss that how accurate our
present arguments describe the true nature of the Keller-Segel system (5.7). Even if N can be
chosen as large as possible, which looks close to the original Keller-Segel system, our problem is
considered just as an independent finite-dimensional ODE system because there are non-trivial
gaps between the present system and (5.7), such as the choice of scaling or breaking of positivity.
Compare Lemma 5.5 with Section 5.3.3. Moreover, as seen in our validated results (Figure 3
below), the blow-up profiles does not possess positivity, which reflect the property of the scheme
mentioned in Remark 5.3 and roughness of the grid size which we have succeeded in validations.
If a numerical scheme which possess positivity even near blow-up is proposed and if numerical
validations are succeeded for sufficiently large N , the validated solutions can approximate the true
nature of blow-up profiles for the Keller-Segel system in some sense.

First we observe that (FvKS) is asymptotically quasi-homogeneous in the following sense.

Lemma 5.5. The system (FvKS) is an asymptotically quasi-homogeneous vector field at infinity
of the following type and order 2:

α = (2 . . . , 2︸ ︷︷ ︸
N

, 1 . . . , 1︸ ︷︷ ︸
N

).

In other words, (FvKS) is asymptotically quasi-homogeneous under the scaling ui 7→ s2ui and
vi 7→ svi for i = 1, · · · , N .

Following Lemma 5.5, we consider two types of quasi-homogeneous compactifications. One is
the directional compactification of type α:

u1 =
1

s2
, ui =

x̂i

s2
(i = 2, · · · , N), vj =

ŷj
s

(j = 1, · · · , N), (5.9)

and the other is the quasi-parabolic compactification of type α:

yj =
xj

(1− p(x)4)αj
(j = 1, · · · , 2N), p(x)4 =

N∑
j=1

ũ2
j + ṽ4j , κ−1

para = 1− p(x)4, (5.10)

where x = (x1, · · · , x2N ) ≡ (ũ1, · · · , ũN , ṽ1, · · · , ṽN ).

5.3.1 Directional compactification

Direct computations yield the following transformation of vector fields:

u′
1 = −2s−3s′

=
r1−d
1

h

(
rd−1
1+ 1

2

s−2 x̂2 − 1

h

)
− r1−d

1

h

(
rd−1
1+ 1

2

s−3 ŷ2 − ŷ1
h

)
,

namely,

s′ = −r1−d
1

2h2
rd−1
1+ 1

2

{s(x̂2 − 1)− (ŷ2 − ŷ1)} .
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Similarly,

u′
2 = −2s−3x̂2s

′ + s−2x̂′
2

=
r1−d
2

h
s−2

(
rd−1
2+ 1

2

x̂3 − x̂2

h
− rd−1

2− 1
2

x̂2 − 1

h

)
− r1−d

2

h
s−3

(
rd−1
2+ 1

2

ŷ3 − ŷ2
h

x̂2 − rd−1
2− 1

2

ŷ2 − ŷ1
h

)
,

to obtain

x̂′
2 = 2s−1x̂2s

′ + s2u′
2

= 2s−1x̂2

[
−r1−d

1

2h2
rd−1
1+ 1

2

{s(x̂2 − 1)− (ŷ2 − ŷ1)}

]

+
r1−d
2

h

(
rd−1
2+ 1

2

x̂3 − x̂2

h
− rd−1

2− 1
2

x̂2 − 1

h

)
− r1−d

2

h
s−1

(
rd−1
2+ 1

2

ŷ3 − ŷ2
h

x̂2 − rd−1
2− 1

2

ŷ2 − ŷ1
h

)
= −s−1x̂2

[
r1−d
1

h2
rd−1
1+ 1

2

{s(x̂2 − 1)− (ŷ2 − ŷ1)}

]

+
r1−d
2

h2

[
rd−1
2+ 1

2

{
(x̂3 − x̂2)− s−1(ŷ3 − ŷ2)x̂2

}
− rd−1

2− 1
2

{
(x̂2 − 1)− s−1(ŷ2 − ŷ1)

}]
.

For ui with i = 3, · · · , N − 1,

u′
i = −2s−3x̂is

′ + s−2x̂′
i

=
r1−d
i

h
s−2

(
rd−1
i+ 1

2

x̂i+1 − x̂i

h
− rd−1

i− 1
2

x̂i − x̂i−1

h

)
− r1−d

i

h
s−3

(
rd−1
i+ 1

2

ŷi+1 − ŷi
h

x̂i − rd−1
i− 1

2

ŷi − ŷi−1

h
x̂i−1

)
,

to obtain

x̂′
i = −2s−1x̂is

′ + s2u′
i

= −s−1x̂i

[
r1−d
1

h2
rd−1
1+ 1

2

{s(x̂2 − 1)− (ŷ2 − ŷ1)}

]

+
r1−d
i

h2

[
rd−1
i+ 1

2

{
(x̂i+1 − x̂i)− s−1(ŷi+1 − ŷi)x̂i

}
− rd−1

i− 1
2

{
(x̂i − x̂i−1)− s−1(ŷi − ŷi−1)x̂i−1

}]
.

Finally,

u′
N = −2s−3x̂Ns′ + s−2x̂′

N

=
r1−d
N

h
s−2

(
−rd−1

N− 1
2

x̂N − x̂N−1

h

)
−

r1−d
N

h
s−2

(
−rd−1

N− 1
2

ŷN − ŷN−1

h
x̂N

)
to obtain

x̂′
N = −2s−1x̂Ns′ + s2u′

N

= −s−1x̂N

[
r1−d
1

h2
rd−1
1+ 1

2

{s(x̂2 − 1)− (ŷ2 − ŷ1)}

]
−

r1−d
N

h2
rd−1
N− 1

2

{
(x̂N − x̂N−1)− s−1(ŷN − ŷN−1)x̂N

}
.
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Next compute ŷ′i.

v′1 = −s−2ŷ1s
′ + s−1ŷ′1 =

r1−d
1

h
s−1

(
rd−1
1+ 1

2

ŷ2 − ŷ1
h

)
− s−1ŷ1 + s−2

to obtain

ŷ′1 = s−1ŷ1s
′ + sv′1

= −s−1ŷ1

[
r1−d
1

2h2
rd−1
1+ 1

2

{s(x̂2 − 1)− (ŷ2 − ŷ1)}

]
+

r1−d
1

h2
rd−1
1+ 1

2

(ŷ2 − ŷ1)− ŷ1 + s−1.

Similarly,

v′i = −s−2ŷis
′ + s−1ŷ′i

=
r1−d
i

h2
s−1

(
rd−1
i+ 1

2

(ŷi+1 − ŷi)− rd−1
i− 1

2

(ŷi − ŷi−1)
)
− s−1ŷi + s−2x̂i

to obtain

ŷ′i = s−1ŷis
′ + sv′i

= −s−1ŷi

[
r1−d
1

2h2
rd−1
1+ 1

2

{s(x̂2 − 1)− (ŷ2 − ŷ1)}

]

+
r1−d
i

h2

(
rd−1
i+ 1

2

(ŷi+1 − ŷi)− rd−1
i− 1

2

(ŷi − ŷi−1)
)
− ŷi + s−1x̂i, i = 2, · · · , N − 1,

and

v′N = −s−2ŷNs′ + s−1ŷ′N

=
r1−d
N

h2
s−1

(
−rd−1

N− 1
2

(ŷN − ŷN−1)
)
− s−1ŷN + s−2x̂N

to obtain

ŷ′N = s−1ŷNs′ + sv′N

= −s−1ŷN

[
r1−d
1

2h2
rd−1
1+ 1

2

{s(x̂2 − 1)− (ŷ2 − ŷ1)}

]
+

r1−d
N

h2
rd−1
N− 1

2

(−(ŷN − ŷN−1))− ŷN + s−1x̂N .

Introducing the time-variable desingularization

dτd
dt

= s−1,

we have the following result.
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Lemma 5.6. The desingularized vector field of (FvKS) with respect to the directional compactifi-
cation (5.9) is the following system:

ṡ = −s
r1−d
1

2h2
rd−1
1+ 1

2

{s(x̂2 − 1)− (ŷ2 − ŷ1)} ,

˙̂x2 = −x̂2

[
r1−d
1

h2
rd−1
1+ 1

2

{s(x̂2 − 1)− (ŷ2 − ŷ1)}

]

+
r1−d
2

h2

[
rd−1
2+ 1

2

{s(x̂3 − x̂2)− (ŷ3 − ŷ2)x̂2} − rd−1
2− 1

2

{s(x̂2 − 1)− (ŷ2 − ŷ1)}
]
,

˙̂xi = −x̂i

[
r1−d
1

h2
rd−1
1+ 1

2

{s(x̂2 − 1)− (ŷ2 − ŷ1)}

]

+
r1−d
i

h2

[
rd−1
i+ 1

2

{s(x̂i+1 − x̂i)− (ŷi+1 − ŷi)x̂i} − rd−1
i− 1

2

{s(x̂i − x̂i−1)− (ŷi − ŷi−1)x̂i−1}
]
,

(i = 3, · · · , N − 1)

˙̂xN = −x̂N

[
r1−d
1

h2
rd−1
1+ 1

2

{s(x̂2 − 1)− (ŷ2 − ŷ1)}

]
−

r1−d
N

h2
rd−1
N− 1

2

{s(x̂N − x̂N−1)− (ŷN − ŷN−1)x̂N−1] ,

˙̂y1 = −ŷ1

[
r1−d
1

2h2
rd−1
1+ 1

2

{s(x̂2 − 1)− (ŷ2 − ŷ1)}

]
+ s

r1−d
1

h2
rd−1
1+ 1

2

(ŷ2 − ŷ1)− sŷ1 + 1,

˙̂yi = −ŷi

[
r1−d
1

2h2
rd−1
1+ 1

2

{s(x̂2 − 1)− (ŷ2 − ŷ1)}

]

+ s
r1−d
i

h2

(
rd−1
i+ 1

2

(ŷi+1 − ŷi)− rd−1
i− 1

2

(ŷi − ŷi−1)
)
− sŷi + x̂i, (i = 2, · · · , N − 1)

˙̂yN = −ŷN

[
r1−d
1

2h2
rd−1
1+ 1

2

{s(x̂2 − 1)− (ŷ2 − ŷ1)}

]
+ s

r1−d
N

h2
rd−1
N− 1

2

(−(ŷN − ŷN−1))− sŷN + x̂N .

Our concerning blow-up solution is a trajectory of the desingularized vector field asymptotic
to an equilibrium on the horizon {s = 0}. The initial data is given by

ui(0) = 100(1 + cos(πri)), vi(0) = 0 (i = 1, 2, . . . , N). (5.11)

Then, we derive

s(0) =
1√
u1(0)

, x̂i(0) =
ui(0)

u1(0)
(i = 2, 3, . . . , N), ŷj(0) =

vj(0)√
u1(0)

(j = 1, 2, . . . , N).

Following Algorithm 2, we validate global trajectories for the vector field in Lemma 5.6 asymp-
totic to E = {s = 0} with various (d,N). Validated equilibria are near

s = 0, x̂1 = −0.036653902557231, x̂2 = −8.275562067652× 10−5, x̂j = 0 (j ≥ 3),

ŷ1 = 0.04910809766161, ŷ2 = 0.001800003426459655, ŷj = 0 (j ≥ 3), etc.

Validated results are collected in Table 3, which correspond to rigorous enclosures of a trajectory
illustrated in Figure 3.
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(a) (b)

(c) (d)

Figure 3: A blow-up trajectory for (FvKS) with (d,N) = (3, 11)
A blow-up trajectory with the initial data (5.11) are drawn. (a): the (t, r, u)-plot of the blow-up
trajectory. (b): the (r, u)-plot of the blow-up trajectory near t = tmax ≈ 0.04. (a): the (t, r, v)-plot
of the blow-up trajectory. (b): the (r, v)-plot of the blow-up trajectory near t = tmax ≈ 0.04.
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Table 3: Validated results for (FvKS) using the directional compactification: numerical validations
prove that the solution enclosures at τ = τd,N are included in intN and that (4.6) provides the
inclusion of the blow-up time td,max. Subscript and superscript numbers in the table denote lower
and upper bounds of the interval, respectively.
(d,N) ϵ τd,N td,max Exec. time

(4, 4) 7.7787964060071189× 10−7 2.2660030304331925 0.0416350934393954014995298971515 4.58 s

(4, 5) 3.9917525258063959× 10−7 2.0798564005033283 0.04146018498996353947411111418 11.33 s

(4, 6) 2.2532402360440276× 10−7 1.9152197502002851 0.04068154455417322924736414453 26.17 s

(4, 7) 4.5949729863572216× 10−10 2.1715368022411817 0.039930492204807836160482736 57.81 s

(4, 8) 1.0× 10−10 2.0850477418274505 0.03940186337768109168052715 1 m 50.67 s

(4, 9) 1.1000000000000001× 10−10 1.9431916522110496 0.03904101682115103412640577 2 m 56.85 s

(4, 10) 1.4641000000000004× 10−10 1.8118057787224227 0.03878706648777228376778042 4 m 19.01 s

(4, 11) 1.1000000000000001× 10−10 1.7422008610746525 0.03860488005277868646284047 6 m 21.54 s

(4, 12) Failed - - -

(3, 4) 1.2527829399838528× 10−6 2.8164262707985448 0.04401656469212630934379731982 3.88 s

(3, 5) 5.8443248730331463× 10−7 2.4889023211163482 0.042811448911760066321959989476 9.41 s

(3, 6) 3.6288659325512687× 10−7 2.2711479488006821 0.042214116450095999039058911502 20.76 s

(3, 7) 2.2532402360440276× 10−7 2.1201089281490533 0.04177319917938102152715466201 39.47 s

(3, 8) 3.684227838451178× 10−8 2.1300729396508551 0.04140183498320404528395814903 1 m 22.44 s

(3, 9) 1.3310000000000004× 10−10 2.4057492533283767 0.0411075733983136270292957 2 m 27.18 s

(3, 10) 5.5599173134922393× 10−10 2.1386518033144264 0.04088891465294438545496233 3 m 16.68 s

(3, 11) 1.4641000000000004× 10−10 2.102567451906797 0.040731730868847683763463577 5 m 9.42 s

(3, 12) Failed - - -

(2, 4) 1.8341995024303595× 10−7 3.5400444623271277 0.0526390968035386017126736797233 3.65 s

(2, 5) Failed - - -

Remark 5.7. The statement “Failed” in Table 3 comes from the failure of Step 2 in Algorithm
2. That is, the matrix A(·) could not be validated to be negative definite, although corresponding
equilibria admit only eigenvalues with negative real parts (at least in the numerical sense). This
might be caused by the change of eigenvalue distributions of matrices Df(·) via their symmetriza-
tions. As long as we have tried, validations have been failed (d,N) = (4, 13), (4, 14) by the same
reason. As for the case (d,N) = (4, 15), we have failed computation of eigenvalues even in the
non-rigorous sense.

On the other hand, several eigenvalues of Df(·) at equilibria are actually accumulated in the
numerical sense, which implies that the computed eigenvectors may be linearly dependent. In such
a case, we cannot apply the eigenmatrix diagonalizing the Jacobian matrix to determining the
matrix Y in Proposition 4.2. Instead, we apply the Schur decomposition of the Jacobian matrix
to checking eigenvalues, and to determining Y ; Y = I, as indicated in Remark 4.3.

The similar cases occur for the system (FvKS) with quasi-parabolic compactifications.
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5.3.2 Quasi-parabolic compactification

Let
f̃j(x1, · · · , x2N ) := κ−(1+αj)

para f̃j(κ
2x1, · · · , κ2xN , κxN+1, · · · , κx2N ).

Then we have

f̃1 =
r1−d
1

h

(
rd−1
1+ 1

2

ũ2 − ũ1

h

)
κ−1
para −

r1−d
1

h

(
rd−1
1+ 1

2

ṽ2 − ṽ1
h

ũ1

)
,

f̃j =
r1−d
j

h

(
rd−1
j+ 1

2

ũj+1 − ũj

h
− rd−1

j− 1
2

ũj − ũj−1

h

)
κ−1
para −

r1−d
j

h

(
rd−1
j+ 1

2

ṽj+1 − ṽj
h

ũj − rd−1
j− 1

2

ṽj − ṽj−1

h
ũj−1

)
,

(j = 2, · · · , N − 1)

f̃N =
r1−d
N

h

(
−rd−1

N− 1
2

ũN − ũN−1

h

)
κ−1
para −

r1−d
N

h

(
−rd−1

N− 1
2

ṽN − ṽN−1

h
ũN

)
,

and

f̃N+1 =
r1−d
1

h

(
rd−1
1+ 1

2

ṽ2 − ṽ1
h

)
κ−1
para − ṽ1κ

−1
para + ũ1,

f̃N+j =
r1−d
j

h

(
rd−1
j+ 1

2

ṽj+1 − ṽj
h

− rd−1
j− 1

2

ṽj − ṽj−1

h

)
κ−1
para − ṽjκ

−1 + ũj ,

(j = 2, · · · , N − 1)

f̃2N =
r1−d
N

h

(
−rd−1

N− 1
2

ṽN − ṽN−1

h

)
κ−1
para − ṽNκ−1

para + ũN .

Recall that the desingularized vector field associated with the vector field y′ = f(y) on R2N

with quasi-parabolic compactification of type α is (3.7). The sum G(x) :=
∑2N

j=1

x
2βj−1

j

αj
f̃j(x) is

necessary to be computed. Now we have

N∑
j=1

x
2βj−1
j

αj
f̃j(x) =

N∑
j=1

ũj

2
f̃j(x)

=
1

2h2

N−1∑
j=1

rd−1
j+ 1

2

{−r1−d
j+1 ũj+1 + r1−d

j ũj} · {κ−1
para(ũj+1 − ũj)− (ṽj+1 − ṽj)ũj},

2N∑
j=N+1

x
2βj−1
j

αj
f̃j(x) =

N∑
j=1

ṽ3j f̃N+j(x)

=
κ−1
para

h2

N−1∑
j=1

rd−1
j+ 1

2

{−r1−d
j+1 ṽ

3
j+1 + r1−d

j ṽ3j }(ṽj+1 − ṽj)− κ−1
para

N∑
j=1

ṽ4j +

N∑
j=1

ṽ3j ũj .
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Therefore we have

G(x) =
1

2h2

N−1∑
j=1

rd−1
j+ 1

2

{−r1−d
j+1 ũj+1 + r1−d

j ũj} · {κ−1
para(ũj+1 − ũj)− (ṽj+1 − ṽj)ũj}

+
κ−1
para

h2

N−1∑
j=1

rd−1
j+ 1

2

{−r1−d
j+1 ṽ

3
j+1 + r1−d

j ṽ3j }(ṽj+1 − ṽj)− κ−1
para

N∑
j=1

ṽ4j +

N∑
j=1

ṽ3j ũj . (5.12)

Summarizing these arguments, we have the concrete form of the desingularized vector field:

Lemma 5.8. The desingularized vector field for (FvKS) with the quasi-parabolic compactification
of type α is the following:

dũi

dτpara
=

1

4

1 + 3

N∑
j=1

(ũ2
j + ṽ4j )

 f̃i(x)− 2ũiG(x), i = 1, · · · , N,

dṽi
dτpara

=
1

4

1 + 3

N∑
j=1

(ũ2
j + ṽ4j )

 f̃N+i(x)− ṽiG(x), i = 1, · · · , N,

where x = (x1, · · · , x2N ) ≡ (ũ1, · · · , ũN , ṽ1, · · · , ṽN ) and G(x) is given in (5.12).

Our concerning blow-up solution is a trajectory of the desingularized vector field asymptotic to
an equilibrium on the horizon {p(x) = 1}, which generally depends on (d,N), while it corresponds
to a point validated in Section 5.3.1. Following Algorithm 1, we validate global trajectories for
the vector field in Lemma 5.8 asymptotic to E = ∂D. The initial data are set as (5.11) with
application of Tpara. As for computations of κ(y), we have applied the Krawczyk method (e.g.,
[22]) to F (κ; y) = κ4−κ3−p(y)4 = 0 appeared in Lemma 2.9. Final validated results are collected
in Table 4.

5.3.3 Final remark: Scalings for (FvKS)

The scaling derived in Lemma 5.5 does not actually reflect the scaling in the original Keller-Segel
system (5.8). Indeed, the following simpler system

ut = ∆u−∇ · (u∇v), x ∈ Ω, t > 0,
vt = ∆v + u, x ∈ Ω, t > 0,
∂u
∂ν = ∂v

∂ν = 0, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(5.13)

namely in the absence of the term “ − v” in the second equation, possesses the following scaling
invariance:

uλ(x, t) := λ2u(λx, λ2t), vλ(x, t) := v(λx, λ2t), λ > 0. (5.14)

In particular, the value of v is not scaled, which is different from the type derived in Lemma 5.5.
We can consider another scaling to (FvKS) regarding the grid size parameter h as an independent
variable. Actually, we have the following scaling law for (FvKS), which will reflect the scaling
(5.14).
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Table 4: Validated results for (FvKS) using the quasi-parabolic compactification: numerical vali-
dations prove x(τpara,N ) ∈ intN and (4.5) yields the inclusion of the blow-up time tpara,max.
(d,N) ϵ τpara,N tpara,max Exec. time

(4, 4) 1.5389933993880384× 10−7 2.5104000513035319 0.041635154750508511002136609429 1 m 52.82 s

(4, 5) 9.5559381772732721× 10−8 2.3018259253322216 0.041460225199701329149021090166 4 m 00.40 s

(4, 6) 5.9334857761040084× 10−8 2.151636139653439 0.04068156508844245825425984681 8 m 32.33 s

(4, 7) 1.1739085287969579× 10−8 2.1158872071025688 0.0399304991158424352091754095 15 m 39.75 s

(4, 8) 1.6105100000000006× 10−10 2.2551921883785618 0.039401863463992299359373755 30 m 21.43 s

(4, 9) 1.4641000000000004× 10−10 2.1389222924223637 0.03904101689900065001699031 52 m 56.17 s

(4, 10) Failed - - -

(3, 4) 2.2532402360440276× 10−7 3.1345969238600971 0.044016898408608799358467806576 1 m 21.04 s

(3, 5) 1.2718953713950728× 10−7 2.8105206084304078 0.042811795404836206328397618989 2 m 49.74 s

(3, 6) Failed - - -

(2, 4) Failed - - -

Lemma 5.9. Regard h as an independent variable with trivial time evolution dh/dt = 0. Then
the system (FvKS) is asymptotically quasi-homogeneous of the following type and order 3:

α = (2 . . . , 2︸ ︷︷ ︸
N

, 0 . . . , 0︸ ︷︷ ︸
N

,−1)

with natural extension of type for nonpositive integers. In other words, (FvKS) is asymptotically
quasi-homogeneous under the scaling ui 7→ s2ui, vi 7→ vi for i = 1, · · · , N and h 7→ s−1h.

The authors have tried computing trajectories asymptotic to the horizon (for directional com-
pactifications) with the above scaling, but they could find no such trajectories. Indeed, the
temporal-spatial scaling (5.14) transforms blow-up solutions for (5.13) to bounded solutions. Cor-
respondingly, divergent solutions of the corresponding discretized system can tend to points away
from the horizon, and hence compactification approach is not effective in this case. Instead, the
scaling h 7→ s−1h has a potential to link a rescaling algorithm for numerics of partial differential
equations (e.g. [2]).

Conclusion

In the present paper, we have derived a numerical validation procedure of blow-up solutions for
vector fields with asymptotic quasi-homogeneity at infinity. Our proposing numerical validation
methodology is essentially the same as the previous study by authors and their collaborators [21]
except the mathematical formulation of compactifications as well as time-variable desingulariza-
tions. We have applied quasi-homogeneous compactifications, in particular quasi-parabolic and
directional ones, to describing the infinity so that the desingularized vector field for asymptotically
quasi-homogeneous ones can appropriately describe dynamics at infinity.
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We have also introduced a new quasi-homogeneous compactification called quasi-parabolic one,
which is an alternative of the quasi-Poincaré compactification [16]. This compactification deter-
mines a global chart unlike directional compactifications, and overcomes the lack of smoothness
of desingularized vector fields at infinity which arise in cases of Poincaré-type compactifications.
The former property enables us to validate blow-up solutions through sign-changing trajectories
(Section 5.1), and the latter enables us to apply our validation procedure to asymptotically quasi-
homogeneous vector fields (Sections 5.2 and 5.3). Effectiveness of directional compactifications
towards validation of blow-up solutions possessing a component with identical sign during time
evolutions is demonstrated. Quasi-homogeneous compactifications such as directional and admis-
sible quasi-homogeneous ones will open the door to numerical validations of blow-up solutions for
various (asymptotically) polynomial vector fields including finite dimensional approximations of
systems of partial differential equations.
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A Schur decompositions

In this section we review Schur decompositions of squared matrices.

Proposition A.1 (Schur decomposition, e.g., [11]). Let A ∈ Mn(C): complex n×n matrix. Then
there exists a unitary matrix Q ∈ U(n) such that

QHAQ = T ≡ D +N,

where QH is the Hermitian transpose of Q, D = diag(λ1, · · · , λn) and N ∈ Mn(C) is strictly upper
triangular. Furthermore, Q can be chosen so that the eigenvalues λi appear in any order along the
diagonal. We shall call T a Schur normal form of A.

When we treat all computations in real floating number or interval arithmetic, the real version
of Schur decompositions can be applied.

Proposition A.2 (Real Schur decomposition, e.g., [11]). Let A ∈ Mn(R): real n×n matrix. Then
there exists an orthogonal matrix Q ∈ O(n) such that

QTAQ = T ≡


R11 R12 · · · R1m

0 R22 · · · R2m

...
...

. . .
...

0 0 · · · Rmm

 ,

where each Rii is either a 1× 1 or a 2× 2 matrix having complex conjugate eigenvalues. We shall
call T a real Schur normal form of A.
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A merit of Schur decompositions is that we can apply it to arbitrary square matrices. In
particular, change of coordinates via Schur decompositions can be realized no matter what the
multiplicities of any eigenvalues are.

B Concrete calculations of an upper bound of tmax with
quasi-parabolic compactifications

In this section, we consider the rigorous validation of the maximal existence time

tpara,max =

∫ ∞

0

κpara(y)
−k

(
1− 2c− 1

2c
κpara(y)

−1

)
dτpara

of solution trajectories with quasi-parabolic compactifications and computer assistance. First of
all, we compute the following integral representing the time of integration of computed trajectory
for desingularized vector fields in t-timescale in advance:

tpara,N =

∫ τpara,N

0

(
1− p(x(τpara))

2c
)k (

1− 2c− 1

2c

(
1− p(x(τpara))

2c
))

dτpara.

As mentioned in Section 4.3, the estimate of |1 − p(x)2c| is essential to computation of an upper
bound Cn,α,N (L). At first, we derive the estimate with the type α = (1, 2) and c = 2 as an example.
Let x∗ = (x∗

1, x
∗
2) ∈ E and assume that a Lyapunov function L(x) is validated in a vicinity of x∗.

Then

x4
1 + x2

2 =(x1 − x∗
1 + x∗

1)
4 + (x2 − x∗

2 + x∗
2)

2

=(x1 − x∗
1)

4 + 4(x1 − x∗
1)

3x∗
1 + 6(x1 − x∗

1)
2(x∗

1)
2 + 4(x1 − x∗

1)(x
∗
1)

3 + (x∗
1)

4

+ (x2 − x∗
2)

2 + 2(x2 − x∗
2)x

∗
2 + (x∗

2)
2.

Now p(x∗) = 1 holds since x∗ ∈ E . Thus we have∣∣1− p(x)2c
∣∣ =∣∣∣(x1 − x∗

1)
4 + 4(x1 − x∗

1)
3x∗

1 + 6(x1 − x∗
1)

2(x∗
1)

2 + 4(x1 − x∗
1)(x

∗
1)

3

+ (x2 − x∗
2)

2 + 2(x2 − x∗
2)x

∗
2

∣∣∣
=

∣∣∣∣[4(x∗
1)

3 2x∗
2

] [ x1 − x∗
1

x2 − x∗
2

]
+
[
6(x∗

1)
2 1

] [ (x1 − x∗
1)

2

(x2 − x∗
2)

2

]
+ [4x∗

1 0]

[
(x1 − x∗

1)
3

(x2 − x∗
2)

3

]
+ [1 0]

[
(x1 − x∗

1)
4

(x2 − x∗
2)

4

]∣∣∣∣
≤
∥∥∥∥[ 4(x∗

1)
3

2x∗
2

]∥∥∥∥ ‖x− x∗‖+max
{
6(x∗

1)
2, 1

}
‖x− x∗‖2 + |4x∗

1| ‖x− x∗‖3 + ‖x− x∗‖4 .

By ‖x− x∗‖ ≤ (c1L)
1/2

followed by the value of Lyapunov function L(x), we obtain∣∣1− p(x)2c
∣∣ ≤ {

16(x∗
1)

6 + 4(x∗
2)

2
}1/2

(c1L)
1/2

+max
{
6(x∗

1)
2, 1

}
c1L+ |4x∗

1| (c1L)
3/2

+ (c1L)
2

=: Cn,α,N (L).
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Finally we obtain an upper bound of tpara,max as follows:

tpara,max = tpara,N +

∫ ∞

τpara,N

(
1− p(x(τpara))

2c
)k (

1− 2c− 1

2c

(
1− p(x(τpara))

2c
))

dτpara

= tpara,N +

∫ ∞

τpara,N

(
1− p(x(τpara))

2c
)k ( 1

2c
+

2c− 1

2c
p(x(τpara))

2c

)
dτpara

≤ tpara,N +

∫ ∞

τpara,N

∣∣1− p(x(τpara))
2c
∣∣k dτpara

≤ tpara,N +
1

cÑc1

∫ L(x(τpara,N ))

0

Cn,α,N (L)k

L
dL,

where we have used the estimate dL
dτpara

≤ −cÑc1L along the trajectory {x(τpara)}, which follows

from the inequality of Lyapunov functions. The positive constants cÑ , c1 are shown in [21].

Next we show an estimate of |1−p(x)2c| with compactifications of general type α = (α1, . . . , αn).
As in the previous case, let x∗ = (x∗

1, · · · , x∗
n) ∈ E and assume that a Lyapunov function L(x) is

validated in a vicinity of x∗. Then

∣∣1− p(x)2c
∣∣ = ∣∣∣∣∣1−

n∑
i=1

x2βi

i

∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=1

(x∗
i )

2βi −
n∑

i=1

(xi − x∗
i + x∗

i )
2βi

∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i=1

2βi∑
j=1

(
2βi

j

)
(xi − x∗

i )
j
(x∗

i )
2βi−j

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
max{2βi}∑

j=1

vTj


(x1 − x∗

1)
j

(x2 − x∗
2)

j

...
(xn − x∗

n)
j


∣∣∣∣∣∣∣∣∣ ,

where vj ∈ Rn is the vector given by

(vj)i =

{ (
2βi

j

)
(x∗

i )
2βi−j

(j ≤ 2βi),

0 (j > 2βi).
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Thus we have

∣∣1− p(x)2c
∣∣ =

∣∣∣∣∣∣∣∣∣
max{2βi}∑

j=1

vTj


(x1 − x∗

1)
j

(x2 − x∗
2)

j

...
(xn − x∗

n)
j


∣∣∣∣∣∣∣∣∣

≤ ‖v1‖‖x− x∗‖+
max{2βi}∑

j=2

‖vj‖∞‖x− x∗‖j

≤ ‖v1‖ (c1L)1/2 +
max{2βi}∑

j=2

‖vj‖∞ (c1L)
j/2

=: Cn,α,N (L),

where we have used ‖x− x∗‖ ≤ (c1L)
1/2

.

If k = 1, which is the case shown in Section 5.3, then an upper bound estimate of tmax is
realized as follows, for example:

tpara,max ≤ tpara,N +
1

cÑc1

∫ L(x(τpara,N ))

0

Cn,α,N (L)

L
dL

= tpara,N +
1

cÑ

∫ L(x(τpara,N ))

0

‖v1‖ (c1L)−1/2
+

max{2βi}∑
j=2

‖vj‖∞ (c1L)
j/2−1

 dL

= tpara,N +
1

cÑ

2‖v1‖c−1/2
1 L(x(τpara,N ))1/2 +

max{2βi}∑
j=2

2

j
‖vj‖∞c

j/2−1
1 L(x(τpara,N ))j/2

 .

C Proofs of Statements

C.1 Proof of Proposition 2.4

Now compute the Jacobian matrix of T for verifying its bijectivity. Direct computations yield

∂xi

∂yj
= κ−αi

(
δij − κ−1αiyi

∂κ

∂yj

)
with the matrix form

J =

(
∂xi

∂yj

)
i,j=1,··· ,n

= Aα

(
In − κ−1yα(∇κ)T

)
,

Aα = diag(κ−α1 , · · · , κ−αn), yα = (α1y1, · · · , αnyn)
T .

We following arguments in [8], for any (column) vectors y, z ∈ Rn, to have

(In + βyzT )(In + δyzT ) = In + (β + δ)yzT + βδyzT yzT

= In + (β + δ + βδ〈z, y〉)yzT ,
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so In + δyzT = (In + βyzT )−1 if δ = −β/(1 + β〈z, y〉).
In this case, we choose β = −κ−1, y = yα, z = ∇κ and have(

∂yj
∂xi

)
=

(
∂xi

∂yj

)−1

=

(
In − 1

κ− 〈yα,∇κ〉
yα(∇κ)T

)
A−1

α

By (A3) we have κ > 〈yα,∇κ〉, which indicates that the transformation T as well as T−1 are
well-defined and C1 locally bijective including y = 0. On the other hand, the map T maps any
one-dimensional curve y = (rα1v1, · · · , rαnvn), 0 ≤ r < ∞, with some fixed direction v ∈ Rn, into
itself (cf. [16]). For continuous mappings from R to R, local bijectivity implies global bijectivity.
Consequently, (A3) guarantees also the global bijectivity of T into T (Rn) ⊂ D. Finally we prove
that T is onto. First let y ∈ Rn \ {0}. Then the correspondence

ι : yi 7→
yi

p(y)αi

maps Rn \ {0} onto the set {p(y) = 1}. If p(y) = 1 then κ(y) attains a constant κ1 > 1 from
(A0). From κ(y)2cp(x)2c = p(y)2c, we know that the compactification T maps the set {p(y) = 1}
onto the set {x ∈ D | p(x) = 1/κ1}. In particular, the set Rn \ {0} is mapped onto {x ∈ D |
p(x) = 1/κ1} via the map T ◦ ι. Therefore the surjectivity of T is reduced to that on the ray
Cy = {(rα1y1, · · · , rαnyn) | 0 ≤ r < ∞} for each (y1, · · · yn) ∈ Rn with p(y) = 1. By definition
T (Cy) is

T (Cy) =

{
(x1, · · · , xn) =

(
rα1

q(r)α1
y1, · · · ,

rαn

q(r)αn
yn

)
| 0 ≤ r < ∞

}
.

From κ(y)2cp(x)2c = p(y)2c, we have p(x) = r/q(r) on T (Cy). From (A0) and (A1), for any value
cx ∈ (0, 1), we can choose the value r ∈ (0, 1) so that r/q(r) = cx. Correspondingly we can define y
from x on T (Cy). Obviously, T (0) = 0 and hence T : Rn → D is onto and the proof is completed.

Note that the condition (A2) is not actually used in the present argument.

C.2 Proof of Lemma 3.1

Suppose that y∗ is an equilibrium of (2.1), i.e., f(y∗) = 0. Then the right-hand side of (3.1)
obviously vanishes at the corresponding x∗.

Conversely, suppose that the right-hand side of (3.1) vanishes at a point x ∈ D, p(x) < 1:
namely,

f(κx)− κ(y)−1〈∇κ, f(κx)〉yα = 0.

Multiplying ∇κ, we have
〈∇κ, f(κx)〉

(
1− κ(y)−1〈∇κ, yα〉

)
= 0.

Due to (A3), we have |κ(y)−1〈∇κ, yα〉| < 1 and hence 〈∇κ, f(κx)〉 = 0. Thus we have f(y) =
f(κx) = 0 by the assumption.
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C.3 Proof of Lemma 3.2

By admissibility (A1)-(A2), we have

(∇κ(y))i ∼
1

αi

y2βi−1
i

κ(y)2c−1
=

1

αi

καi(2βi−1)x2βi−1
i

κ2c−1
=

1

αi

x2βi−1
i

καi−1
as p(y) → ∞,

where we used the condition αjβj ≡ c for all j from (2.2). Therefore the vector field (3.3) near
infinity becomes

x′
i ∼ κkf̃i(x)− αixi

n∑
j=1

1

αj

x
2βj−1
j

καj−1
κk+αj−1f̃j(x)

= κk

f̃i(x)− αixi

n∑
j=1

x
2βj−1
j

αj
f̃j(x)

 as κ → ∞. (C.1)

Since f̃i is O(1) as κ → ∞, then right-hand side of (C.1) is O(κk) as κ → ∞.

C.4 Proof of Theorem 3.7

The property b = sup{t | y(t) is a solution of (2.1)} corresponds to the property that

sup{τ | x(τ) = T (y(t)) is a solution of (3.5) in the time variable τ} = ∞.

Indeed, if not, then τ → τ0 < ∞ and limτ→τ0−0 x(τ) = x∗ as t → b− 0. The condition x(τ) = x∗
is the regular initial condition of (3.5). The vector field (3.5) with the new initial point x(τ) = x∗
thus has a locally unique solution x(τ) in a neighborhood of τ0, which contradicts the maximality
of b. Therefore we know that τ → +∞ as t → b − 0. Since limτ→∞ x(τ) = x∗, then x∗ is an
equilibrium of (3.5) on ∂D. The similar arguments show that t → a + 0 corresponds to τ → −∞
and that the same consequence holds true.

C.5 Proof of Proposition 3.9

Each f̃j(x) given by (3.2) with κ = κpara is C1 on D, since all terms of f̃j are multiples of powers
of (1 − p(x)2c) and smooth asymptotically quasi-homogeneous terms in fj(y). Consequently, we
know that the right-hand side of (3.7) is C1 on D.
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