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Abstract
Multi-task learning (MTL) is a methodology where we simultaneously estimate mul-

tiple related tasks to improve their estimation and prediction accuracy. In the light of

statistical modeling, MTL methods are formulated as a joint optimization problem with

the sum of the loss functions coming from multiple datasets and regularization terms

facilitating the transfer of common information among tasks. In this dissertation, we

consider regression problems as estimation tasks and the situation where the observed

task set consists of tasks with heterogeneous characteristics. MTL methods treating

this situation are based on clustering, which groups the task set into some homogeneous

clusters by their latent common characteristics. This enables us to improve estimation

accuracy by transferring common information within each cluster. However, existing

clustering-based MTL methods typically rely on the fused regularization term, which

still causes the incorrect transfer of information among tasks with different character-

istics.

To overcome this problem, we propose two novel multi-task learning methods. First,

we propose an MTL method using regularization terms based on convex clustering. This

method separates the parameters into those for regression models and task clustering.

While the regularization term fuses the parameters for task clustering, the regression

parameters are not directly fused. Therefore, we can expect to reduce the incorrect

transfer of information for the regression parameters. Second, we propose an MTL

method that simultaneously estimates cluster structure and detects outlier tasks with

unique characteristics. To reduce the contamination in the cluster estimation caused

by outlier tasks, we introduce parameters representing outlier components within the

task. These parameters are selected from regularization terms inducing group sparsity.

Furthermore, we also construct the relationship between the formulation given by outlier

parameter selection and the M -estimator in the context of robust statistics. This gives

an interpretation of robustness towards outlier tasks. The effectiveness of the proposed

methods is demonstrated through numerical simulations and application to the real

dataset.



要約
マルチタスク学習とは，複数の推定タスクが存在する場合において，それらの統合

に基づき個々のタスクの推定精度を改善する方法論である．統計的モデリングの観点に

おいては，マルチタスク学習は複数のタスクに由来する損失関数の和に対して，タスク

間での情報の共有を誘引する正則化項および制約条件を課した最適化問題として定式化

される．本論文では，推定タスクに回帰問題を想定し，得られているタスク集合に異質

な特徴を持つタスクが混在している状況に着目する．このような状況においては，クラ

スタリングに基づきタスク集合を同一の特徴を有するクラスタへ分類することにより，

推定精度を改善することが可能である．具体的には，連結型の正則化項によって類似す

るタスクのパラメータを統合することにより，タスクに対するクラスタリングを実行す

る．しかし，既存の連結型の正則化に基づく手法では，類似性が低いタスク間に対して

もパラメータが統合される働きが生じ，推定精度の悪化を招く．

本論文では，異なる特徴を有するタスク間における統合を軽減するため，二つの新

たな正則化法に基づくマルチタスク学習手法を提案する．まず一つ目は，凸クラスタリ

ングに基づくマルチタスク学習手法である．この手法では，個々のタスクに関しての回

帰係数に加え，タスクのクラスタリングに用いる重心パラメータを導入する．重心パラ

メータは連結型の正則化によりタスク間で統合される一方，各タスクの回帰係数は他タ

スクの回帰係数と直接統合されない．これにより，各タスクの回帰係数が異なる特徴を

有するクラスタから受ける影響を軽減することが可能となる．二つ目は，タスクに関す

るクラスタ構造の推定と，独自性が大きい外れ値タスクの検出を同時に行う手法であ

る．この手法では，外れ値タスクがクラスタ構造の推定に及ぼす影響を軽減するため，

各タスクに対して外れ値パラメータを導入する．外れ値タスクは，この外れ値パラメー

タを内包するか否かで判断することができ，パラメータの選択はグループ正則化法によ

り実行される．さらに，本手法と，ロバスト推定におけるM -推定量に基づく方法との

関係についても述べる．提案した手法に対して，モンテカルロ・シミュレーションと実

データへの適用を通じて有効性を示す．
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Chapter 1

Introduction

Recent improvements in computational capabilities and increased attention to statis-

tics and machine learning have led to rapid growth in large-scale databases, such as

the Federal Reserve Economic Data (FRED) in economics and the National Center for

Biotechnology Information (NCBI) in life sciences. Machine learning approaches, par-

ticularly deep learning, have successfully leveraged those extensive datasets for remark-

able prediction accuracy. However, similar advancements in statistical methodology

have been comparatively limited. Developing more sophisticated statistical frameworks

utilizing large-scale data would enable us to extract reliable and interpretable informa-

tion efficiently.

Multi-task learning (MTL) (Caruana, 1997) is a general framework of statistics and

machine learning where we simultaneously learn multiple related tasks so that each

task leverages information from other tasks. Because, in real problems, related tasks

tend to have the same common information, MTL can lead to better performance than

independently estimating each task (Zhang and Yang, 2021). Because of this advan-

tage, MTL has been applied to many problems in various fields of research, such as

disease progression prediction (Zhou et al., 2011b), biomedicine (Li et al., 2018), trans-

portation (Deng et al., 2017), image annotation (Fan et al., 2008), speech recognition
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(Parameswaran and Weinberger, 2010), and so on.

From a statistical modeling perspective, MTL methods are formulated as an opti-

mization problem that integrates multiple statistical models corresponding to multiple

datasets and prior information about relationships among models. This information is

incorporated as a regularization term or constraint for model parameters to transfer the

information among tasks. Thus, the effectiveness of MTL methods critically depends

on how these task relationships are modeled. When tasks exhibit the assumed rela-

tionships, MTL can leverage shared information to improve estimation efficiency and

generalization performance. In general, MTL methods are roughly classified into two

main categories according to the assumption of task relationships. The first is to as-

sume that all tasks share a common structure. This approach is achieved by estimating

low-rank representation (Ando and Zhang, 2005), sparsity pattern (Obozinski et al.,

2010), and so on. For example, deep learning models with MTL are often formulated

as sharing the same hidden parameters among tasks and learning them. In some prac-

tical situations, it is difficult to assume that all tasks have the same structure. When

tasks are unrelated or weakly related, forcing information sharing among them can be

detrimental. The second category addresses this issue by assuming that tasks can be

classified into some latent groups sharing common characteristics (Kang et al., 2011).

MTL methods based on this assumption are achieved by clustering the parameters of

models. For instance, Argyriou et al. (2007) introduced the k-means algorithm for task

clustering, while several other studies (Zhong and Kwok (2012); Yamada et al. (2017);

He et al. (2019); Dondelinger et al. (2020)) utilized fused regularization techniques such

as fused lasso (Tibshirani et al., 2005) and network lasso (Hallac et al., 2015). However,

existing methods based on the clustering approach often suffer from negative transfer

between irrelevant tasks, which worsens the estimation and prediction accuracy of each

task.

In this thesis, we address two challenges in clustering-based MTL methods. First,
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we examine the limitations of fused regularization approaches to task clustering. While

these methods offer the advantage of convex optimization with guaranteed global op-

tima, their regularization terms can force undesirable shrinkage between parameters of

tasks that should belong to different clusters, leading to incorrect information transfer.

To address this, we propose Multi-Task Learning via ConVeX clustering (MTLCVX),

which introduces a novel regularization based on convex clustering. MTLCVX shrinks

centroid parameters representing cluster centers while estimating model parameters

around these centroids. This reduces negative transfer between tasks while maintain-

ing the benefits of convex optimization.

Second, we tackle the challenge of outlier tasks, which are either highly unique or

share no common characteristics with others. Traditional clustering techniques in MTL

attempt to assign all tasks to clusters, which can lead to deteriorated clustering perfor-

mance and misspecified relationships when outlier tasks are present. Although, some

robust MTL methods (Chen et al., 2011; Gong et al., 2012) have been proposed to

handle these outlier tasks, they typically impose tasks to have a single shared structure

and outlier components. Furthermore, they often employed group lasso regulariza-

tion (Yuan and Lin, 2006) that may overly constrain outlier parameters. To overcome

these limitations, we propose Multi-Task Learning with Robust Regularized Cluster-

ing (MTLRRC), which simultaneously performs task clustering and outlier detection

through robust regularization terms based on robust convex clustering (Quan and Chen,

2020). MTLRRC extends this framework to incorporate non-convex and group-sparse

penalties, enabling effective outlier identification. We establish connections between our

approach and multivariate M -estimators, which provide an intuitive interpretation of

the robustness of MTLRRC against outlier tasks. The method is implemented through

a modified alternating direction method of multipliers (ADMM; (Boyd et al., 2011)).

Those comprehensive theoretical and empirical convergence analyses are also provided.

The remainder of this thesis is structured as follows.
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• Chapter 2 describe the existing multi-task learning methods. First, we explain

the general problem setup of MTL. Then, we introduce the main approaches and

their specific methods. Moreover, some relationships within them are also given.

• Chapter 3 describes the convex clustering and the estimation algorithm.

• Chapter 4 discusses the problem caused by the fused regularization term, and the

multi-task learning method via convex clustering is proposed. The effectiveness of

the proposed method is shown through Monte Carlo simulations and applications

to real data.

• Chapter 5 discusses the clustering of tasks with outlier tasks, and a robust MTL

method is proposed. The non-convex extension of the robust convex clustering

and the connection to the multivariate M -estimator is also given. The effective-

ness of the method is demonstrated through simulation studies and application

to real data.

• Chapter 6 provides concluding remarks and discusses future research directions.

Notations

In this thesis, we use capital letters to represent matrices. For a matrix Z ∈ Ra×b,

we denote the row vectors by boldface small letters with subscripts zi and the column

vectors by boldface small letters with superscripts zj, such that Z = (z1, . . . , za)
> =

(z1, . . . , zb). For a vector z = (z1, . . . , za) ∈ Ra, we define the Ll
q-norm as ‖z‖lq =

(
∑a

i=1 |zi|q)
l
q . When l = 1, we may omit the superscript for simplicity. For a matrix

Z ∈ Ra×b, we define:

• The row-wise Ll
q-norm (denoted as Ll

1,q-norm): ‖Z‖l1,q =
∑a

i=1 ‖zi‖lq.

• The column-wise Ll
q-norm (denoted as Ll

2,q-norm): ‖Z‖l2,q =
∑b

j=1 ‖zj‖lq.
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• The trace operator: tr(Z) =
∑a

i=1 Zii, (b = a).

• The Frobenius norm: ‖Z‖F = tr(Z>Z)1/2.

We denote the maximum eigenvalue by λ+(Z) and the strictly positive minimum eigen-

value by λ++(Z). Additionally, we define the vectorization operator as vec(Z) =

(z>1 , z
>
2 , . . . , z

>
a )

> ∈ Rab, and inner product as 〈·, ·〉 that represents a>b for vectors

and tr(A>B) for matrices.

We denote “subject to” as “s.t.” for the abbreviation in equations and minimization

problems. “Eq.” and “Eqs.” are used for abbreviations of “equation” and “equations”,

respectively.

5



Chapter 2

Multi-task learning with

generalized linear models

Multi-task learning is a general framework that includes a wide range of methods,

which aim to learn or estimate group-specific parameters corresponding to multiple sets

of samples. For example, in statistics, multivariate regression and multi-class logistic

regression can be viewed as special cases of multi-task learning, because they have

parameter vectors for each pair of a feature’s response vector and a design matrix.

In this chapter, we first describe the general problem setup formulated as multiple

generalized linear models (GLMs), which we address through this thesis. Then, we

introduce several multi-task learning methods by classifying them into some approaches.

2.1 General problem setup

Suppose that we have T datasets. For each dataset m (m = 1, . . . , T ), we observed nm

pairs of data points {(xmi, ymi); i = 1, . . . , nm}, where xmi is a p-dimensional explana-

tory variables and ymi is the corresponding response variable following distribution in

the exponential family with mean µmi = E[ymi|xmi]. Let Xm = (xm1, . . . ,xmnm)
> ∈

Rnm×p be the design matrix, ym = (ym1, . . . , ymnm)
> ∈ Rnm be the response vector
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for dataset m, and n =
∑T

m=1 nm be the total number of samples. We assume that

each feature vector xmi is standardized to have zero mean and unit variance, which is

essential to compare the model parameters among tasks. The centered response vector

ym with zero mean is also assumed, when it is continuous.

Our goal is to estimate T generalized linear models (GLMs) simultaneously, which

take the form:

ηmi = g(µmi) = wm0 + x
>
miwm, i = 1, . . . , nm, m = 1, . . . , T, (2.1)

where wm0 is an intercept for m-th task, wm = (wm1, . . . , wmp)
> is a p-dimensional re-

gression coefficient vector for m-th task, ηmi is a linear predictor, and g(·) is a canonical

link function. We assume that all task’s response variables given by the explanatory

variables follow the same type of distribution expressed as

f(ymi|xmi; θ(xmi), φ) = exp

{
ymiθ(xmi)− b(θ(xmi))

a(φ)
+ c(ymi, φ)

}
,

where a(·), b(·), and c(·) are known functions that vary according to the distributions, φ

is a known dispersion parameter, and θ(·) is the natural parameter, which is expressed

as g(µmi) = θ(xmi).

Let W = (w1, . . . ,wT )
> ∈ RT×p be the regression coefficient matrix, and w0 =

(w10, . . . , wT0)
> ∈ RT be the intercept vector. To estimate T GLMs in (2.1) simultane-

ously, we formulate multi-task learning (MTL) methods as

min
w0,W

{
T∑

m=1

1

nm

L(wm0,wm) + Ω(W )

}
, (2.2)

s.t. W ∈ W ,

where L(·, ·) is a loss function derived from the negative log-likelihood of a GLM task,

Ω(·) is a regularization term that encourages sharing the information among tasks,

and W is a parameter space representing constraints that facilitate underlying task
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structure. When Ω(W ) = 0 and W = RT×p, Problem (2.2) is the same as independently

estimating ordinary GLMs.

When continuous response vectors ym ∈ Rnm are considered, the linear regression

is given by a(φ) = φ, φ = 1, and b(θ) = θ2

2
. The regression loss function is

L(wm0,wm) =
1

2
‖ym −Xmwm‖22. (2.3)

Note that the intercepts are excluded from the model without loss of generality. If only

a design matrix X = X1 = X2 = · · · = XT ∈ Rn0×p and its multiple response vec-

tors {ym ∈ Rn0 ;m = 1, . . . , T} are observed, Problem (2.2) becomes the optimization

problem of the multivariate regression:

min
W

{
1

2n
‖Y −XW>‖2F + Ω(W )

}
,

s.t. W ∈ W ,

where Y = (y1, . . . ,yT ) ∈ Rn0×T . Therefore, MTL methods can be applied to the

datasets usually analyzed by multivariate regression models. There is one different

aspect between the MTL setting and multivariate regression. In multivariate regression,

since a sample is observed as pairs of multivariate response and explanatory variables,

the correlations in response features and residuals can be taken into account for the

model estimation. For instance, the envelope models (e.g. Cook et al. (2010); Lee and

Su (2020)) use this information to restrict the parameter space W and gain efficiency

for the estimation of regression coefficients. On the other hand, samples differ between

tasks in the MTL setting, and the correlation information of responses does not exist.

When binary response vectors ym ∈ {0, 1}nm are considered, the logistic regression

is given by a(φ) = φ, φ = 1, and b(θ) = log(1 + eθ). The loss function of logistic

regression is

L(wm0,wm) = −
nm∑
i=1

{
ymi(wm0 +w

>
mxmi)− log{1 + exp (wm0 +w

>
mxmi)}

}
. (2.4)
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Similar to multivariate regression, MTL methods can also be applied to multi-class

logistic regression. Suppose that categorical response g taking values in G = {1, . . . , T}

are observed. Multi-class logistic regression is modeled as

Pr(g = k|x) = exp(wk0 +w
>
k x)∑T

m=1 exp(wm0 +w>
mx)

,

where wm0 and wm are intercept and a regression coefficient vector for m-th class. Let

Y be the T × n0 indicator response matrix with elements yki = I(gi = k). Then, the

negative log-likelihood is given by

L(w0,W ) = −
T∑

m=1

n0∑
i=1

{
ymi(wm0 +w

>
mxi)− log{1 + exp (wm0 +w

>
mxi)}

}
. (2.5)

By comparing Eqs. (2.4) and (2.5), the difference is only task indices of explanatory

variables. Therefore, we can apply MTL methods to multi-class logistic regression, and

the parameters are computed in the same way as multi-task binary logistic regression.

2.2 Low-rank approach

In the low-rank approach, the regression coefficient matrix W is assumed to have a

low-rank structure. In other words, a task’s regression coefficient vector is represented

as a linear combination of the other task’s regression coefficient vectors. By estimating

the low-rank structure, we can reduce the total number of parameters and the model

complexity.

Ando and Zhang (2005) proposed the following MTL method:

min
w0,W,U,Γ

T∑
m=1

{
1

nm

L(wm0,wm) + λ‖vm‖22
}
, (2.6)

s.t. wm = Γ>um + vm, m = 1, . . . , T, ΓΓ> = Ih,

where Γ is an h × p shared matrix, um ∈ Rh,vm ∈ Rp are latent task parameters, λ

is a regularization parameter with non-negative value, and h (< p) is a prespecified

9



non-negative integer. From the constraint, the regression coefficient vector wm is de-

composed into the task relation part spanned by shared orthogonal basis Γ with the

weight parameter um and task-specific part vm. By substituting vm = wm − Γ>um,

Problem (2.6) is reformulated as

min
w0,W,U,Γ

T∑
m=1

{
1

nm

L(wm0,wm) + λ‖wm − Γ>um‖22
}
,

s.t. ΓΓ> = Ih.

If we consider minimizing the problem concerning um, the optimal ûm = Γwm is given

by the first-order condition. Thus, we can reformulate the problem as

min
w0,W,Γ

{
T∑

m=1

1

nm

L(wm0,wm) + λ(‖W‖2F − tr(WΓ>ΓW>))

}
, (2.7)

s.t. ΓΓ> = Ih.

Then, this optimization problem can be solved by alternating optimization procedure,

which is done by alternately optimizing Problem (2.7) concerning (w0,W ) with fixed

Γ and Γ with fixed (w0,W ). In particular, the optimization problem concerning Γ is

represented as

max
Γ

tr(ΓW>WΓ>), s.t. ΓΓ> = Ih. (2.8)

This problem is the same formulation as in the principal component analysis (PCA),

where each task regression vector wm is considered as a sample. Therefore, the optimal

Γ̂ with fixed W is given by the h eigenvectors corresponding to the largest h eigenvalues

of the task covariance matrix W>W . Consequently, the problem jointly estimates a

low-rank orthogonal basis whose linear combination can predict all task responses by

minimizing task-specific part vm.

Because Problem (2.6) contains a non-convex optimization problem (2.8) for each

update of Γ, the alternative procedure is not guaranteed to find a global optima. To

address this problem, many MTL and multivariate regression methods (e.g. Argyriou

10



et al. (2006); Pong et al. (2010)) adopted the following formulation:

min
w0,W

{
T∑

m=1

1

nm

L(wm0,wm) + λ‖W‖∗

}
. (2.9)

Here, the second term is known as nuclear or trace norm regularization representing

‖W‖∗ =
∑min(T,p)

i=1 σi(W ), where σi(·) denote the i-th singular value of a matrix. Because

the nuclear norm regularization can be viewed as an L1-norm regularization for singular

values, some are estimated to have zero value, which also means the estimated Ŵ>Ŵ

become a low-rank matrix. Thus, Problem (2.9) is a convex relaxation of Ando and

Zhang (2005).

2.3 Sparse approach

Variable selection is a fundamental approach in statistical modeling that extracts useful

information from high-dimensional datasets. It is known that even in high dimensional

situations where n� p, it is possible to select the true meaningful variables and predict

the future response, if those variables are sufficiently sparse in the variables (e.g. Hastie

et al. (2015)). In general, if the value of the regression coefficient is zero, the variable is

considered meaningless, because the corresponding feature has no contribution to the

response variable. To estimate redundant regression coefficients to exactly zero, the

lasso (Tibshirani, 1996) is widely used in single-task learning settings, which take the

form:

min
w0,w

{
1

n
L(w0,w) + λ‖w‖1

}
.

By imposing L1-norm as the regularization term, the lasso shrinks the value of the

regression coefficients towards zero. Consequently, we can obtain a sparse solution con-

sisting of estimated meaningful variables. In the multi-task learning setting, multiple

regression coefficient vectors having the same features are considered. Intuitively, those

same variables may be useful between similar tasks. For example, consider an estima-

tion task of a handwritten word by a writer with features of pixels. There would be
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commonly used pixels and unused pixels among many writers, which may represent the

characteristics of the letter itself. Those important features would be found by selecting

a subset of commonly shared variables.

To select important variables with all tasks, Turlach et al. (2005) and Liu et al.

(2009) considered the following sparse MTL method:

min
w0,W

{
T∑

m=1

1

nm

L(wm0,wm) + λ‖W‖2,∞

}
. (2.10)

The second term is an L2,∞-norm regularization representing ‖W‖2,∞ =
∑p

j=1 max(|w1j|, . . . , |wTj|).

The L2,∞ regularization groups j-th variable across all tasks, and each maximum value

is regularized by the L1-norm. If the regression coefficient with the largest value in the

j-th variable is estimated to be zero, the same variables in other tasks also go to zero

value, simultaneously.

For the same motivation, Lounici et al. (2009) and Obozinski et al. (2010) proposed

the following MTL method:

min
w0,W

{
T∑

m=1

1

nm

L(wm0,wm) + λ‖W‖2,2

}
. (2.11)

The second term is an L2,2-norm regularization. This term also groups the j-th variable

by the L2-norm. This is a well-known method as group lasso (Yuan and Lin, 2006),

which estimates all variables in a group to be zero, when the value of L2-norm for the

group is below a certain threshold value. Consequently, this formulation induces the

column-wise sparsity concerning W , which is similar to Problem (2.10). These sparse

approaches have been extended in many ways to address various situations.

2.4 Clustering approach

The low-rank and the sparse approaches assume that all tasks are related to or have the

same structure. However, in a practical situation, tasks with different characteristics

12



may be included in the task set, whose existence is unknown before the analysis. Im-

posing the shared structure to them can be detrimental in the contaminated situation.

One solution is to group the task sets into those with a common structure, which can be

performed by clustering the tasks based on their parameters. In this thesis. we mainly

focus on this approach via fused regularization.

First, we describe the k-means method, which is well-known as a typical clustering

method. Suppose that p-dimensional n data points {xi; i = 1, . . . , n} are observed. We

predefine the number of groups C and attempt to classify these samples into distinctive

C homogeneous groups. Each group is summarized into a center of the group µc (c =

1, . . . , C) called a centroid. Each observation is assigned to the group with the closest

centroid.

To find the assignments of n samples into C groups, the procedure of k-means

method optimize the following minimization problem:

min
µc,Ic,c=1,...,C

C∑
c=1

∑
i∈Ic

‖xi − µc‖22, (2.12)

where Ic is a set of sample’s index that belongs to c-th cluster. The standard algorithm

of k-means method alternates the update of sample assignment Ic (c = 1, . . . , C) and

centroids µc (c = 1, . . . , C). The optimal µc with fixed Ic is given by µc =
1

|Ic|
∑

i∈Ic xi.

The optimal Ic is given by assigning the sample i into Ic with the closest µc. This pro-

cedure is guaranteed to find a local minimum of Problem (2.12). However, the solution

highly depends on the initial assignments and the number of possible combinations

grows exponentially with the number of samples. Therefore, reasonable clustering re-

sults may not always be obtained.

Next, we consider grouping T tasks into C groups with their characteristics. The

following MTL method based on the k-means (Zhou et al., 2011a) would be the most

basic formulation for this purpose:

min
w0,W

µc,Ic,c=1,...,C

{
T∑

m=1

1

nm

L(wm0,wm) + λ

C∑
c=1

∑
m∈Ic

‖wm − µc‖22

}
. (2.13)
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Here, Ic is a set of task’s index that belongs to m-th cluster. The second term is derived

from the objective function of the k-means method (2.12). The alternating procedure

is considered to optimize this problem. The updates of (w0,W ) with fixed (Ic,µc) are

given by optimizing the following minimization problem:

min
wm0,wm

{
1

nm

L(wm0,wm) + λ‖wm − µc‖22
}
, m ∈ Ic, c = 1, . . . , C.

Then, the problem is considered as ridge regression whose center is given by the task’s

centroid µc. The updates of (Ic,µc) with fixed (w0,W ) are given by the same procedure

of k-means methods by replacing a sample xi with a task’s parameter wm. Therefore,

each task’s parameters are estimated around its centroid, and those centroids are jointly

estimated based on the k-means method. In practice, this model may be rarely used.

The reason may be that the alternating estimation algorithm in this model does not

converge in most cases. However, it has interesting relationships with other multi-task

learning methods, as we will see later.

2.4.1 Multi-task learning based on fused regularization

In the context of the clustering approach, there are many studies based on the fused

regularization approach (e.g. Yamada et al. (2017); He et al. (2019); Dondelinger et al.

(2020)), which takes the form:

min
w0,W


T∑

m=1

1

nm

L(wm0,wm) + λ
∑

(m1,m2)∈E

rm1,m2‖wm1 −wm2‖lq

 , (2.14)

where rm1,m2 is a non-negative weight between m1-th and m2-th task and, E is a set

of task pairs (m1,m2). The second term is a group fused Ll
q-norm regularization term.

Since the values in that norm are estimated as smaller, the differences between regres-

sion coefficient vectors are shrunk. Consequently, this second term encourages similarity

between tasks. In particular, when l ≤ 1, the difference is estimated to be an exactly

zero vector with a certain λ. Hence, tasks that have similar characteristics are estimated
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to be wm1 = wm2 . Moreover, if l = 1 and q ≥ 1, Problem (2.14) becomes a convex

optimization problem. Then, a global minimum that leads to a simple interpretation of

the estimated regression coefficients can be obtained. From those advanteges, Yamada

et al. (2017) and He et al. (2019) used the setting (l = 1, q = 2), while Dondelinger

et al. (2020) and Zhang et al. (2024) used the setting (l = 1, q = 1). The difference

between these norms is that (l = 1, q = 1) tends to fuse variables at the rather feature

level, while (l = 1, q = 2) fuses variables at the task level. The numerical experiments

in He et al. (2019) showed that the fused L2-norm regularization outperforms the fused

L1-norm regularization in almost all cases. This fused L2-norm regularization is also

called the network lasso (Hallac et al., 2015), which will be compared with our proposed

method in Chapter 4.

In some studies (e.g. Hallac et al. (2015); Zhang et al. (2024)), it is supposed that

the relationships between tasks are given as a graph structure (V , E , R), and the fused

regularization is used as a method to incorporate the graph information. Here, V is a

set of the vertex corresponding to the task, and R is a T × T adjacency matrix whose

element is given by

(R)m1m2 =

rm1,m2 (m1,m2) ∈ E ,

0 otherwise.

Moreover, some extensions of Problem (2.14) are conducted in previous works. Those

introductions, including a comparison with our work, are provided in Chapter 4.

2.5 Decomposition and robust approach

To address the heterogeneous structure among tasks, the clustering approach attempts

to group tasks according to their characteristics. On the other hand, some MTL meth-

ods consider existing outlier tasks that have unique characteristics. To detect those

tasks and reduce their influence on the shared structure, they decompose the param-
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eters into commonly shared structures and task-specific structures. Those approaches

are referred to as robust approach or decomposition approach.

Chen et al. (2011) firstly proposed a robust approach method referred to as robust

multi-task learning (RMTL):

min
w0,W,U,V

{
T∑

m=1

1

nm

L(wm0,wm) + λ1‖U‖∗ + λ2‖V ‖1,2

}
,

s.t. W = U + V,

where λ1 and λ2 are regularization parameters with non-negative values. In this method,

the regression coefficient matrix W is decomposed into two parameter matrices U ∈

RT×p and V ∈ RT×p. Furthermore, low-rank structure is induced to U , and row-wise

sparsity is induced to V . From those regularizations, the main shared low-rank structure

is imposed to U . If m-th task is an outlier task with task-specific characteristics, then

m-th row of V denoted as vm is estimated to be a non-zero vector. Thus, this method

can viewed as a robust version of the low-rank method (2.9).

Gong et al. (2012) proposed a similar method referred to as Robust Multi-Task

Feature Learning (rMTFL):

min
w0,W,U,V

{
T∑

m=1

1

nm

L(wm0,wm) + λ1‖U‖2,2 + λ2‖V ‖1,2

}
,

s.t. W = U + V,

From the second term, this method is a robust version of the sparse approach method

(2.11). However, the regression coefficient vectors wm on the outlier tasks do not show

any sparsity pattern, which may be too restrictive. On the other hand, Jalali et al.

(2010) proposed a sparse decomposition approach referred to as the dirty model:

min
w0,W,U,V

{
T∑

m=1

1

nm

L(wm0,wm) + λ1‖U‖2,∞ + λ2‖V ‖1,1

}
, (2.15)

s.t. W = U + V,
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The method imposes both column-wise sparsity by L2,∞-norm and element-wise sparsity

by L1,1-norm. Then, only when umj and vmj are simultaneously estimated to be zero

value, the wmj becomes zero value. Jalali et al. (2010) shows the theoretical guarantee

that the dirty model (2.15) outperforms Problem (2.10) under some conditions.

To perform clustering and obtain robustness against outlier tasks, Yao et al. (2019)

proposed robust clustered multi-task learning (RCMTL):

min
w0,W,Υ

{
T∑

m=1

1

nm

L(wm0,wm) + λ1‖W‖2F + λ2‖W −ΥW‖1,2 + λ3‖Υ‖2,2

}
,

where Υ = (υ1, . . . ,υT )
> ∈ RT×T is the coefficient matrix that describes the correlation

between tasks. By the third term, wm ' W>υm (m = 1, . . . , T ) is facilitated, which

means that m-th task is represented by the sum of all task’s regression coefficient

vector with the mixing weight υm. The third term induces column-wise sparsity for Υ,

limiting the number of tasks representing the other task’s regression coefficients. They

claimed to have used the L1
2-norm instead of the L2

2-norm for the third term to provide

robustness for outlier tasks. However, the effect of using the L1
2 norm is to only make

wm and W>υm exactly equal, and it is unclear why it would be robust to outlier tasks.

They provided little explicit discussion of outlier tasks and their robustness.

2.6 Relationship between different approaches

We have presented some MTL approaches with different objectives. We introduce the

relationship between some of the approaches.

First, we show the relationship between the low-rank approach (2.6) and the clus-

tering approach based on the k-means method (2.13). Let the regularization terms in

Problem (2.13) be Ωk(W ). From some algebra, the Ωk(W ) can be written as

Ωk(W ) = λ(‖W‖2F − tr(W>ΞΞ>W )), (2.16)
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where Ξ is a T × C orthogonal cluster assignment matrix whose element is defined by

(Ξ)mc =


1√
nm

m ∈ Ic,

0 otherwise.

(2.17)

We consider dropping the specific structure of Ξ in (2.17) while maintaining the or-

thogonality. Then, the relaxed minimization problem of (2.16) based on k-means is

equivalent to

max
Ξ

tr(Ξ>WW>Ξ), s.t. Ξ>Ξ = IC . (2.18)

Therefore, the relaxed k-means is the principal component analysis for W>, which

characterizes the difference between the estimation of Γ in (2.8) and Ξ in (2.18). In

a word, the low-rank approach uses information concerning the correlation of task

variables, while the clustering approach uses similarity between tasks. Moreover, the

MTL method via original k-means requires a more limited structure than the low-rank

approach, which may make its estimation more difficult.

Next, we show the relevance between the relaxed k-means and the fused regulariza-

tion approach (2.14). We consider the setting (l = 2, q = 2) for Problem (2.14), and let

ΩFL(W ) be the regularization term. The regularization term can be written as follows:

ΩFL(W ) = λ
∑

(m1,m2)∈E

rm1,m2‖wm1 −wm2‖22

= 2λtr(W>LW ),

where L is a graph Laplacian matrix given by L = D − R, and D is a T × T diagonal

degree matrix with diagonal component (D)mm = dm =
∑T

m2=1 rm,m2 . From the for-

mulation, the ΩFL(W ) is also known as a Laplacian regularization. Furthermore, using

a normalized graph Laplacian calculated by

D− 1
2LD− 1

2 = IT −D− 1
2RD− 1

2 ,

leads to the normalized Laplacian regularization:∑
(m1,m2)∈E

rm1,m2√
dm1dm2

‖wm1 −wm2‖2F = 2tr(W>(IT −D− 1
2RD− 1

2 )W ),
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By comparing the normalized Laplacian regularization with Problem (2.16), we can find

that the difference is only on the matrix ΞΞ> and D− 1
2RD− 1

2 . Thus, the normalized

Laplacian regularization can be viewed as a special case of the relaxed k-means approach

method. Because the matrix D− 1
2RD− 1

2 is fixed through the optimization and the

elements are non-negative, the regularization term may appear to be more restrictive

than relaxed k-means.

Next, we give the connection between the Laplacian regularization (l = 2, q = 2)

and the setting (l = 1, q = 2) also known as the network lasso (Hallac et al., 2015)

based on the majorization –minimization (MM) algorithm (e.g. Lange (2016)).

The MM algorithm performs alternately minimizing the majorization function ϕ(·,w)

instead of the objective function Ω(w). The majorization function ϕ(·, r) is defined to

satisfy the following relationship:

Ω(w) = ϕ(w,w),

Ω(w) ≤ ϕ(w, τ ),
(2.19)

for every w, τ . In the MM algorithm, the updates given by

w(t) = arg min
w

ϕ(w,w(t−1)).

From the relationship (2.19), this update procedure satisfies the following descent prop-

erty:

Ω(w(t)) ≤ ϕ(w(t),w(t−1)) ≤ ϕ(w(t−1),w(t−1)) ≤ Ω(w(t−1))

Here, the superscript t with brackets represents the number of iterations in the update

procedure. Thus, the minimization of the objective function is performed by iteratively

minimizing the majorization function. On the other hand, for a concave function f(·),

we have

f(w) ≤ f(τ ) +
∂

∂w
f(τ )>(w − τ ).

Since the right-hand side satisfies the relationship (2.19), we can set the majorization
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function as

ϕ(w, τ ) = f(τ ) +
∂

∂w
f(τ )>(w − τ ).

Thus, for the concave function
√
· without origin, we obtain majorization function

ϕ(w, τ) =

√
τ

2
+

1

2
√
τ
w.

Because the original objective function of the network lasso without weights rm1,m2 is

given by Ω(W ) =
∑

(m1,m2)∈E

√
‖wm1 −wm2‖22, its majorization function becomes

ϕ(W, R̃) =
∑

(m1,m2)∈E

{
r̃m1,m2‖wm1 −wm2‖22 +

1

4r̃m1,m2

}
.

Here, we set 1
2
√
τm1,m2

as r̃m1,m2 . The optimal R̃ is given by r̃
(t)
(m1,m2)

= 1∥∥∥w(t−1)
m1

−w
(t−1)
m2

∥∥∥
2

.

Consequently, the MTL method based on the network lasso is equivalent to the following

joint optimization problem concerning W and R̃:

min
w0,W,R̃

{
T∑

m=1

1

nm

L(wm0,wm) + λ

(∑
r̃m1,m2‖wm1 −wm2‖22 +

1

4r̃m1,m2

)}
.

Thus, network lasso can be viewed as an extension of the graph Laplacian regularization

in which the estimation of R is adapted to the data. Thus, it is also related to the

relaxed k-means method. However, the last term avoids the value of r̃m1,m2 being close

to zero. In contrast to the original k-means MTL, the network lasso does not eliminate

interference between tasks belonging to different clusters, probably due to the convex

relaxation. Although He et al. (2019) proposed a scalable optimization algorithm for

the MTL method with the network lasso using the same method described above, they

did not mention the connection to the MM algorithm.
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Chapter 3

Convex clustering

Convex clustering is a fundamental technique that provides a convex relaxation of k-

means and hierarchical clustering methods. It enables stable cluster estimation by

replacing the discrete cluster assignment in k-means with continuous centroid param-

eters. This approach plays a central role in our proposed methods in the subsequent

chapters, where we extend and adapt its framework to multi-task learning settings.

This chapter describes the formulation of convex clustering and presents an efficient es-

timation algorithm based on the modified alternating direction method of multipliers.

3.1 Formulation

Suppose that we have n observed p-dimensional data {xi; i = 1, . . . , n}. Convex clus-

tering (Pelckmans et al. (2005); Hocking et al. (2011); Lindsten et al. (2011)) classifies

these data into exclusive clusters as a convex optimization problem and is formulated

as follows:

min
U


n∑

i=1

1

2
‖xi − ui‖22 + λ

∑
(i1,i2)∈E

ri1,i2‖ui1 − ui2‖q

 , (3.1)

where ui ∈ Rp is a centroid vector for i-th sample and U = (u1, . . . ,un)
> ∈ Rn×p.

Unlike k-means clustering where a fixed number of centroids is predetermined, convex
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clustering assigns a centroid to each data point. The first term is a loss function that

measures the fidelity between data points and their corresponding centroid vectors. The

second term is a fused regularization term encouraging the fusion of centroids. For the

second term, q = 1, 2, or ∞ is typically used to shrink the difference between ui1 and

ui2 into exactly zero. When the value of ui1 and ui2 are estimated to be the same,

corresponding samples xi1 and xi2 are considered as belonging to the same cluster.

Tan and Witten (2015) established a connection between convex clustering and

k-means method. Setting q = 0 and uniform weights rm1,m2 = 1 yields:

min
U


n∑

i=1

1

2
‖xi − ui‖22 + λ

∑
(i1,i2)∈E

I(ui1 = ui2)

 .

Because the second term separates the estimation of ui with samples from different

clusters, we can rewrite the problem as

min
µc,Ic,c=1,...,C


C∑
c=1

∑
i∈Ic

1

2
‖xi − µc‖22 + λ

∑
(i1,i2)∈E

C∑
c=1

I(i1 ∈ Ic, i2 /∈ Ic)

 ,

where µc and Ic have the same definition in the k-means method (2.12). The convex

clustering with q = 0 has the same objective function up to the first term. The sec-

ond term penalizes the number of samples from the different clusters, which probably

induces unbalanced clusters, unlike the k-means. Thus, convex clustering is a convex

relaxation almost the same problem as k-means. In other words, a centroid ui is con-

sidered as a biased centroid in the k-means for q 6= 0, which means that the estimated

centroids ûi are affected by shrinkage with other cluster’s centroids.

The value of weights ri1,i2 in (3.1) are often calculated by the combination of k-

nearest neighbor and the Gaussian kernel as follows:

ri1,i2 =

exp (−α‖xi1 − xi2‖22) xi1 is a k-nearest neighbor of xi2 or vice versa,

0 otherwise,

(3.2)

where α (≥ 0) is a tuning parameter. Lindsten et al. (2011) used only k-nearest

neighbor (α = 0), while other studies (e.g. Pelckmans et al. (2005), Chi and Lange
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(2015)) incorporated the Gaussian kernel (α > 0). Those weights enable the reduction

of the shrinkage between distant samples. It has been empirically confirmed that those

weights improve the clustering performance. Moreover, setting many weights to zero

can also reduce computational costs.

3.2 Estimation algorithm

Chi and Lange (2015) proposed an estimation algorithm of the convex clustering based

on the alternating direction methods of multipliers (ADMM). The algorithm was further

improved to reduce the computational time by Shimmura and Suzuki (2022).

Let A be a p× n matrix, and let f : Rn → R and h : Rm → R be convex functions.

The ADMM is used for solving the minimization problem in terms of x ∈ Rn and

y ∈ Rm taking the form:

min
x,y

{f(x) + h(y)} , s.t. Ax = y.

The augmented Lagrangian for the constraint problem is expressed as

Lν(x,y, s) = f(x) + h(y) + s>(Ax− y) + ν

2
‖Ax− y‖22,

where s is a p-dimensional vector of Lagrangian multipliers and ν (≥ 0) is a tuning

parameter. To solve the problem, the standard ADMM algorithm iterates the following

updates until convergence:

x(t+1) = arg min
x

Lν(x,y
(t), s(t)),

y(t+1) = arg min
y

Lν(x
(t+1),y, s(t)),

s(t+1) = s(t) + ν(Ax(t+1) − y(t+1)).

(3.3)

For the updates (3.3), Shimmura and Suzuki (2022) considered replacing the separated

updates in terms of x and y with the following joint update:

(x(t+1),y(t+1)) = arg min
x,y

{
Lν(x,y, s

(t))
}
.
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If we consider updating only x by the joint optimization, the update can be written as

x(t+1) = arg min
x

{
min
y
Lν(x,y, s

(t))

}
= arg min

x

{
f(x) + min

y

{
h(y) + s>(t)(Ax− y) + ν

2
‖Ax− y‖22

}}
= arg min

x

{
f(x)− r∗(νAx+ s(t)) + s>(t)Ax+

ν

2
‖Ax‖22

}
,

(3.4)

where r∗(·) is the conjugate function of r(z) = h(z) + ν
2
‖z‖22. This indicates that we

can update x without updating y. Furthermore, the following lemma motivates us to

solve the minimization problem (3.4) by the gradient method.

Lemma 1 (Shimmura and Suzuki (2022); Theorem 1). If we define φ1(x) = f(x) +

miny(h(y) + s
>(t)(Ax− y) + ν

2
‖Ax− y‖22), φ1 is differentiable. Furthermore, we have

∂

∂x
φ1(x) =

∂

∂x
f(x) + A>(proxνh∗(νAx+ s(t))),

where proxg(·) is the proximal map of g(·) defined as

proxg(z) = arg min
x

{
g(x) +

1

2
‖z − x‖22

}
.

Thus, the update of x is given by the convergence point of the gradient method. Here,

the update in the gradient method is given by

x(l+1) = x(l) − ι

{
∂

∂x
f(x)|x=x(l) + A>(proxνh∗(νAx(l) + s(t)))

}
,

where ι is a step size with a non-negative value. Shimmura and Suzuki (2022) con-

sidered accelerating the convergence rate of the gradient method based on Nesterov’s

acceleration method (Nesterov, 1983). To guarantee the convergence, the accelerated

gradient method requires setting ι ≤ 1/Lc for Lc > 0 such that∥∥∥∥ ∂∂xφ1(x)|x=x1 −
∂

∂x
φ1(x)|x=x2

∥∥∥∥
2

≤ Lc‖x1 − x2‖2.

The update of s via ADMM can be converted by Moreau decomposition as

s(t+1) = s(t) + ν(Ax(t+1) − y(t+1))

= proxνh∗(s(t) + νAx(t+1)).
(3.5)
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Consequently, the updates of the ADMM algorithm based on the joint updates are

given by

x(t+1) = AGrad(x(t), s(t)),

s(t+1) = proxνh∗(s(t) + νAx(t+1)),

where AGrad(·, ·) is a function returning the convergence point computed by the accel-

erated gradient method. Thus, we do not require any updates of y. We refer to this

algorithm as the modified ADMM.

To solve the convex clustering by the modified ADMM, Problem (3.1) is equivalently

rewritten as

min
U,B

1

2
‖X − U‖2F + λ

∑
(i1,i2)∈E

ri1,i2‖b(i1,i2)‖2,

s.t. B − AEU = 0,

where B is a |E| × p matrix whose row vector is b(i1,i2) ∈ Rp and AE is a |E| × T matrix

whose row vector a(i1,i2) is defined as

(a(i1,i2))i =


1 i = i1,

−1 i = i2,

0 otherwise,

i = 1, . . . , n. (3.6)

Note that we consider only the L2-norm for the shrinkage of the centroids. Then, the

augmented Lagrangian is given by

Lν(U,B, S) =
1

2
‖X − U‖2F + λ

∑
(i1,i2)∈E

rm1,m2‖b(m1,m2)‖2+

+ tr(S>(B − AEU)) +
ν

2
‖B − AEU‖2F ,

where S is a |E| × p Lagrangian multipliers matrix whose row vector is s(i1,i2) ∈ Rp.

From Lemma 1, the update of inner gradient method is given by

U (l+1) = U (l) − ι{λ(U (l) −X)) + A>
E F}, (3.7)
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where F is the matrix whose each row is updated by

F(i1,i2) = prox((S(t) + νAE · C(l))(i1,i2), λ2ri1,i2),

where prox(·, λ) is defined as

prox(z, λ) = min(‖z‖2, λ)
z

‖z‖2
. (3.8)

Eq. (3.8) is a proximal map of h∗ derived from h(z) = λ‖z‖2. Shimmura and Suzuki

(2022) showed that ι = 1
1+2νmaxi=1,...,n A>

E AE
satisfies the condition ι ≤ 1

Lc
. By combining

the inner update (3.7) and accelerated gradient method, we obtain an update of U (t+1)

from the convergence point. Similarly, from the update (3.5), the update of S for the

convex clustering is given by

S
(t+1)
(i1,i2)

= prox((S(t) + νAE · U (t+1))(i1,i2), λ2ri1,i2), for (i1, i2) ∈ E .

These estimation procedures are summarized into Algorithm 1:
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Algorithm 1 Estimation algorithm for the convex clustering via the modified ADMM
function CVX(X,R, λ)

Initialize; U (0) = X

Calculate AE by Eq. (3.6) from R

L = A>
EAE , ι =

1
1+2maxi=1,...,n((L)ii)

while until convergence of U (t) do

l = 0, α(0) = 1, H(0) = U (t), E(0) = U (t)

while until convergence of H(l) do

for (i1, i2) ∈ E do

F(i1,i2) = prox((S(t) + νAEE
(t))(i1,i2), λ2ri1,i2)

end for

H(l+1) = E(l) − ι{λ(E(l) −X) + A>
E F}

α(l+1) =
1+

√
1+4(α(l))2

2

E(l+1) = E(l) + α(l)−1
α(l+1) (H

(l+1) −H(l))

end while

U (t+1) = H(l)

for (i1, i2) ∈ E do

S
(t+1)
(i1,i2)

= prox((S
(t)
(i1,i2)

+ νAEU
(t+1))(i1,i2), λri1,i2)

end for

end while

Output: U

end function
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Chapter 4

Multi-task learning with separated

parameters for regression and task

fusion

Multi-task learning methods based on clustering would be a natural option in the prac-

tical analysis, since the tasks are obtained from heterogeneous environments and may

have different characteristics. However, the problem of clustering methods depending

on initial values is widely known, as with the k-means method and the finite Gaussian

mixture model. Therefore, it is difficult to employ k-means for clustering tasks due

to its instability. Indeed, we have observed that the estimation algorithm of the MTL

method based on k-means does not converge to the stationary point in almost all cases.

Therefore, it may be the reason why many studies of clustering approach MTLs have

employed the fused regularization. By using the fused regularization, the discontinuity

of k-means in estimating the cluster assignment can at least be removed, or it can be

formulated as a convex optimization problem. In this chapter, we propose the MTL

method that reduces the disadvantage of the fused regularization terms.
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4.1 Proposed method

4.1.1 Multi-task learning via convex clustering

The fused regularization term has the problem of a task being affected by other tasks

belonging to other clusters whenever their weight is non-zero values. To address this

issue, Yamada et al. (2017) and He et al. (2019) calculated the weights rm1,m2 using k-

nearest neighbor, which may be based on the convex clustering. Zhou and Zhao (2016)

and Shimamura and Kawano (2021) proposed the methods that treat the weights as

latent parameters and estimate them and regression coefficient parameters simultane-

ously. Because the latter approach induces the non-convexity of the model, it is difficult

to construct the estimation algorithm converging into the global minimum.

To overcome this problem, we propose the following minimization problem:

min
w0,W,U


T∑

m=1

1

nm

L(wm0,wm) +
λ1
2

T∑
m=1

‖wm − um‖22 + λ2
∑

(m1,m2)∈E

rm1,m2‖um1 − um2‖2

 ,

(4.1)

where um ∈ Rp is a centroid for m-th task, U = (u1, . . . ,uT )
> is a T ×p matrix, λ1 and

λ2 are tuning parameters with non-negative values. The second term is a squared-L2

norm to estimate the value of wm around that of um. The third term is a L2-norm to

perform the clustering of um.

In Problem (4.1), the regression coefficient vectorswm are not shrunk directly unlike

Problem (2.14), while um are shrunk and clustered. When the value of λ1 is large, wm

is estimated to be the same value of um, which is close to Problem (2.14). However,

when the value of λ1 is small, the value of wm can be estimated to be different from

that of um. Therefore, we can expect to reduce the shrinkage among irrelevant tasks.

Because the second and third terms are viewed as regularization terms derived from the

model of convex clustering, we refer to this model as MTLCVX (Multi-Task Learning

via ConVeX clustering).
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We set the weights rm1,m2 in (4.1) as in Yamada et al. (2017):

R =
S> + S

2
, (S)m1m2 =

1 ŵSTL
m1

is a k-nearest neighbor of ŵSTL
m2

,

0 otherwise,

(4.2)

where R is a T × T matrix whose each component is (R)m1m2 = rm1,m2 and ŵSTL
m is

an estimated regression coefficient vector for m-th task by single-task learning such as

OLS, ridge, and lasso. From this equation, if m1-th task and m2-th task are k-nearest

neighbors of each other, then rm1,m2 = 1. If they are k-nearest neighbors from only

one side, then rm1,m2 = 0.5. He et al. (2019) only set rm1,m2 = {0, 1} in a similar way.

These constructed weights would be based on that of convex clustering (3.2), which is

used to reduce the computational costs by setting some rm1,m2 to zero and to improve

the estimation results of clustering.

In Problem (4.1), since the second and third terms introduce interactions between

the parameters wm and um, the joint convexity of the objective function may not be

obvious. In the following section, we prove that MTLCVX is indeed jointly convex with

respect to (w0,W ) and U for both squared-loss and logistic-loss functions.

4.1.2 Convexity of MTLCVX

We show the joint convexity of MTLCVX with respect to wm and um. Because the sum

of the convex functions is also a convex function, it suffices to show the joint convexity

of the sum of the first and second terms. Then, we show the positive-semidefiniteness of

the Hessian matrix concerning the sum of the first and second terms in Problem (4.1).

Because the loss function and the regularization terms for m-th task are independent

of those for other tasks, we omit the index for the number of tasks to simplify the

notation.
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4.1.2.1 For the squared-loss function

We consider the loss function in Eq. (2.3). Let θ = (w>,u>)> be a parameter vector.

We set l(θ) = 1
2n
‖y−Xw‖22+ λ1

2
‖w−u‖22. Then, the derivation of the Hessian matrix

for l(θ) is as follows:

∂2l(θ)

∂θ∂θ>
=

(
∂2l

∂w∂w>
∂2l

∂w∂u>

∂2l
∂u∂w>

∂2l
∂u∂u>

)

=

(
1
n
X>X + λ1Ip −λ1Ip

−λ1Ip λ1Ip

)
.

Let b ∈ Rp and c ∈ Rp be non-zero vectors, and we set a = (b>, c>)>. The quadratic

form of the Hessian matrix is calculated as follows:

a> ∂
2l(θ)

∂θ∂θ>
a =

(
b> c>

)( 1
n
X>X + λ1Ip −λ1Ip

−λ1Ip λ1Ip

)(
b

c

)

= b>(
1

n
X>X + λ1Ip)b− 2λ1b

>c+ λ1c
>c

=
1

n
‖Xb‖22 + λ1‖b− c‖22 ≥ 0.

This means that l(θ) is a positive-semidefinite. Thus, the sum of the first and second

terms in Problem (4.1) is a convex function when the squared loss function is used.

4.1.2.2 For the logistic-loss function

We consider the loss function in Eq. (2.4). Let θ = (w0,w
>,u>)> be a parameter

vector. We set l(θ) = − 1
n

∑n
i=1{yi(w0+w

>)xi−log(1+exp(w0+w
>xi))}+ λ1

2
‖w−u‖22.

Then, the derivation of the Hessian matrix for l(θ) is as follows:

∂l(θ)

∂θ∂θ>
=


∂2l
∂w2

0

∂2l
∂w0∂w>

∂2l
∂w0∂u>

∂l2

∂w∂w0

∂2l
∂w∂w>

∂2l
∂w∂u>

∂2l
∂u∂w0

∂2l
∂u∂w>

∂2l
∂u∂u>



=


1
n
1>
nΠ(In − Π)1n

1
n
1>
nΠ(In − Π)X 0>

1
n
X>Π(In − Π)1n

1
n
X>Π(In − Π)X + λ1In −λ1In

0 −λ1In λ1In

 ,
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where Π is an n×n diagonal matrix with a diagonal element (Π)ii = 1−1/(1+exp(w0+

w>xi)). Let b ∈ R, c ∈ Rp, and d ∈ Rp be a non-zero scalar and vectors, and we set

a = (b, c>,d>)>. The quadratic form of the Hessian matrix is calculated as follows:

a> ∂l(θ)

∂θ∂θ>
a =

(
b c> d>

)
1
n
1>
nΠ(In − Π)1n

1
n
1>
nΠ(In − Π)X 0>

1
n
X>Π(In − Π)1n

1
n
X>Π(In − Π)X + λ1In −λ1In

0 −λ1In λ1In



b

c

d


=
b2

n
1>Π(In − Π)1+

2b

n
1>Π(In − Π)Xc+

1

n
c>X>Π(In − Π)Xc

+ λ1(c
>c− 2c>d+ d>d)

=
1

n
‖(Π(In − Π))1/2(Xc− b1)‖22 + λ1‖c− d‖22 ≥ 0.

This means that l(θ) is a convex function in terms of w0, w and u. Thus, the sum of

the first and second terms in Problem (4.1) is a convex function when the logistic loss

function is used.

The positive-semidefiniteness of the Hessian matrices in both cases establishes that

MTLCVX is jointly convex regardless of whether we use the squared loss or logistic

loss function. This convexity ensures the existence of a global minimum. Furthermore,

MTLCVX serves as a direct convex relaxation of the k-means based method (2.13).

4.1.3 Multi-task learning via adaptive convex clustering

A drawback of Eq. (4.2) is that weights rm1,m2 may have some noises, since the estimated

value ŵSTL
m may not be accurate. To address it, we consider calculating weights rm1,m2

as in the adaptive lasso (Zou, 2006):

min
w0,W,U


T∑

m=1

1

nm

L(wm0,wm) +
λ1
2

T∑
m=1

‖wm − um‖22 + λ2
∑

(m1,m2)∈E

r̂m1,m2‖um1 − um2‖2

 ,

(4.3)
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where r̂m1,m2 is an adaptive weight. This weight is computed as follows:

r̂m1,m2 =
1

‖ûm1(MTLCVX)− ûm2(MTLCVX)‖2
δ,

δ =

 ∑
(m1,m2)∈E

1

‖ûm1(MTLCVX)− ûm2(MTLCVX)‖2

−1 ∑
(m1,m2)∈E

rm1,m2 ,

where ûm(MTLCVX) is an estimated value of a centroid um in Problem (4.1), and δ is

a scaling parameter. The scaling parameter δ is defined to ensure
∑

(m1,m2)∈E r̂(m1,m2) =∑
(m1,m2)∈E rm1,m2 . This scaling prevents large fluctuations in the value of the optimal

regularization parameters empirically. We refer to Problem (4.3) as MTLACVX (Multi-

Task Learning via Adaptive ConVeX clustering).

4.2 Related work

The proposed methods are related to some past studies (Zhong and Kwok (2012); Han

and Zhang (2015)). We describe the relationships and differences.

For Problem (4.1), we set a new variable vm = wm − um. Then, the minimization

problem is converted into the following minimization problem:

min
w0,U,V


T∑

m=1

1

nm

L(wm0,um + vm) +
λ1
2

T∑
m=1

‖vm‖22 + λ2
∑

(m1,m2)∈E

rm1,m2‖um1 − um2‖2

 .

This minimization problem is an extension of Problem (2.14): it contains a multi-level

structure for the regression coefficient vectors like decomposition or robust approach.

This is close to Zhong and Kwok (2012). However, they considered only using the L1-

norm for the fusion of um and the squared loss function. The L1-norm penalty induces

feature-level clustering rather than task-level clustering. On the other hand, they also

proposed adapting weights for the fused penalty terms. The weights are calculated

by using the estimated regression coefficient vectors ŵm, which may not be better for

clustering than calculating the weights using ûm, because ŵm contains the value of v̂m.
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Moreover, they calculated adaptive weights for all of the combinations. Alternatively,

we calculate adaptive weights r̂m1,m2 only for (m1,m2) ∈ E .

Han and Zhang (2015) proposed MeTaG (Multi-Level Task Grouping) as follows:

min
wm,h,

m=1,...,T,h=1,...,H

{
T∑

m=1

1

2nm

‖ym −Xm

H∑
h=1

wm,h‖22 +
H∑

h=1

λh
∑

m1>m2

‖wm1,h −wm2,h‖2

}
,

where wm,h ∈ Rp is a parameter vector for m-th task and h-th level, H is a total

number of the level. In this minimization problem, the regression coefficient vector

wm is represented by the sum of the h-th level parameter vectors as wm =
∑H

h=1wm,h.

Furthermore, each h-th level parameter is clustered by the second term. Because the aim

of this minimization problem is not to improve the estimation accuracy for regression

coefficient vectors and clustering but to capture complex multi-level structures, the

proposed methods differ from this method in terms of their aim.

4.3 Estimation algorithm

In the proposed method, we compute the estimates of the parameters by the block

coordinate descent algorithm (BCD). The BCD is performed by alternately computing

the estimates: um is computed given wm, while wm is done given um.

We consider the two minimization problems:

U (t+1) = arg min
U

λ12
T∑

m=1

‖w(t)
m − um‖22 + λ2

∑
(m1,m2)∈E

rm1,m2‖um1 − um2‖2

 ,

(w
(t+1)
m0 ,w(t+1)>

m )> = arg min
wm0,wm

{
1

nm

L(wm0,wm) +
λ1
2
‖wm − u(t+1)

m ‖22
}
, m = 1, . . . , T,

For the update of (wm0,wm), it can be solved in a unified manner by the Newton-

Raphson method, which is given as Algorithm 3. For the update of um, we can compute

it by using the algorithm for convex clustering such as Shimmura and Suzuki (2022) and

Sun et al. (2021). In this thesis, we adopt Algorithm 1 based on the idea of Shimmura
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and Suzuki (2022). As a result, the estimation algorithm for Problem (4.1) is given by

Algorithm 2. Here, STL(·, ·) is a function returning an estimated regression coefficient

vector by an arbitrary single-task learning method. Because MTLCVX is a convex

optimization problem and the BCD monotonically decreases the objective function,

Algorithm 2 converges to the global minimum. For the convergence criteria, we used

max
m=1,...,T,j=1,...,p

(|w(t)
mj − w

(t−1)
mj |). If this value is under 0.01, we stop Algorithm 2.

Algorithm 2 Block coordinate descent algorithm for MTLCVX
Require: {ym, Xm;m = 1, . . . , T}, k, λ1, λ2

for m = 1, . . . , T do

ŵSTL
m = STL(ym, Xm)

end for

calculating R by Eq. (4.2) from k and ŵSTL
m

W (0) = Ŵ STL

while until convergence of W (t) do

U (t+1) = CVX(W (t), R, λ2/λ1)

for m = 1 . . . , T do

(w
(t+1)
m0 ,w

(t+1)>
m )> = NR(nm, Xm,ym,u

(t+1)
m , λ1)

end for

end while

Ensure: U,W,w0
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Algorithm 3 Newton-Raphson method for updating w0 and wm

function NR(n,X,y,u, λ1)

Initialize; Let X ′ = (1, X),w′ = (w0,w
>)>,u′ = (0,u>)>, Λ =

diag(0, λ1, . . . , λ1),

µ =
(

∂b(η1)
∂η1

, . . . , ∂b(ηn)
∂ηn

)>
, E = diag

(
∂2b(η1)

∂η21
, . . . , ∂

2b(ηn)
∂η2n

)
.

while until convergence of w′ do

w′(t+1) = w′(t) +
(

X′>E(t)X′

na(φ)
+ Λ

)−1 {
X′>(y−µ(t))

na(φ)
− Λ(w′(t) − u′)

}
end while

Output: (w0,w
>)> = w′

end function

4.4 Simulation studies

In this section, we report simulation studies in the linear regression setting. We gener-

ated data by the true model:

ym = Xmw
∗
m + εm, m = 1, . . . , T,

where εm is an error term whose each component is distributed as N(0, σ2) indepen-

dently, w∗
m is a true regression coefficient vector for m-th task. For this true model,

these T tasks consist of C true clusters. The design matrix Xm was generated from

Np(0,Σ) for each task independently, where (Σ)ij = φ|i−j|.

The true regression coefficient vector w∗
m was generated as follows. First, each

explanatory variable {j = 1, . . . , p} was randomly assigned to the c-th clusters {c =

1, . . . , C} with the same probability. Then, we generated a true centroid parameter for

c-th cluster u∗
c = (u∗c1, . . . , u

∗
cp)

> by

u∗cj

∼ N(0, σ2
u) if j-th variable is assigned to c-th cluster,

= 0 otherwise,
j = 1, . . . , p.
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In addition, we generated a true task-specific parameter for m-th task that belongs to

c-th cluster v(c)∗m = (v
(c)∗
m1 , . . . , v

(c)∗
mp )> by

v
(c)∗
mj

∼ N(0, σ2
v) if j-th variable is assigned to c-th cluster,

= 0 otherwise,
j = 1, . . . , p.

Finally, we set to w∗
m = u∗

c + v
(c)∗
m . In this way, regression coefficient vectors belonging

to different clusters have different non-zero variables. A similar way of generating

regression coefficient vectors was also used in Zhou and Zhao (2016).

For the true model, we fixed settings as nm = 230, p = 100, T = 100, σ2 = 5,

and σ2
u = 100. 230 samples in each task were split into 30 samples for the train, 100

samples for the validation, and left samples for the test. We considered several settings:

φ = {0, 0.2, 0.5}, σ2
v = {1, 2, 3, 4, 5}, and C = {3, 5, 10}. Here, when C = 5 and 10, the

number of tasks in each cluster is uniformly set by T/C. When C = 3, that is set as

60, 30, and 10 tasks, respectively.

To evaluate the effectiveness of our proposed methods, we compared them with

the single-task learned lasso (STLL) and the multi-task learning via network lasso

(MTLNL). STLL is conducted independently by estimating each task using the lasso.

MTLNL is Problem (2.14) for (l = 1, q = 2), which is estimated by the ADMM algo-

rithm of Hallac et al. (2015). The weights rm1,m2 for both MTLNL and MTLCVX were

calculated by Eq. (4.2). In this case, k was set to five. The estimation of both STLL

and ŵSTL
m in Eq. (4.2) were performed by the lasso in R package “glmnet”. The tun-

ing parameter ν included in Algorithm 1 and ADMM to estimate MTLNL were set to

one. The regularization parameters except for STLL were determined by the validation

data. For the evaluation, we calculated the NMSE (normalized mean squared error)
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and RMSE (root mean squared error) as follows:

NMSE =
1

T

T∑
m=1

‖y∗
m −Xmŵm‖22
Var(y∗

m)
,

RMSE =
1

T

T∑
m=1

‖w∗
m − ŵm‖2.

These values evaluate the accuracy of the prediction and estimated regression coefficient

vectors, respectively. They were computed 100 times. The mean and standard deviation

were obtained in each setting.

Tables 4.1, 4.2, and 4.3 show the results of the simulation studies for C = 10, C = 5,

and C = 3, respectively. Since STLL is independent of the value of σ2
v , we show the

results for STLL only when σ2
v = 1. Note that, according to decreasing the value of C,

the number of the true non-zero variables in each task is increased, because variables

are nonzero only in the cluster to which they are assigned. Then, the results of STLL in

Tables 4.2 and 4.3 considerably deteriorate. This also indicates that the weights rm1,m2

contain more noise at C = 3, 5 than at C = 10. Thus, the results of Tables 4.2 and 4.3

are worse than Table 4.1 on the whole.

In a comparison among the methods, MTLACVX shows superior accuracy in al-

most all situations for both NMSE and RMSE. The differences between MTLACVX

and MTLCVX or MTLNL are much larger than those between MTLCVX and MTLNL.

Thus, in the context of convex clustering, it means that the adaptive weights are im-

portant for improving estimation accuracy. On the other hand, for the comparison

of MTLNL and MTLCVX, MTLCVX shows better performance than MTLNL on the

whole. In particular, when C = 5, MTLCVX is superior to MTLNL in all settings

except for NMSE in φ = 0 and σ2
v = 5. When C = 10, again, MTLCVX is superior to

MTLNL in many settings. MTLNL shows better results than MTLCVX for two set-

tings only when φ = 0. It probably relates the estimation accuracy of ŵSTL
m to construct

wetghts rm1,m2 by Eq. (4.2). For STLL, RMSE drastically deteriorates by increasing

the value of φ from 0 to 0.2. This also indicates that the noise in weights rm1,m2 also
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increased from φ = 0 to φ = 0.2. Hence, there is not much difference between MTLNL

and MTLCVX for φ = 0, because there was less noise in the weights. However, MTL-

CVX would be superior to MTLNL as the noise in the weights increased. On the whole,

these results suggest that MTLCVX is more robust to the noise in the weights rm1,m2

than MTLNL. The results in Table 4.3 are obtained in the setting where the number of

tasks in each cluster is quite unbalanced. For these settings, MTLCVX is superior to

MTLNL in many settings when φ = 0.2 or 0.5, while the opposite is true when φ = 0.

Because the RMSE of STLL has little difference among each φ, the noise in weights

is probably the almost same. Therefore, the reasons why MTLCVX is superior at a

larger value of φ would differ from those in Tables 4.1 and 4.2. On the other hand, the

reason that MTLNL is superior to MTLCVX for φ = 0 may relate to the estimation of

cluster centers. MTLCVX assumes the existence of cluster centers and estimates them,

while MTLNL does not need to perform estimating the cluster centers. In this setting,

the minimum number of tasks in a cluster is ten, which may be insufficient to estimate

cluster centers.
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Table 4.1: Mean and standard deviation of NMSE and RMSE for C = 10.

φ = 0 φ = 0.2 φ = 0.5

σ2
v NMSE RMSE NMSE RMSE NMSE RMSE

– STLL 0.200 (0.025) 1.494 (0.161) 0.198 (0.034) 4.062 (0.284) 0.178 (0.033) 4.070( 0.315)
1 MTLNL 0.059 (0.028) 0.646 (0.146) 0.053 (0.032) 0.614 (0.148) 0.049 (0.029) 0.664 (0.176)

MTLCVX 0.055 (0.038) 0.609 (0.190) 0.048 (0.023) 0.596 (0.155) 0.039 (0.018) 0.574 (0.147)
MTLACVX 0.044 (0.019) 0.565 (0.158) 0.043 (0.029) 0.559 (0.152) 0.038 (0.023) 0.565 (0.156)

2 MTLNL 0.075 (0.029) 0.741 (0.127) 0.068 (0.024) 0.755 (0.163) 0.063 (0.030) 0.762 (0.137)
MTLCVX 0.063 (0.026) 0.689 (0.148) 0.058 (0.023) 0.667 (0.151) 0.052 (0.021) 0.691 (0.138)

MTLACVX 0.060 (0.024) 0.696 (0.185) 0.055 (0.020) 0.637 (0.125) 0.048 (0.020) 0.666 (0.124)
3 MTLNL 0.083 (0.049) 0.789 (0.160) 0.080 (0.023) 0.815 (0.130) 0.076 (0.036) 0.868 (0.141)

MTLCVX 0.080 (0.035) 0.775 (0.157) 0.078 (0.038) 0.767 (0.119) 0.066 (0.021) 0.791 (0.126)
MTLACVX 0.081 (0.035) 0.771 (0.138) 0.073 (0.024) 0.752 (0.124) 0.065 (0.027) 0.764 (0.122)

4 NLMTL 0.106 (0.077) 0.906 (0.130) 0.093 (0.026) 0.889 (0.138) 0.079 (0.020) 0.906 (0.090)
MTLCVX 0.084 (0.027) 0.818 (0.111) 0.090 (0.033) 0.856 (0.122) 0.076 (0.024) 0.861 (0.123)

MTLACVX 0.085 (0.025) 0.815 (0.126) 0.084 (0.024) 0.831 (0.129) 0.074 (0.024) 0.841 (0.112)
5 MTLNL 0.105 (0.029) 0.921 (0.099) 0.102 (0.025) 0.939 (0.111) 0.096 (0.043) 0.998 (0.118)

MTLCVX 0.113 (0.099) 0.906 (0.129) 0.099 (0.030) 0.898 (0.124) 0.088 (0.025) 0.938 (0.109)
MTLACVX 0.099 (0.032) 0.888 (0.120) 0.094 (0.025) 0.894 (0.130) 0.087 (0.027) 0.931 (0.114)
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Table 4.2: Mean and standard deviation of NMSE and RMSE for C = 5.

φ = 0 φ = 0.2 φ = 0.5

σ2
v NMSE RMSE NMSE RMSE NMSE RMSE

– STLL 0.567 (0.046) 3.423 (0.284) 0.564 (0.054) 5.241 (0.055) 0.493 (0.054) 5.395(0.359)
1 MTLNL 0.127 (0.059) 1.543 (0.394) 0.117 (0.055) 1.475 (0.388) 0.080 (0.048) 1.337 (0.396)

MTLCVX 0.131 (0.055) 1.559 (0.384) 0.113 ( 0.055) 1.459 (0.379) 0.074 (0.041) 1.291 (0.393)
MTLACVX 0.105 (0.053) 1.361 (0.430) 0.112 (0.056) 1.415 (0.403) 0.070 (0.039) 1.225 (0.372)

2 MTLNL 0.145 (0.054) 1.625 (0.350) 0.139 (0.055) 1.627 (0.373) 0.086 (0.043) 1.435 (0.377)
MTLCVX 0.142 (0.058) 1.606 (0.339) 0.131 (0.045) 1.582 (0.318) 0.078 (0.043) 1.296 (0.352)

MTLACVX 0.132 (0.062) 1.557 (0.423) 0.112 (0.056) 1.470 (0.380) 0.078 (0.041) 1.293 (0.336)
3 MTLNL 0.151 (0.056) 1.689 (0.339) 0.146 (0.051) 1.710 (0.334) 0.102 (0.035) 1.545 (0.308)

MTLCVX 0.159 (0.054) 1.730 (0.339) 0.134 (0.061) 1.582 (0.384) 0.090 (0.038) 1.442 (0.297)
MTLACVX 0.132 (0.054) 1.532 (0.369) 0.119 (0.049) 1.495 (0.316) 0.094 (0.045) 1.444 (0.373)

4 MTLNL 0.162 ( 0.054) 1.774 (0.339) 0.162 (0.057) 1.801 (0.344) 0.108 (0.040) 1.575 (0.287)
MTLCVX 0.155 (0.060) 1.716 (0.351) 0.154 (0.056) 1.746 (0.340) 0.099 (0.041) 1.533 (0.340)

MTLACVX 0.145 (0.059) 1.667 (0.397) 0.120 (0.044) 1.515 (0.309) 0.094 (0.044) 1.460 (0.364)
5 MTLNL 0.179 (0.061) 1.853 (0.330) 0.169 (0.051) 1.850 (0.303) 0.117 (0.040) 1.669 (0.298)

MTLCVX 0.163 (0.057) 1.757 (0.315) 0.157 (0.051) 1.773 (0.311) 0.119 (0.046) 1.674 (0.323)
MTLACVX 0.146 (0.041) 1.706 (0.274) 0.130 (0.042) 1.612 (0.276) 0.093 (0.036) 1.481 (0.288)
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Table 4.3: Mean and standard deviation of NMSE and RMSE for C = 3.

φ = 0 φ = 0.2 φ = 0.5

σ2
v NMSE RMSE NMSE RMSE NMSE RMSE

– STLL 0.797 (0.047) 6.669 (0.461) 0.790 (0.047) 6.649 (0.456) 0.705 (0.055) 6.773 (0.452)
1 MTLNL 0.208 (0.064) 2.544 (0.458) 0.201 (0.058) 2.577 (0.388) 0.140 (0.052) 2.386 (0.469)

MTLCVX 0.209 (0.076) 2.554 (0.476) 0.211 (0.081) 2.556 (0.470) 0.117 (0.067) 2.092 (0.572)
MTLACVX 0.198 (0.072) 2.454 (0.468) 0.171 (0.069) 2.327 (0.446) 0.104 (0.058) 1.935 (0.545)

2 MTLNL 0.206 (0.062) 2.530 (0.392) 0.194 (0.058) 2.502 (0.404) 0.143 (0.066) 2.322 (0.532)
MTLCVX 0.221 (0.067) 2.641 (0.410) 0.204 (0.060) 2.612 (0.432) 0.134 (0.067) 2.278 (0.631)

MTLACVX 0.193 (0.072) 2.446 (0.472) 0.180 (0.065) 2.393 (0.477) 0.109 (0.061) 2.024 (0.590)
3 MTLNL 0.226 (0.059) 2.683 (0.380) 0.231 (0.061) 2.736 (0.372) 0.150 (0.056) 2.407 (0.454)

MTLCVX 0.227 (0.067) 2.662 (0.404) 0.220 (0.066) 2.690 (0.399) 0.127 (0.057) 2.261 (0.485)
MTLACVX 0.205 (0.091) 2.499 (0.460) 0.193 (0.076) 2.490 (0.521) 0.125 (0.063) 2.167 (0.563)

4 MTLNL 0.233 (0.064) 2.751 (0.418) 0.223 (0.064) 2.720 (0.395) 0.149 (0.054) 2.479 (0.484)
MTLCVX 0.237 (0.068) 2.775 (0.397) 0.222 (0.067) 2.714 (0.402) 0.145 (0.059) 2.416 (0.496)

MTLACVX 0.213 (0.064) 2.618 (0.435) 0.199 (0.060) 2.490 (0.521) 0.128 (0.053) 2.246 (0.415)
5 MTLNL 0.240 (0.057) 2.852 (0.376) 0.238 (0.057) 2.870 (0.397) 0.157 (0.056) 2.557 (0.431)

MTLCVX 0.256 (0.070) 2.865 (0.377) 0.234 (0.060) 2.789 (0.389) 0.158 (0.058) 2.516 (0.463)
MTLACVX 0.214 (0.072) 2.620 (0.450) 0.189 (0.064) 2.541 (0.433) 0.126 (0.051) 2.226 (0.453)

4.5 Application to real datasets

In this section, we applied our proposed methods to two datasets with continuous and

binary responses. The first is the school data (Bakker and Heskes, 2003), which has

been often used as the research of an MTL. This dataset consists of examination scores

of 15,362 students, four school-specific attributes, and three student-specific attributes

from 139 secondary schools in London from 1985 to 1987. The dataset was obtained by

“MALSAR” package in MATLAB. In the package, categorical attributes were replaced

with binary attributes. Then, we used 28-dimensional explanatory variables and the

examination scores as a response. Each school is considered as a task. The second is the

landmine data (Xue et al., 2007), which consists of nine-dimensional features and the

corresponding binary labels for 29 tasks. One task corresponds to one landmine field
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where data were collected: 1–15 tasks correspond to regions that are relatively highly

foliated and 16–29 tasks correspond to regions that are bare earth or desert. Therefore,

there may be two clusters depending on the ground surface conditions. The responses

represent landmines or clutter. The features are four moment-based features, three

correlation-based features, one energy ratio feature, and one spatial variance feature,

which are extracted from radar images. Though there are 14,820 samples in total, this

dataset is quite unbalanced: positive samples are few, while negative ones are many. To

perform our proposed method, down-sampling was done by reducing negative samples

to equal the number of positive samples. In the results, we used 1,808 samples in total.

We compared our proposed methods MTLCVX, MTLACVX with MTLNL, STLL,

and single-task learned ridge (STLR) in prediction accuracy. Here, STLR is the ridge

estimation performed by R package “glmnet” for each task, independently. Note that,

to stabilize estimation in the logistic regression of MTLNL, MTLCVX, and MTLACVX,

we penalized the intercept wm0 by the ridge. Its regularization parameter was set to

0.1. This penalty has the effect of keeping the intercept constant finite stable value

in the situation that the intercept tends to go to infinity. We randomly split the data

into V% of the data for the train, (80− V )% for the test, and 20% for the validation.

We conducted three settings V = {50, 60, 70}. For the evaluation, we used NMSE for

analyzing the school data, while we used AUC for analyzing the landmine data. The

mean and standard deviation of evaluation values were computed from 100 repetitions.

The tuning parameter k in Eq. (4.2) was set to five for all MTL methods and ŵSTL
m

were estimated by the lasso by the package “glmnet” in R.

In addition, we considered the difference in patterns of estimated parameters among

MTLNL, MTLCVX, and MTLACVX for both school data and down-sampled landmine

data. For the comparison, we split the dataset into 70% samples for the train and 30%

samples for the validation. The regularization parameters were determined by these

split data. Then, the models were refitted by using all samples and the determined reg-
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ularization parameters. Note that the randomness in data splitting and down-sampling

were fixed in all settings for stable comparison.

Figures 4.1 and 4.2 show results of estimated parameters in MTLNL and MTLCVX

for the school data and the landmine data, respectively. In these figures, the vertical

axis is the index of tasks m and the horizontal axis is the index of features j in ŵmj

or ûmj. The color represents the value of the estimated parameter in its coordinates.

Here, in Figures 4.2(a) and 4.2(b), the first column corresponds to the intercepts ŵm0

and others correspond to ŵm. In Figure 4.1, MTLNL in (a) and MTLCVX in (b)

show similar homogeneous patterns in regression coefficients and MTLCVX has more

uniform patterns than MTLNL. On the other hand, those of ŵm in (b) and ûm in (c) for

MTLCVX are almost same, which indicates that ŵm are greatly affected by ûm. These

differences between MTLCVX and MTLNL are probably caused by the fact that only

MTLCVX assumes the existence of cluster centers, which induces homogeneity of ûm

among all tasks. In Figure 4.2, MTLNL in (a) and MTLCVX in (b) show quite different

patterns of regression coefficients. The patterns of MTLNL are rather homogenous. In

contrast, those of MTLCVX show the existence of clusters in regression coefficients.

Furthermore, we can see clear two cluster patterns from the value of ûm in (c). These

patterns except for 20-th task are consistent with the fact that 1–15 tasks and 16–29

tasks are collected from different types of ground surface conditions. Therefore, it

would be considered that MTLCVX improves the problem of MTLNL about shrinkage

between different clusters. In addition, the pattern of 20-th task û20 shows similar result

to those of 1–15 tasks. This may suggest that the 20-th task is unique among 16–29

tasks collected from the regions that are bare earth or desert and represents similar

characteristics to 1–15 tasks. On the whole, it is interesting that MTLCVX shows a

clearer cluster structure than MTLNL, whether there is a single cluster as in the case

of the school data, or multiple clusters as in the case of the landmine data.

The results of estimated parameters for MTLACVX are shown in Figures 4.3 and
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4.4, which are similar to and more clear patterns than those of MTLCVX. These results

would demonstrate that MTLACVX improves MTLCVX in terms of clustering.
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(a) Estimated value of ŵm in MTLNL
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(b) Estimated value of ŵm in MTLCVX

Features

T
a
s
k
s

−15

−10

−5

0

5

10

15

1
8

1
6

2
5

3
4

4
3

5
2

6
1

7
0

7
9

8
8

9
7

1
0
7

1
1
9

1
3
1

1 3 5 7 9 11 13 15 17 19 21 23 25 27

(c) Estimated value of ûm in MTLCVX

Figure 4.1: The estimated value of parameters in MTLNL and MTLCVX for the school

data.
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(a) Estimated value of ŵm0 and ŵm in MTLNL
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(b) Estimated value of ŵm0 and ŵm in MTL-

CVX
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(c) Estimated value of ûm in MTLCVX

Figure 4.2: The estimated value of parameters in MTLNL and MTLCVX for the land-

mine data.
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(a) Estimated value of ŵm in MTLACVX
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(b) Estimated value of ûm in MTLACVX

Figure 4.3: The estimated value of parameters in MTLACVX for the school data.
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(a) Estimated value of ŵm in MTLACVX
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(b) Estimated value of ûm in MTLACVX

Figure 4.4: The estimated value of parameters in MTLACVX for the landmine data.

Table 4.4 shows the results of the comparison of NMSE on the school data for each

setting. First, all MTL methods are superior to single-task learning approaches. In a

comparison among MTL methods, each method shows a better result for each setting.
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However, because all settings have outstanding standard deviations for V = 70, this

result is probably not trustworthy. While it is pointed out by Evgeniou et al. (2005) and

shown in Figure 4.1 that the school data do not have multiple clusters and are rather

homogenous, MTLCVX may foster excessive homogeneity among all tasks compared

to MTLNL in cases where only a single cluster is present.

Table 4.5 shows the results of the comparison of AUC on the landmine data for

each setting. In the data, MTLACVX and MTLCVX are superior to STL methods

and MTLNL for all settings. MTLACVX also has the same or better performance than

MTLCVX. Unlike the school data, the landmine data are considered to have clearly

two clusters as shown in Figure 4.2. This would be the reason that MTLCVX and

MTLACVX in the landmine data provide higher accuracy compared to those in the

school data.

Table 4.4: Mean and standard deviation of NMSE for 100 repetitions in the school

data.

50% 60% 70%
STLL 4.044 (0.181) 4.293 (0.234) 5.783 (1.306)
STLR 4.701 (0.226) 5.071 (0.516) 6.533 (1.170)

MTLNL 0.806 (0.025) 0.847 (0.036) 1.196 (0.517)
MTLCVX 0.796 (0.025) 0.853 (0.060) 1.241 (0.825)

MTLACVX 0.830 (0.036) 0.863 (0.060) 1.140 (0.528)
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Table 4.5: Mean and standard deviation of AUC for 100 repetitions in the landmine

data.

50% 60% 70%
STLL 0.746 (0.023) 0.748 (0.022) 0.748 (0.020)
STLR 0.749 (0.023) 0.750 (0.023) 0.749 (0.027)

MTLNL 0.754 (0.024) 0.749 (0.024) 0.750 (0.021)
MTLCVX 0.769 (0.021) 0.759 (0.020) 0.760 (0.023)

MTLACVX 0.768 (0.018) 0.764 (0.022) 0.770 (0.023)

4.6 Discussion

In this chapter, we considered reducing the incorrect shrinkage between unrelated tasks

while maintaining the problem as convex optimization. To this end, we focused on sepa-

rating the regression coefficients rather than improving the regularization weights. The

simulation studies and application to real datasets showed that introduced centroid pa-

rameters can not only improve estimation accuracy but also allow us to interpret cluster

structures more clearly than MTLNL. This helps understand relationships among tasks,

particularly when estimated regression coefficients show complicated patterns. Addi-

tionally, adapting the regularization weights as in the adaptive lasso showed improved

estimation accuracy in many situations.

One limitation of the proposed methods is their computational complexity. Specifi-

cally, we used the BCD to estimate parameters, which requires one ADMM loop for an

update of U (t+1) in each iteration. This is quite inefficient compared to MTLNL, which

can be estimated with only one ADMM loop. This problem will be addressed in the

next chapter by incorporating the update of W (t+1) into the ADMM loop. In addition,

our methods require determining two regularization parameters, making computation

much more expensive than methods with a single parameter. These factors contribute
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to high computational costs in both the estimation algorithm and parameter tuning.

Another important consideration is the method of weight construction. Our study

employed a k-nearest neighbor method based on existing MTL methods and convex

clustering literature. While this approach showed effectiveness, there may be more ef-

ficient methods for constructing weights regarding both computational complexity and

estimation accuracy. Recent work by Zhang et al. (2024) proposed combining minimum

spanning trees with the weights calculated by the OLS, demonstrating consistency in

estimating latent clusters under asymptotic conditions. However, multi-task learning

typically deals with limited samples per task or only some tasks approaching asymp-

totic conditions. Therefore, developing optimal weight construction methods for finite

samples remains challenging.

We leave these topics of computational efficiency and weight construction method-

ology as important future work.
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Chapter 5

Multi-task learning with joint

estimation of clusters and detection

of outlier tasks

Many MTL methods have utilized clustering techniques to treat heterogeneous charac-

teristics within a task set. However, clustering techniques employed for MTL methods

are not robust for outlier samples. For example, the k-means method is considered as

sensitive to the outlier samples due to its property, which is that k-means intends to

make the size of clusters equal. Thus, it would be a natural extension to make the

clustering-based MTL methods robust for outlier tasks.

In this chapter, we first demonstrate robust convex clustering (Quan and Chen,

2020), which is formulated as convex clustering with additional outlier parameters and

L1-penalty for them. Then, we construct the relationship between the formulation

based on L1-penalty and the Huber-loss function, which is further generalized to the

relationship between wide penalty functions and M -estimators with multivariate robust

loss functions. Based on them, we propose a robust MTL method that simultaneously

detects outlier tasks and performs clustering of tasks.
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5.1 Robust convex clustering

Quan and Chen (2020) pointed out that convex clustering is sensitive to just a few

outliers. To address this issue, they proposed robust convex clustering (RCC) as follows:

min
U,O


n∑

i=1

1

2
‖xi − ui − oi‖22 + λ1

∑
(i1,i2)∈E

ri1,i2‖ui1 − ui2‖2 + λ2

n∑
i=1

‖oi‖1

 , (5.1)

where ui = (ui1, . . . , uip)
> ∈ Rp is a vector of centroid parameters for i-th sample, oi =

(oi1, . . . , oip)
> ∈ Rp is a vector of outlier parameters for i-th sample, U = (u1, . . . ,un)

>

and O = (o1, . . . ,on)
> are n×p matrices, respectively. The third term selects the outlier

parameters by shrinking each element of oi toward exactly zero. If oij is estimated to

be a non-zero value, the j-th feature of the i-th sample is considered an outlier.

From the relationship between the loss function of least square and L1 penalty for

the outlier parameters (Antoniadis (2007); Gannaz (2007)), the minimization problem

(5.1) is equivalent to the following minimization problem:

min
U


n∑

i=1

p∑
j=1

hλ2(xij − uij) + λ1
∑

(i1,i2)∈E

ri1,i2‖ui1 − ui2‖2

 , (5.2)

where hλ(·) is the Huber’s loss function defined as

hλ2(z) =


1
2
z2 |z| ≤ λ,

λ2|z| − λ2

2
|z| ≥ λ.

This would indicate that RCC is a robust version of convex clustering derived from

replacing the loss function with the component-wise robust loss function.

5.2 Non-convex extensions of robust convex cluster-

ing

Although Quan and Chen (2020) only considered L1 penalty to select outlier param-

eters, it is possible to consider other types of shrinkage penalties, such as non-convex

52



penalties and group penalties. For example, if group lasso (Yuan and Lin, 2006) is

employed for the third term in (5.1), we can detect the sample-wise outliers. Since our

purpose is to detect task-wise outliers, we first consider the generalized robust clustering

problem to detect sample-wise outliers as follows:

min
U,O


n∑

i=1

1

2
‖xi − ui − oi‖22 + λ1

∑
(i1,i2)∈E

ri1,i2‖ui1 − ui2‖2 +
n∑

i=1

P (oi;λ2, γ)

 , (5.3)

where P (·;λ, γ) is a penalty function that induces group sparsity and γ is a tuning

parameter that adapts the shape of the penalty function. By estimating oi as a zero

vector through group penalties, this problem aims to detect sample-wise outliers. For

i-th sample xi, even if the value of one feature xij has extensive value compared with

its cluster center ûij, ôi would not be non-zero vector. Only when the L2-distance

‖xi − ûi‖2 has the extensive value, ôi is estimated to be non-zero vector and xi is

interpreted as an outlier sample.

If a non-convex penalty such as group SCAD and group MCP (Huang et al., 2012) is

employed for the third term, the minimization problem is no longer a convex optimiza-

tion problem. Therefore, we refer to the minimization problem as Robust Regularized

Clustering (RRC).

Algorithm 4 Block coordinate descent algorithm for Problem (5.3)
Require: X,λ1, λ2, γ, O(0)

while until convergence of U (t) and O(t) do

U (t+1) = arg min
U

L(U,O(t)) (5.4)

O(t+1) = arg min
O

L(U (t+1), O) (5.5)

end while

Ensure: U,O
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The minimization problem (5.3) is solved by the BCD algorithm shown in Algorithm

4. Here, X = (x1, . . . ,xn)
> ∈ Rn×p, L(U,O) is the objective function in (5.3). The

problem (5.4) can be solved by algorithms for the convex clustering. The problem (5.5)

can be updated separately in terms of oi, because each oi only depends on xi and

u
(t+1)
i . Thus, the update is expressed as

o
(t+1)
i = arg min

oi

{
1

2
‖xi − u(t+1)

i − oi‖22 + P (oi;λ2, γ)

}
, i = 1, . . . , n. (5.6)

Therefore, the update can be obtained by

o
(t+1)
i = Θ(xi − u(t+1)

i ;λ2, γ), i = 1, . . . , n,

where Θ(·;λ, γ) is a group-thresholding function defined for the corresponding penaly

function P (·;λ, γ). For example, Θ(·;λ, γ) for group lasso is given by

Θglasso(z;λ, γ) = S(z;λ),

where S(·;λ) is a group soft-thresholding function defined as

S(z;λ) = max

(
0, 1− λ

‖z‖2

)
z.

The solution of (5.3) obtained by Algorithm 4 is related to M -estimators, which is

similar to the connection between the minimization problems (5.1) and (5.2). Let Ar

be a |E| × n matrix whose each row is ri1,i2a>
(i1,i2)

and we set

Dr = Ar ⊗ Ip,

where ⊗ denotes the Kronecker product, Ip is a p × p identity matrix, and a(i1,i2) is

defined as (3.6). We also define the mixed (2, 1)-norm (Lounici et al., 2011) for a

|E|p-dimensional vector z as

‖z‖2,1 =
|E|∑
k=1

 kp∑
j=(k−1)p+1

z2j

1/2

.
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Using these definitions, the second term in (5.3) can be written as

∑
(i1,i2)∈E

ri1,i2‖ui1 − ui2‖2 = ‖Drvec(U)‖2,1.

Based on the above definitions, we summarize the relationship between the solution of

the RRC and M -estimator in the following proposition.

Proposition 1. Suppose that Û is a convergence point in Algorithm 4 and ψ(o;λ, γ) =

o−Θ(o;λ, γ). Then, the Û satisfies

−Ψ(X − Û ;λ2, γ) + λ1∂vec(U)(‖Drvec(U)‖2,1)|U=Û 3 0, (5.7)

where ∂vec(U) is the subdifferential with respect to vec(U), and Ψ(X − Û ;λ2, γ) is an

np-dimensional vector defined as

Ψ(X − Û ;λ2, γ) =


ψ(x1 − û1;λ2, γ)

ψ(x2 − û2;λ2, γ)
...

ψ(xn − ûn;λ2, γ)

 .

The proof of the proposition is given by Section 5.8.2. This proposition gives the

relationship between the Û calculated by Algorithm 4 and the following minimization

problem:

min
U


n∑

i=1

ρλ2,γ(xi − ui) + λ1
∑

(i1,i2)∈E

ri1,i2‖ui1 − ui2‖2

 , (5.8)

where ρλ,γ(·) is a multivariate loss function that satisfies

∂

∂z
ρλ,γ(z) = ψ(z;λ, γ).

In general, a subgradient for a function involving a non-convex function term does not

satisfy the sum rule. Thus, the optimality condition for Problem (5.8) with non-convex

function ρλ,γ(·) does not coincide with the inclusion relationship (5.7). However, if we

choose a regularization term P (z;λ, γ) so that ρλ,γ(z) is a weakly convex function,
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the sum rule of the subdifferential (Ngai et al. (2000); Corollary 3.9) can be applied

to the objective function of Problem (5.8). Here, a function f(z) is called Cp-weakly

convex function with modules Cp ≥ 0, if the function g(z) = f(z)+ Cp

2
‖z‖22 is a convex

function (e.g. Denevi et al. (2018)). With this weak convexity of ρλ,γ(·), the optimality

condition regarding the stationary points coincides with the inclusion relationship (5.7),

which means any output Û is one of the stationary points of the Problem (5.8). The

loss functions induced from group SCAD and group MCP are weakly convex, while the

skipped mean loss (e.g. Hampel (1985)) induced from group hard thresholding is not

weakly convex. The proofs of the weakly convexity of those loss functions are given in

Section 5.8.1.

We present four specific multivariate loss functions and their corresponding group-

thresholding functions. Some of them are illustrated in Figure 5.1.

Multivariate loss functions and group-thresholding functions

Group SCAD

For γ > 2, the group SCAD thresholding function and loss function are, respectively,

expressed as

ρgSCAD
λ,γ (z) =



1
2
‖z‖22 ‖z‖2 ≤ λ,

λ‖z‖2 − λ2

2
λ ≤ ‖z‖2 < 2λ,

γλ
γ−2

‖z‖2 − 1
2(γ−2)

‖z‖22 −
γ+2

2(γ−2)
λ2 2λ ≤ ‖z‖2 ≤ γλ,

γ+1
2
λ2 γλ < ‖z‖2,

ΘgSCAD(o;λ, γ) =


S(o;λ), ‖o‖2 ≤ 2λ,

γ−1
γ−2

S(o, γλ
γ−1

), 2λ < ‖o‖2 ≤ γλ,

o, ‖o‖2 > γλ.
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Group MCP

For γ > 1, the group MCP thresholding function and loss function are, respectively,

expressed as

ρgMCP
λ,γ (z) =


1
2
‖z‖22 ‖z‖2 ≤ λ,

γλ
γ−1

‖z‖2 − 1
2(γ−1)

‖z‖22 −
γλ2

2(γ−1)
λ ≤ ‖z‖2 ≤ γλ,

γλ2

2
γλ < ‖z‖2,

ΘgMCP(o;λ, γ) =


γ

γ−1
S(o, λ), ‖o‖2 ≤ γλ,

o, ‖o‖2 > γλ.

Multivariate skipped mean loss

We define the multivariate version of the skipped mean loss function as

ρMS
λ (z) =


‖z‖22
2

‖z‖2 ≤ λ,

λ2

2
‖z‖2 > λ.

The corresponding group hard thresholding function is given by

ΘMS(o;λ) =

0, ‖o‖2 ≤ λ,

o, ‖o‖2 > λ.

Multivariate Tukey

We define the multivariate version of Tukey’s loss function as

ρMT
λ (z) =

1−
(
1− ‖z‖22

λ2

)3
‖z‖2 ≤ λ,

1 ‖z‖2 > λ.

The corresponding group thresholding function can be expressed as

ΘMT(o;λ, γ) =

o− o
(
1− ‖o‖22

λ2

)2
‖o‖2 ≤ λ,

o ‖o‖2 > λ.
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(a) multivariate Huber’s loss (b) group SCAD loss (c) group Tukey’s loss

(d) group soft thresholding (e) group SCAD thresholding (f) group Tukey’s thresholding

Figure 5.1: The multivariate loss functions (top row), the group-thresholding functions

(bottom row). The x-axis and y-axis represent the values of input z ∈ R2. The z-axis

shows the output ρλ,γ(z) in the top row, and the first component of Θ(z;λ, γ) in the

bottom row. The values of λ and γ are fixed with three.

Proposition 1 is inspired by similar propositions in She and Owen (2011) and

Katayama and Fujisawa (2017). While they considered linear regression case and only

the situation where Θ(·;λ, γ) is defined as the component-wise thresholding function, we

consider clustering problem and the situation where Θ(·;λ, γ) is a group-thresholding

function. This enables us to solve clustering problems with multivariate robust loss

functions by optimizing the problems with group penalties for outlier parameters in-

stead.
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5.3 Proposed method

5.3.1 Multi-task learning via robust regularized clustering

Almost all existing MTL methods based on clustering have not considered the presence

of outlier tasks. For instance, MTLCVX shrinks the difference of centroids including

those of outlier tasks, which contaminates the estimation of centroids. As a result, the

estimation of regression coefficients concerning tasks corresponding to contaminated

centroids also worsens. This motivates us to separate the estimation of the parameters

concerning task clusters from outlier tasks. To the best of our knowledge, only Yao

et al. (2019) consider the presence of outlier tasks and clustering of tasks simultaneously.

However, their way of making the robustness of their method is not clear. On the other

hand, some robust MTL methods (Chen et al., 2011; Gong et al., 2012) have attempted

to address the issues of outlier tasks by introducing outlier parameters and selecting

them using group lasso regularization. However, group lasso (Yuan and Lin, 2006)

limits the value of the outlier parameters, which may not adequately represent their

nature. To overcome these problems, we propose the Multi-Task Learning via Robust

Regularized Clustering (MTLRRC). MTLRRC is formulated as follows:

min
w0,W,U,O

{
T∑

m=1

1

nm

L(wm0,wm) +
λ1
2

T∑
m=1

‖wm − um − om‖22

+λ2
∑

(m1,m2)∈E

rm1,m2‖um1 − um2‖2 +
T∑

m=1

P (om;λ3, γ)

 ,

(5.9)

where om = (om1, . . . , omp)
> ∈ Rp is a vector of outlier parameters for m-th task, λ3 is

a regularization parameter with a non-negative value. The second through the fourth

term is based on the minimization problem (5.3). Then, if om is estimated to be a

non-zero vector, m-th task is considered to be an outlier task that does not share a

common structure with any tasks. We set the weights rm1,m2 based on Eq. (4.2)

In this problem, the centroid parameters um whose difference is shrunk and outlier
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parameters um estimated to be zero vector or not are separated in the light of reg-

ularization. Thus, the cluster center component and the potential outlier component

included in a task are estimated separately. Furthermore, if we employ non-convex

regularization terms such as group SCAD, we can allow om to have a large value, which

also leads to the large difference between wm and um. Then, the contamination from

outlier tasks with significant unique characteristics is expected to be reduced. Next, we

introduce another interpretation of the proposed method.

5.3.2 Interpretation through the BCD algorithm

5.3.2.1 Convex case

First, we consider that group lasso is employed for P (·;λ, γ) in (5.9). Then, since

MTLRRC is a convex optimization problem, we can obtain another representation for

(5.9) by minimizing in terms of O as follows:

min
w0,W,U

{
T∑

m=1

1

nm

L(wm0,wm) + λ1

T∑
m=1

hMλ3/λ1
(wm − um)

+λ2
∑

(m1,m2)∈E

rm1,m2‖um1 − um2‖2

 ,

(5.10)

where hMλ (·) is a multivariate Huber’s loss function (Hampel et al., 1986) defined as

hMλ (z) =


1
2
‖z‖22 ‖z‖2 ≤ λ,

λ‖z‖2 − λ2

2
‖z‖2 > λ.

This representation helps us understand the interpretation of the proposed method

(5.9).
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Algorithm 5 Block coordinate descent algorithm for Problem (5.10)
Require: (ym, Xm;m = 1, . . . , T ), R, λ1, λ2, λ3, U

(0)

while until convergence of W (t) and U (t) do

(w
(t+1)
0 ,W (t+1)) = arg min

w0,W
LMH(w0,W, U

(t)) (5.11)

U (t+1) = arg min
U

LMH(w
(t+1)
0 ,W (t+1), U) (5.12)

end while

Ensure: W,U

Let the objective function of the minimization problem (5.10) be LMH(w0,W, U).

We consider solving the minimization problem (5.10) by Algorithm 5 based on the BCD

algorithm. Since the minimization in terms of wm is separable, the update (5.11) is

expressed as

(w
(t+1)
m0 ,w(t+1)

m ) = arg min
w0,wm

{
1

nm

L(wm0,wm) + λ1h
M
λ3/λ1

(wm − u(t)
m )

}
, m = 1, . . . , T.

These updates estimate the regression coefficients for the m-th task to be close to the

corresponding centroid. However, when ‖w − u(t)
m ‖2 tends to take a larger value than

λ3/λ1, the shrinkage toward the centroid is reduced by the part of L2-norm in the

multivariate Huber’s function. Thus, if m-th task is an outlier task, the estimated ŵm

is expected to be less affected by the common structure ûm.

The minimization problem in terms of the update (5.12) is in the framework of the

minimization problem (5.8). This can be seen by replacing (xi; i = 1, . . . , n) in (5.8)

with (w
(t+1)
m ;m = 1, . . . , T ) and ρλ2,γ(·) with hHM

λ3
(·). Consequently, the update of U (t+1)

is performed under the robust clustering of tasks. Based on the discussions of Algorithm

5, the estimated values Ŵ and Û in MTLRRC can be regarded as a convergence point

of alternative estimation, which consists of a regression step that reduces shrinkage of

outlier tasks toward cluster center and a robust clustering step for tasks. Therefore,
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MTLRRC is expected to be robust to the outlier tasks.

5.3.2.2 Non-convex case

Next, we consider that non-convex group penalties are employed for P (·;λ, γ) in (5.9).

The estimates of the parameters can be calculated by Algorithm 6. Here, LMR(w0,W, U,O)

is the objective function of the minimization problem (5.9). Then, the following propo-

sition similar to Proposition 1 holds.

Proposition 2. Let w′
m = (wm0,w

>
m)

>. Suppose that
(
ŵ0, Ŵ , Û

)
is a pair of conver-

gence point in Algorithm 6 and ψ(o;λ, γ) = o−Θ(o;λ, γ). Then, (ŵ0, Ŵ , Û) satisfies

∂

∂w′
m

1

nm

L(wm0,wm)|w′
m=ŵ′

m
+ λ1

(
0

ψ(ŵm − ûm;λ3/λ1, γ)

)
= 0, m = 1, . . . , T,

−λ1Ψ(Ŵ − Û ;λ3/λ1, γ) + λ2∂vec(U)(‖Drvec(U)‖2,1)|U=Û 3 0.

(5.13)

The proof of the proposition is given by Section 5.8.2. When the P (z;λ, γ) is employed

such that corresponding ρλ,γ(z) is a weakly convex function, the equations (5.13) are

the same first-order conditions for the following minimization problem:

min
wm,um∈Rp,
m=1,...,T

{
T∑

m=1

1

nm

L(wm0,wm) + λ1

T∑
m=1

ρλ3/λ1,γ(wm − um)

+λ2
∑

(m1,m2)∈E

rm1,m2‖um1 − um2‖2

 .

(5.14)

Therefore, we may expect that the solution in the case of non-convex penalties has a

similar interpretation of the minimization problem (5.10).

5.4 Estimation algorithm via modified ADMM

MTLRRC can be estimated by Algorithm 6. However, this estimation procedure is

computationally expensive, because the update of U (t+1) involves solving the convex
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Algorithm 6 Block coordinate descent algorithm for MTLRRC
Require: (ym, Xm;m = 1, . . . , T ), R, λ1, λ2, λ3, U

(0), O(0)

while until convergence of w(t)
0 ,W

(t), U (t) and O(t) do

(w
(t+1)
0 ,W (t+1)) = arg min

w0,W
LMR(w0,W, U

(t), O(t))

U (t+1) = arg min
U

LMR(w
(t+1)
0 ,W (t+1), U,O(t))

O(t+1) = arg min
O

LMR(w
(t+1)
0 ,W (t+1), U (t+1), O)

end while

Ensure: w0,W, U,O

clustering, which is computationally demanding. To avoid this computation, we con-

sider estimating parameters included in MTLRRC by alternating direction method of

multipliers (ADMM; Boyd et al. (2011)).

We consider the following minimization problem equivalent to Problem (5.9):

min
w0,W,U,O

{
T∑

m=1

1

nm

L(wm0,wm) +
λ1
2

T∑
m=1

‖W − U −O‖2F

+λ2
∑

(m1,m2)∈E

rm1,m2‖b(m1,m2)‖2 +
T∑

m=1

P (om;λ3, γ)

 ,

s.t. AEU = B.

For this minimization problem, we consider the following augmented Lagrangian:

Lν(w0,W, U,O,B, S) =
T∑

m=1

1

nm

L(wm0,wm) +
λ1
2
‖W − U −O‖2F

+ λ2
∑

(m1,m2)∈E

rm1,m2‖b(m1,m2)‖2 +
T∑

m=1

P (om;λ3, γ)

+ tr(S>(B − AEU)) +
ν

2
‖B − AEU‖2F ,

(5.15)

where AE is a |E| × T matrix whose each row is a>
m1,m2

defined with the same manner
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of Eq. (3.6), S is a |E| × p Lagrangian multipliers matrix, and ν is a tuning parameter

with non-negative value.

For this augmented Lagrangian, we consider the following updates of the modified

ADMM in Chapter 3:

(w
(t+1)
0 ,W (t+1)) = arg min

w0,W
Lν(w0,W, U

(t), O(t), B, S(t)),

U (t+1) = arg min
U

(
min
B
Lν(w

(t+1)
0 ,W (t+1), U,O(t), B, S(t))

)
,

O(t+1) = arg min
O

Lν(w
(t+1)
0 ,W (t+1), U (t+1), O(t), B, S(t)),

S
(t+1)
(m1,m2)

= prox((S(t) + νAEU
(t+1))(m1,m2), λ2rm1,m2), (m1,m2) ∈ E ,

The update for w0 and W is given by solving the independent regularized GLMs for

each task, which are expressed as

(w
(t+1)
m0 ,w(t+1)

m ) = arg min
wm0,wm

{
1

nm

L(wm0,wm) +
λ1
2
‖wm − u(t)

m − o(t)m ‖22
}
, m = 1, . . . , T.

These minimization problems are solved by the Newton-Raphson method provided in

Algorithm 3.

The minimization problem in terms of U and B is jointly done. The minimization in

terms of B can be written explicitly as shown in Chapter 3. We only need to solve that

in terms of U using the accelerated gradient method, which is provided in Algorithm 8.

The update of O is given by the same manner as (5.6). As a result, we obtain the

estimation algorithm for MTLRRC as Algorithm 7.

Although the convergence of ADMM for non-convex functions has been shown in

some studies (e.g. Wang et al. (2019) and Fan and Yin (2024)), the convergence of the

proposed method is non-trivial because of the modification of the ADMM algorithm

based on Shimmura and Suzuki (2022). We provide a theoretical guarantee regarding

convergence to a limit point, which is summarized as the following theorem.

Theorem 1. Assume that P (·;λ, γ) is a weakly convex function with modules Cp. If

λ1 > Cp and ν > 2λ2
1

λ++(A>
E AE)(λ1−Cp)

are satisfied, the sequence {w(t)
0 ,W

(t), U (t), O(t), B(t), S(t)}
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generated by the Algorithm 7 converges to a limit point {ŵ(∗)
0 , Ŵ (∗), Û (∗), Ô(∗), B̂(∗), Ŝ(∗)}.

In addition, any limit point is a stationary point of the augmented Lagrangian (5.15).

The proof of the theorem is given by Section 5.8.2. This theorem ensures that our

modified ADMM algorithm converges to a stationary point under mild conditions. The

conditions provide practical guidelines for parameter selection in the algorithm. Specif-

ically, we can ensure convergence by setting λ1 larger than the weak convexity modulus

Cp and choosing an appropriate step size ν. However, as we will see in later simulation

studies, even if these conditions are not satisfied, the algorithm will converge empirically

in many situations.

Furthermore, we consider the following augmented Lagrangian derived from Prob-

lem (5.14):

Lν(w0,W, U,O,B, S) =
T∑

m=1

1

nm

L(wm0,wm) +
λ1
2

T∑
m=1

ρλ3/λ1,γ(wm − um)

+ λ2
∑

(m1,m2)∈E

rm1,m2‖b(m1,m2)‖2

+ tr(S>(B − AEU)) +
ν

2
‖B − AEU‖2F .

(5.16)

Then, the following holds.

Proposition 3. Under the assumption of Theorem 1 with λ1 > Cp and ν > 2λ2
1

λ++(A>
E AE)(λ1−Cp)

.

Then, any limit point {ŵ(∗)
0 , Ŵ (∗), Û (∗), B̂(∗), Ŝ(∗)} is one of the stationary points for the

minimization problem concerning (5.16).

The proof of the proposition is given by Section 5.8.2. This proposition is the ADMM

version of Proposition 2, which would justify minimizing MTLRRC by using the mod-

ified ADMM algorithm instead of the BCD algorithm. Note that due to the non-

convexity of the objective function except when group lasso is used, there may be a

duality gap between the original MTLRRC and the minimization problem concerning

its augmented Lagrangian.
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We analyze the computational complexity of our proposed method. The initializa-

tion of ι requires O(|E|T 2) operations, which is computed only once before the ADMM

iterations. Within each ADMM iteration, updating (w
(t+1)
0 ,W (t+1)) via the Newton-

Raphson method requires O(NNRp
2(n+Tp)) operations, whereNNR denotes the number

of Newton-Raphson iterations. The update of U (t+1) via accelerated gradient method

requires O(NAG|E|Tp) operations, where NAG represents the number of accelerated gra-

dient method iterations. The update of O(t+1) requires O(Tp) operations. The update

of S(t+1) requires O(|E|Tp) operations. Consequently, each iteration of Algorithm 7 has

an overall computational complexity of O(NNRp
2(n + Tp) + NAG|E|Tp). In contrast,

Algorithm 6 requires O(NNRp
2(n+ Tp) +NANAG|E|Tp) operations, where NA denotes

the number of ADMM iterations required for solving the convex clustering problem.

Thus, the computational complexity of the BCD algorithm regarding the second term is

NA times larger than that of the modified ADMM algorithm, which can be substantial

when NA is large.

We further compare our method with RCMTL (Yao et al., 2019), which is the only

existing method that addresses both robustness against outlier tasks and task cluster-

ing. RCMTL employs a BCD algorithm incorporating two inner ADMM algorithms.

Their algorithm requires O(NA1NGTp(n + T ) +NA2T
2p) operations in each iteration,

where NA1 , NA2 , and NG denote the iteration counts for the first inner ADMM, sec-

ond inner ADMM, and gradient method within the first inner ADMM, respectively.

In comparing MTLRRC and RCMTL, the first term in both complexity expressions

primarily reflects the computational cost of updating regression coefficients, while the

second term corresponds to updating the task relationship components. For the first

term, direct comparison is difficult as RCMTL employs backtracking to avoid matrix

inversion computations. Regarding the second term in our modified ADMM, when the

weights rm1,m2 are constructed according to Eq. (4.2), the computational complexity

becomes O(NAGkT
2p) since |E| ≤ kT . Given that k is typically small (e.g., k = 5)
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in the context of convex clustering and considering the accelerated gradient method’s

quadratic convergence rate, our modified ADMM algorithm achieves computational

efficiency comparable to or better than RCMTL in the task relationship part.

Algorithm 7 Estimation algorithm of MTLRRC via modified ADMM
Require: {ym, Xm;m = 1, . . . , T}, k, λ1, λ2, λ3, γ, U (0), O(0)

for m = 1, . . . , T do

ŵSTL
m = STL(ym, Xm)

end for

calculating R by Eq. (4.2) from k and ŵSTL
m

converting R into AE by Eq. (3.6)

L = A>
EAE , ι =

1
λ1+2maxi=1,...,T ((L)ii)

while until convergence of W (t) do

update of w0 and W

for m = 1, . . . , T do

(w
(t+1)
m0 ,w

(t+1)>
m )> = NR(nm, Xm,ym, (u

(t)
m + o

(t)
m ), λ1)

end for

update of U

U (t+1) = AGU(W (t+1), O(t), S(t))

update of O

for m = 1, . . . , T do

o
(t+1)
m = Θ(w

(t+1)
m − u(t+1)

m ;λ3/λ1, γ)

end for

update of S

for (m1,m2) ∈ E do

S
(t+1)
(m1,m2)

= prox((S(t) + νAE · U (t+1))(m1,m2), λ2rm1,m2)

end for

end while

Ensure: w0,W, U,O
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Algorithm 8 Update of U via accelerated gradient method
function AGU(W,O, S)

l = 0, α(0) = 1, H(0) = W,E(0) = W

while until convergence of H(l) do

for (m1,m2) ∈ E do

F(m1,m2) = prox((S + νAE · E(l))m1,m2 , λ2rm1,m2)

end for

H(l+1) = E(l) − ι{λ1(E(l) +O −W ) + A>
E F}

α(l+1) =
1+

√
1+4(α(l))2

2

E(l+1) = E(l) + α(l)−1
α(l+1) (H

(l+1) −H(l))

end while

Output: U = H(l)

end function

5.5 Simulation studies

In this section, we report simulation studies in the linear regression setting. We gener-

ated data by the true model:

ym = Xmw
∗
m + εm, m = 1, . . . , T,

where εm is an error term whose each component is distributed as N(0, σ2) indepen-

dently, Xm is a design matrix generated from Np(0, Ip) independently, and w∗
m is a true

regression coefficient vector for m-th task. For this true model, T tasks consist of C

true clusters and other outlier tasks. First, all tasks were assigned to C clusters with

the same number of tasks in each cluster as T/C. Then, some of them were randomly

assigned to outlier tasks.

For the true structure of regression coefficient vectors, we considered the following
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two cases:

Case 1: w∗
m = u∗

c + v
c∗
m + I(τm = 1)oc∗m,

Case 2: w∗
m =

u
∗
c + v

c∗
m if τm = 0,

o∗m if τm = 1,

where u∗
c is a true cluster center for c-th cluster, vc∗m is a true task-specific parameter

for m-th task belonging to c-th cluster, om is a true outlier parameter for m-th task,

and τm is a random variable distributed as P (τm = 1) = κ and P (τm = 0) = 1 − κ.

τm = 1 means that the m-th task is assigned to an outlier task. Case 1 considers a

situation where outlier tasks share the same cluster center with other tasks, but the

outlier parameter is added. On the other hand, Case 2 considers a situation where

outlier tasks do not have any common structure with other tasks.

The parameters u∗
c ,v

c∗
m , and o∗m were generated as follows. First, each explanatory

variable {j = 1, . . . , p} was randomly assigned to the c-th clusters {c = 1, . . . , C} with

the same probability. Then, we generated a true centroid parameter for c-th cluster

u∗
c = (u∗c1, . . . , u

∗
cp)

> by

u∗cj

∼ N(0, 10) if j-th variable is assigned to c-th cluster,

= 0 otherwise,
j = 1, . . . , p.

Next, we generated a true task-specific parameter for m-th task that belongs to c-th

cluster vc∗m = (vc∗m1, . . . , v
c∗
mp)

> by

vc∗mj

∼ N(0, 1) if j-th variable is assigned to c-th cluster,

= 0 otherwise,
j = 1, . . . , p.

For Case 1, we generated a true outlier parameter for m-th task belonging to c-th cluster

but assigned to an outlier task oc∗m = (oc∗m1, . . . , o
c∗
mp)

> by

oc∗mj

∼ fMTN(o) if j-th variable is assigned to c-th cluster,

= 0 otherwise,
j = 1, . . . , p,
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where fMTN(o) is a mixture of truncated normal distribution given by

fMTN(o) = 0.5f(o,−∞,−3,−3, σ2
o) + 0.5f(o, 3,∞, 3, σ2

o),

where f(o, a, b, µ, σ) is a truncated normal distribution on a ≤ o ≤ b whose original

normal distribution has mean µ and variance σ2. The reason for generating o(c)∗mj from

fMTM(o) is to leave the absolute value of oc∗mj away from zero so that the outlier task is

located away from the cluster. For Case 2, we generated a true outlier parameter for

m-th task o∗m = (o∗m1, . . . , o
∗
mp)

> by

o∗mj ∼ U(−10, 10), j = 1, . . . , p,

where U(a, b) is the continuous uniform distribution. Note that oc∗m in Case 1 shares the

same index of non-zero variables with other tasks belonging to the c-th cluster, while

all o∗m in Case 2 do not have any zero variables.

From these generating ways of u∗
c ,v

c∗
m , oc∗m, and o∗m, true regression coefficient vectors

for non-outlier tasks that belong to different clusters have different non-zero variables.

In other words, tasks belonging to different clusters are orthogonal to each other.

For our true model, we set as nm = 200, p = 100, T = 150, and σ2 = 5. 200 samples

in each task were split into 50 samples for the train, 100 samples for the validation, and

left samples for the test. We considered settings: κ = {0, 0.1, 0.2, 0.3, 0.4}.

We compared MTLRRC with several methods for the evaluation. For MTLRRC,

we consider the three cases where group lasso (GL), group SCAD (GS), and group MCP

(GM) are used for the fourth term in (5.9). Here, we set γ = 3.7 for group SCAD and

γ = 3 for group MCP. As other competing methods, we employed MTLCVX, MTLK

(multi-task learning via k-means; Argyriou et al. (2007)), RCMTL (Yao et al., 2019),

and Hotelling-like outlier task detection with MTLK (HMTLK). Here, HMTLK was

done as follows. First, ŵSTL
m (m = 1, . . . , T ) were estimated and these sample mean

w̄STL and covariance matrix Σ̄STL were also calculated. For these values, we calculated

the statistic hm = (ŵSTL
m − w̄STL)>(Σ̄STL)−1(ŵSTL

m − w̄STL). Then, we detected tasks
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that satisfied hm ≥ χ
(95)
p , where χ(95)

p is a 95 percentile point of χ2 distribution having

p degrees of freedom. Finally, we estimated regression coefficients by MTLK except

for detected outlier tasks. Note that the detection based on Hotelling’s T 2 is not

theoretically justified for this simulation setting. However, as we will see later, it is

possible to detect some outlier tasks.

The weights rm1,m2 for both MTLCVX and MTLRRC were calculated by Eq. (4.2).

k was set to five. The estimation of ŵSTL
m in Eq. (4.2) and HMTLK were performed

by the lasso in R package “glmnet”. In addition, the initialization of RCMTL was done

by singular value decomposition of the initial regression coefficient matrix, which is

also calculated by “glmnet”. The tuning parameter ν included in Algorithm 7 was set

to one. The regularization parameters were determined by the validation data. For

the evaluation, we calculated the normalized mean squared error (NMSE), root mean

squared error (RMSE), true positive rate (TPR), and false positive rate (FPR):

NMSE =
1

T

T∑
m=1

‖y∗
m −Xmŵm‖22
nmVar(y∗

m)
,

RMSE =
1

T

√√√√ T∑
m=1

‖w∗
m − ŵm‖22,

TPR =
# {m;o∗m 6= 0 ∧ ôm 6= 0}

# {m;o∗m 6= 0}
,

FPR =
# {m;o∗m = 0 ∧ ôm 6= 0}

# {m;o∗m = 0}
.

NMSE and RMSE evaluate the accuracy of the prediction and estimated regression

coefficients, respectively. TPR and FPR evaluate the accuracy of outlier detection.

They were computed 40 times, and the mean and standard deviation were obtained in

each setting.

Tables 5.1, 5.2, and 5.3 show the results of simulation studies for κ = 0, Cases 1 and

2, respectively. For Case 1, MTLRRC and MTLCVX show almost identical accuracy

in NMSE and RMSE with all κs. MTLRRC, MTLCVX, and MTLK, which do not

remove the outlier task a priori, outperform HMTLK in terms of NMSE and RMSE.
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This may suggest that multi-task learning improves the estimation accuracy even for

outlier tasks that are located away from other tasks. As for TPR, HMTLK shows

better results than MTLRRC. If the purpose is only to detect and eliminate outlier

tasks, HMTLK is probably a better choice than robust MTL methods. For FPR,

MTLRRC with non-convex penalties archives almost the best performance with any

κ. For Case 2, MTLRRC with non-convex penalties shows better performance than

MTLCVX in terms of NMSE and RMSE. Furthermore, MTLRRC with non-convex

penalties is superior to HMTLK in terms of both TPR and FPR. As for RCMTL,

our results do not show any superior performance in all settings. This is possibly due

to the incompatibility between initialization values obtained from “glmnet” and their

parameter initialization method based on singular value decomposition, which causes

the optimization algorithm to fall into local optima with poor accuracy. Note that in

Tables 5.2 and 5.3, we do not highlight any TPR of RCMTL regardless of the large

value, because RCMTL does not select almost all non-outlier tasks, and the value is

meaningless.

On the whole, MTLRRC with non-convex penalties detected true outlier tasks while

greatly minimizing the detection of false outlier tasks for both Case 1 and Case 2. How-

ever, the differences in estimation accuracy between MTLCVX and MTLRRC are small,

particularly for small κ. On the other hand, MTLRRC with the group lasso regular-

ization shows poor performance even for TPR and FPR. For outlier task detection, the

group lasso regularization would not be recommended.
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Table 5.1: Simulation result with non-outlier tasks

κ Method NMSE RMSE TPR FPR
0 MTLRRC (GL) 0.010 (0.003) 0.424 (0.073) N/A 0.206 (0.358)

MTLRRC (GS) 0.010 (0.004) 0.417 (0.073) N/A 0.001 (0.002)
MTLRRC (GM) 0.011 (0.003) 0.424 (0.076) N/A 0.001 (0.003)
RCMTL 0.750 (0.015) 4.040 (0.228) N/A 1.000 (0.002)
HMTLK 0.080 (0.061) 1.302 (0.469) N/A 0.090 (0.080)
MTLCVX 0.010 (0.003) 0.427 (0.076) – –
MTLK 0.029 (0.044) 0.603 (0.377) – –
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Table 5.2: Simulation result of Case 1

κ Method NMSE RMSE TPR FPR
0.1 MTLRRC (GL) 0.035 (0.008) 1.056 (0.111) 0.386 (0.443) 0.263 (0.414)

MTLRRC (GS) 0.035 (0.007) 1.043 (0.120) 0.345 (0.434) 0.001 (0.002)
MTLRRC (GM) 0.036 (0.008) 1.048 (0.120) 0.363 (0.416) 0.001 (0.004)
RCMTL 0.747 (0.016) 4.152 (0.263) 0.998 (0.010) 1.000 (0.002)
HMTLK 0.112 (0.039) 1.864 (0.314) 0.724 (0.152) 0.073 (0.061)
MTLCVX 0.035(0.009) 1.030 (0.131) – –
MTLK 0.054 (0.040) 1.190 (0.274) – –

0.2 MTLRRC (GL) 0.063 (0.012) 1.459 (0.136) 0.249 (0.356) 0.094 (0.279)
MTLRRC (GS) 0.069 (0.015) 1.490 (0.146) 0.261 (0.381) 0.001 (0.003)
MTLRRC (GM) 0.066 (0.012) 1.459 (0.154) 0.352 (0.427) 0.001 (0.004)
RCMTL 0.744 (0.015) 4.349 (0.250) 1.000 (0) 1.000 (0)
HMTLK 0.145 (0.040) 2.234 (0.290) 0.693 (0.080) 0.040 (0.049)
MTLCVX 0.062 (0.014) 1.437 (0.145) – –
MTLK 0.079 (0.044) 1.528 (0.258) – –

0,3 MTLRRC (GL) 0.092 (0.019) 1.778 (0.140) 0.381 (0.426) 0.200 (0.359)
MTLRRC (GS) 0.092 (0.020) 1.761 (0.154) 0.149 (0.255) 0.001 (0.003)
MTLRRC (GM) 0.095 (0.017) 1.823 (0.143) 0.453 (0.440) 0.001 (0.004)
RCMTL 0.748 (0.016) 4.487 (0.265) 1.000 (0) 1.000 (0.001)
HMTLK 0.189 (0.045) 2.596 (0.233) 0.622 (0.078) 0.023 (0.025)
MTLCVX 0.091 (0.013) 1.778 (0.113) – –
MTLK 0.106 (0.049) 1.836 (0.298) – –

0,4 MTLRRC (GL) 0.120 (0.020) 2.043 (0.122) 0.306 (0.382) 0.179 (0.333)
MTLRRC (GS) 0.117 (0.020) 2.035 (0.154) 0.317 (0.394) 0.001 (0.003)
MTLRRC (GM) 0.117 (0.017) 2.026 (0.117) 0.313 (0.383) 0.002 (0.004)
RCMTL 0.746 (0.015) 4.552 (0.245) 1.000 (0) 1.000 (0)
HMTLK 0.244 (0.044) 2.929 (0.196) 0.586 (0.092) 0.036 (0.049)
MTLCVX 0.122(0.020) 2.089 (0.139) – –
MTLK 0.135 (0.056) 2.090 (0.288) – –
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Table 5.3: Simulation result of Case 2

κ Method NMSE RMSE TPR FPR
0.1 MTLRRC (GL) 0.069 (0.015) 1.205 (0.141) 0.294 (0.337) 0.304 (0.446)

MTLRRC (GS) 0.069 (0.015) 1.202 (0.130) 0.886 (0.308) 0.014 (0.013)
MTLRRC (GM) 0.067 (0.014) 1.188 (0.132) 0.826 (0.358) 0.008 (0.008)
RCMTL 0.745 (0.012) 4.002 (0.257) 0.998 (0.016) 0.999 (0.003)
HMTLK 0.157 (0.060) 1.867 (0.388) 0.613 (0.134) 0.111 (0.078)
MTLCVX 0.072 (0.017) 1.233 (0.163) – –
MTLK 0.094 (0.035) 1.380 (0.236) – –

0.2 MTLRRC (GL) 0.130 (0.019) 1.670 (0.135) 0.480 (0.361) 0.339 (0.414)
MTLRRC (GS) 0.125 (0.021) 1.631 (0.136) 0.936 (0.215) 0.020 (0.019)
MTLRRC (GM) 0.118 (0.016) 1.595 (0.115) 0.935 (0.224) 0.023 (0.013)
RCMTL 0.740 (0.013) 4.053 (0.236) 1.000 (0) 0.999 (0.002)
HMTLK 0.211 (0.044) 2.155 (0.251) 0.524 (0.100) 0.075 (0.066)
MTLCVX 0.123 (0.020) 1.625 (0.139) – –
MTLK 0.152 (0.035) 1.793 (0.201) – –

0.3 MTLRRC (GL) 0.173 (0.017) 1.935 (0.103) 0.467 (0.352) 0.317 (0.387)
MTLRRC (GS) 0.171 (0.018) 1.914 (0.102) 0.936 (0.226) 0.020 (0.020)
MTLRRC (GM) 0.166 (0.018) 1.881 (0.114) 0.911 (0.246) 0.021 (0.020)
RCMTL 0.737 (0.014) 4.048 (0.184) 1.000 (0) 1.000 (0)
HMTLK 0.276 (0.042) 2.459 (0.198) 0.542 (0.089) 0.066 (0.051)
MTLCVX 0.181 (0.024) 1.972 (0.132) – –
MTLK 0.204 (0.037) 2.081 (0.179) – –

0.4 MTLRRC (GL) 0.232 (0.022) 2.246 (0.109) 0.551 (0.387) 0.292 (0.391)
MTLRRC (GS) 0.220 (0.024) 2.181 (0.115) 0.943 (0.202) 0.029 (0.025)
MTLRRC (GM) 0.226 (0.028) 2.210 (0.134) 0.890 (0.275) 0.031 (0.023)
RCMTL 0.736 (0.010) 4.003 (0.177) 1.000 (0.003) 1.000 (0.002)
HMTLK 0.337 (0.049) 2.698 (0.199) 0.482 (0.078) 0.047 (0.043)
MTLCVX 0.232 (0.024) 2.243 (0.122) – –
MTLK 0.285 (0.047) 2.471 (0.196) – –
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We conducted a sensitivity analysis for the selection of regularization parameters and

γ. The analysis used a fixed dataset generated from Case 1 and Case 2 with κ = 0.2,

maintaining other settings consistent with our previous simulation studies. For the

regularization term, we employed the group SCAD penalty. First, we selected optimal

regularization parameters except for fixed γ = 3.7 through grid search. Then, we

estimated MTLRRC and calculated the evaluation values by varying only one parameter

while fixing the other parameters to their optimal values. Consequently, we obtain

curves representing the empirical relationship between each tuning parameter and the

evaluation values as shown in Figures 5.2 and 5.3 for Case 1 and Case 2, respectively.

For λ1, the selected value is the same for both Case 1 and Case 2. Only in Case 2,

the selection of λ1 is sensitive to all evaluation values. Since the trends of all evalua-

tion values are synchronized, selecting the optimal value that minimizes NMSE yields

favorable TPR and FPR values. Therefore it would be essential to search λ1 in detail.

For λ2, in Case 1, while the curves of NMSE, RMSE and FPR are synchronized, that

of TPR is not. This would explain the small TPR in the Case 1 results, as seen in

Table 5.2. In Case 2, the evaluation values are consistent and less sensitive to the value

of λ2. For λ3, in Case 1, there is not better λ3 improving both FPR and TPR. The

reason for this is that the appropriate λ2 is not selected, and the search for the true

structure regarding outlier tasks and cluster structure has failed. On the other hand,

in Case 2, when λ3 is larger than a certain value, TPR and NMSE are worsened simul-

taneously. This result probably coincides with our motivation to select outliers, which

improves estimation accuracy. For γ, its value has a limited impact when other tuning

parameters are appropriately selected. On the whole, if the outlier task has large char-

acteristics, as in Case 2, then the proposed method can appropriately detect the outlier

task by choosing parameters that minimize the NMSE. However, if the latent outlier

components are subtle, as in Case 1, then selecting the parameters based on NMSE

may fail to identify the outlier task. This limitation requires further investigation in
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future work.
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Figure 5.2: Each figure shows the relationship between one tuning parameter and eval-

uation values. The horizontal axis represents the parameter value, and the vertical axis

represents the evaluation values. The blue line represents NMSE, the green line rep-

resents RMSE, the red line represents TPR, and the purple line represents FPR. Note

that the RMSEs are normalized by those maximum values. The dashed line corresponds

to the optimal value of the parameter that minimizes NMSE.
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Figure 5.3: Evaluation values against regularization parameters under Case 2.

We also check the convergence of our modified ADMM algorithm with group SCAD

penalty. Figure 5.4 shows the results of the convergence under Case 2. Because the Cp

of group SCAD is 1
γ−1

, λ1 > 0.371 satisfies λ1 > Cp for γ = 3.7. The figure shows that

all parameters converge under forty iterations for both λ1 > Cp and λ1 < Cp.
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(a) Convergence for λ1 = 0.05.
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(b) Convergence for λ1 = 0.5

Figure 5.4: The horizontal axis represents the number of iterations (t). Vertical axis

shows the difference of parameter values from previous iterations as blue line ‖W (t) −

W (t+1)‖F , green line ‖U (t) −U (t+1)‖F , red line ‖O(t) −O(t+1)‖F , and purple line ‖S(t) −

S(t+1)‖F , respectively.

5.6 Application to real datasets

In this section, we apply MTLRRC to three real datasets. The first and second datasets

are the landmine data (Xue et al., 2007) and school data (Bakker and Heskes, 2003),

respectively. Similar to the previous chapter, the down-sampling is done for the land-

mine data. The third dataset is microarray data (Wille et al., 2004), which consists

of microarray gene expression data focusing on isoprenoid biosynthesis in plants. The

dataset contains expression levels of 21 genes in the mevalonate pathway and expression

levels of 18 genes in the plastidial pathway. We used those 21 genes as feature variables

and each of the 18 genes as a task. Since the dataset consists of only one design matrix,

the setting is rather multivariate regression.
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Table 5.4: AUC and NMSE for landmine data and school data in 100 repetitions

Landmine School Microarray
Method AUC NMSE NMSE
MTLRRC (GS) 0.764 (0.021) 0.853 (0.058) 0.700 (0.064)
MTLRRC (GSγ) 0.764 (0.024) 0.844 (0.049) 0.686 (0.066)
MTLRRC (GM) 0.760 (0.026) 0.852 (0.053) 0.691 (0.067)
MTLRRC (GMγ) 0.761 (0.026) 0.852 (0.058) 0.687 (0.066)
RCMTL 0.749 (0.022) 5.040 (0.256) 0.788 (0.069)
MTLCVX 0.760 (0.022) 0.847 (0.048) 0.694 (0.068)
DTFLR 0.704 (0.023) - 0.724 (0.070)
MTLK 0.756 (0.023) 0.847 (0.048) 0.693 (0.065)
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Figure 5.5: The mean of the estimated value of parameters in MTLRRC (GSγ) in 100

repetitions for the landmine data
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Figure 5.6: The mean of the estimated value of parameters in MTLRRC (GSγ) in 100

repetitions for the school data
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Figure 5.8: Ratio of ôm 6= 0 for 100 repetitions in the landmine data
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Figure 5.9: Ratio of ôm 6= 0 for 100 repetitions in the school data
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We compared MTLRRC with MTLCVX, RCMTL, DTFLR (distributed spanning-

tree-based fused-lasso regression; Zhang et al. (2024)), and MTLK. First, we split the

samples in each task into 60% for the train, 20% for the validation, and 20% for the test.

The regularization parameters are determined by the validation data. In MTLRRC,

we use non-convex penalties and consider four cases. In the first case, γ is fixed with 3

for the group MCP (GM). In the second case, γ is fixed with 3.7 for the group SCAD

(GS). In the third and fourth cases, γ is chosen by the validation data for group MCP

and group SCAD, respectively (GMγ and GSγ). For the evaluation, we calculated

NMSE for the school data and the microarray data and AUC for the landmine data,

respectively. These values were calculated 100 times with the random splitting of the

dataset.

Table 5.4 shows the mean and standard deviation in 100 repetitions. Due to memory

restrictions, the implementation code published by Zhang et al. (2024) was infeasible for

the school data. From this table, we can observe that MTLRRC (GSγ) gives a smaller
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NMSE and larger AUC than other methods for the school data, the microarray data,

and the landmine data, respectively.

Next, we calculated the mean of estimated parameters Ŵ , Û , and Ô in MTL-

RRC (GSγ). Figures 5.5 and 5.6 show the mean of estimated parameter values for

the landmine data and the school data, respectively. The vertical axis is the index of

tasks, and the horizontal axis is the index of features. Each color shows the mean of the

estimated parameters. Figures 5.8 and 5.9 are bar plots that show the ratios of each

task detected as an outlier task. Here, note that tasks that have never been detected

are removed from the bar plots.

For the landmine data, Figure 5.5(b) suggests the presence of two clusters, which

is consistent with the fact that tasks 1–15 and 16–29 are obtained from regions corre-

sponding to different surface conditions. For outliers detection in Figure 5.5(c), because

the 10-th task has a relatively larger or smaller value than other tasks and the task

is a task detected as an outlier with a ratio greater than 0.3 from Figure 5.8, it may

indicate that the task is a potential outlier task. Furthermore, the 9-th task also has

a relatively high detection ratio that is greater than 0.3, although the mean of ôm is

not as clear as the 10-th task from Figure 5.5(c). The estimated regression coefficients

for the 9-th and 10-th tasks in Figure 5.5(a) show a similarity to other tasks within

the same estimated cluster. These results may suggest the underlying structure among

tasks in the landmine data is rather Case 1 than Case 2 in Section 5.5. Furthermore,

from Figure 5.8, we observe that only two tasks in tasks 16–29 have an outlier task

ratio of more than 0.1, while 13 tasks in tasks 1–15 have. This result suggests that the

cluster composed of tasks 1–15 may have relatively large variability. This may provide

some insight into the structure concerning sub-groups within the cluster.

For the school data, we obtained the homogeneous pattern in Figure 5.6(b). The

school data have been considered rather homogeneous in some studies (Bakker and

Heskes (2003); Evgeniou et al. (2005)). Thus, this result would be reasonable and
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shows that MTLRRC can consistently estimate cluster structure even when the true

number of underlying clusters is one. From Figure 5.9, the 2nd, 28th, 66th, 76th, and

83rd tasks were detected with a rate greater than 0.3. In addition, these tasks show

larger values in om than other tasks from Figure 5.6(c). For the regression coefficients

in Figure 5.6(a), although these tasks share many characteristics with other tasks,

some regression coefficients have different characteristics. For example, the regression

coefficients for 76th and 83rd tasks of 16th feature have, respectively, relatively large

and small values that are much different from other tasks. For the microarray data,

the analysis revealed heterogeneous patterns, as shown in Figures 5.7(a, b), without

exhibiting distinctive features. Figure 5.10 indicates that none of the tasks were clearly

identified as outliers, suggesting the absence of outlier tasks in the microarray dataset.

This finding presents an interesting contrast to the school data and landmine data,

where the existence of outlier tasks was indicated.

5.7 Discussion

We conducted simulation studies to evaluate the performance of MTLRRC under two

scenarios of outlier task structures. In Case 1, outlier tasks share the same characteris-

tics as the centroid but have additional outlier parameters. In Case 2, outlier tasks do

not share any common structure and are independent of other tasks. In both cases, the

proposed method with non-convex group penalties exhibited a near-zero FNR in outlier

detection and a much larger TPR in Case 2. However, the improvement in estimation

and prediction accuracy was slight when the proportion of outlier tasks was small.

In the application to real data, we observed that the proposed method effectively

estimates multiple cluster structures and identifies potential outlier tasks resembling

Case 1. These findings suggest that MTLRRC not only estimates clusters but also pro-

vides insights into the heterogeneity of outlier tasks within clusters. In the usual convex
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clustering for observed and fixed data, one may look at the behavior of the cluster from

the solution path. On the other hand, our clustering targets are regression coefficients,

whose values also depend on the other regularization parameters like λ1. Therefore,

it is difficult to see the solution path. However, the outlier task detection enables us

to obtain information about the behavior of the clusters at the determined regulariza-

tion parameters. Furthermore, the circumstances corresponding to detected tasks can

be subject to re-examination, because the dataset would have unique characteristics

compared with other datasets.

One limitation of our study is that MTLRRC includes three or four regularization

parameters to be determined. The computational cost of searching for the optimal

value of these parameters can be demanding. On the other hand, the definition of the

multivariate M -estimator having a connection to the group penalties is different from

that of the traditional one (Maronna, 1976): while the former M -estimator is defined

as a straightforward extension of the univariate M -estimator with robust multivariate

loss function, the traditional one is defined as the solution of weighted log-likelihood

equations. Although there may be some relationship between these two definitions,

they are probably not equivalent. Moreover, outlier tasks similar to Case 2 were not

detected in the analyzed real data. We leave these topics as future work.

5.8 Proofs

In this section, we provide some proof in this chapter.

5.8.1 Proofs of the weakly convexity

First, we set h(z) = ρgSCAD
λ,γ (z)+ 1

2(γ−2)
‖z‖22. The Hessian matrix in each region of h(z)

is semi-positive definite, as it can be easily verified. Next, we consider the limits of the

derived function ∂
∂z
h(z) into an arbitrary point z0 on the boundary partitioning the
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function from the inside and the outside of regions. The limits are given by

lim
z→z0
‖z‖2≤λ

∂

∂z
h(z) = lim

z→z0
λ≤‖z‖2<2λ

∂

∂z
h(z) =

γ − 1

γ − 2
z0, s.t. ‖z0‖2 = λ,

lim
z→z0

λ≤‖z‖2<2λ

∂

∂z
h(z) = lim

z→z0
2λ≤‖z‖2<γλ

∂

∂z
h(z) =

γ

2(γ − 2)
z0, s.t. ‖z0‖2 = 2λ,

lim
z→z0

2λ≤‖z‖2<γλ

∂

∂z
h(z) = lim

z→z0
γλ≤‖z‖2

∂

∂z
h(z) =

1

γ − 2
z0, s.t. ‖z0‖2 = γλ.

These imply that the derived function ∂
∂z
h(z) is continuous in the boundaries. Thus,

h(z) is a convex function and ρgSCAD
λ,γ (z) is a weakly convex function. Similarly, the

group MCP is also a weakly convex function.

On the other hand, for the multivariate skipped mean loss, we set h(z) = ρSMλ (z) +

δ
2
‖z‖22 (δ > 0). The limits for the derived function into the boundary are calculated as

follows:

lim
z→z0
‖z‖2≤λ

∂

∂z
h(z) = (δ + 1)z0, s.t. ‖z0‖2 = λ,

lim
z→z0
‖z‖2>λ

∂

∂z
h(z) = δz0, s.t. ‖z0‖2 = λ,

Therefore, the derived function is discontinuous at the boundary. Then, multivariate

skipped mean loss is not a weakly convex function.

5.8.2 Proofs of the propositions and theorem

Proof of Proposition 1. From the update of Algorithm 4, a convergence point (Û , Ô)

satisfies

vec(Ô) =


ô1

ô2
...
ôn

 =


Θ(x1 − û1;λ2, γ)

Θ(x2 − û2;λ2, γ)
...

Θ(xn − ûn;λ2, γ)

 .

On the other hand, because the update (5.4) is equivalently expressed as

Û = arg min
U

{
1

2
‖vec(X)− vec(U)− vec(Ô)‖22 + λ1‖Drvec(U)‖2,1

}
,
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it follows:

−{vec(X)− vec(Û)− vec(Ô)}+ λ1∂vec(U)‖Drvec(U)‖2,1|U=Û 3 0.

Thus, we conclude Proposition 1 from

vec(X)− vec(Û)− vec(Ô)

=


x1 − û1 −Θ(x1 − û1;λ2, γ)

x2 − û2 −Θ(x2 − û2;λ2, γ)
...

xn − ûn −Θ(xn − ûn;λ2, γ)



=


ψ(x1 − û1;λ2, γ)

ψ(x2 − û2;λ2, γ)
...

ψ(xn − ûn;λ2, γ)


= Ψ(X − Û ;λ2, γ).

Proof of Proposition 2. From Algorithm 6, a convergence point (ŵ0, Ŵ , Û , Ô) satisfies

vec(Ô) =


ô1

ô2
...
ôT

 =


Θ(ŵ1 − û1;λ3/λ1, γ)

Θ(ŵ2 − û2;λ3/λ1, γ)
...

Θ(ŵT − ûT ;λ3/λ1, γ)

 , (5.17)

(ŵm0, ŵm) = arg min
wm0,wm

{
1

nm

L(wm0,wm) +
λ1
2
‖wm − ûm − ôm‖22

}
, m = 1, . . . , T,

(5.18)

Û = arg min
U

{
λ1
2
‖vec(Ŵ )− vec(U)− vec(Ô)‖22 + λ2‖Drvec(U)‖2,1

}
. (5.19)

From the first-order condition of the minimization problems (5.18) and (5.19), we obtain

∂

∂w′
m

1

nm

L(wm0,wm)|w′
m=ŵ′

m
+ λ1

(
0

ŵm − ûm − ôm

)
= 0,

−λ1{vec(Ŵ )− vec(Û)− vec(Ô)}+ λ2∂vec(U)‖Drvec(U)‖2,1|U=Û 3 0.
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Some algebra for them and (5.17) conclude Proposition 2.

Proof of Proposition 3. Since a limit point {ŵ(∗)
0 , Ŵ (∗), Û (∗), Ô(∗), B̂(∗), Ŝ(∗)} satisfies

the optimality condition of augmented Lagrangian, we have

−λ1{Ŵ (∗) − Û (∗) − Ô(∗)}+ Ŝ(∗)>AE = 0.

Then, similar to the proof of Proposition 2, it holds that

−λ1(ψ(ŵ(∗)
1 − û(∗)

1 ;λ3/λ1, γ), . . . , ψ(ŵ
(∗)
T − û(∗)

T ;λ3/λ1, γ))
> + Ŝ(∗)>AE = 0.

This is one of the optimality conditions of the minimization problem concerning aug-

mented Lagrangian (5.16). Moreover, other optimality conditions are the same as the

minimization problem concerning the augmented Lagrangian (5.15). This concludes

the Proposition 3.

Proof of the Theorem 1. This proof is based on the similar steps of Wang et al. (2019)

and Fan and Yin (2024). Although the modified ADMM does not explicitly require

updates of B; the algorithm updates the value of U and S by the implicitly updated B

in its construction (3.4). Specifically, B is updated to the value that exactly minimizes

the function at each update of U in the inner loop of the gradient method. Then, the

modified ADMM is equivalent to the following updates of ADMM:

(w
(t+1)
0 ,W (t+1)) = arg min

w0,W
Lν(w0,W, U

(t), O(t), B(t), S(t)),

(U (t+1), B(t+1)) = arg min
U,B

Lν(w
(t+1)
0 ,W (t+1), U,O(t), B, S(t)),

O(t+1) = arg min
O

Lν(w
(t+1)
0 ,W (t+1), U (t+1), O(t), B(t+1), S(t)),

S(t+1) = S(t) + ν(B(t+1) − AEU
(t+1)).

Thus, it suffices to prove the theorem regarding the ADMM based on the above updates.
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For the simplicity of the notation, we denote the object function as

Q(w0,W, U,O,B) =
T∑

m=1

1

nm

L(wm0,wm) +
λ1
2
‖W − U −O‖2F

+ λ2
∑

(m1,m2)∈E

rm1,m2‖b(m1,m2)‖2 +
T∑

m=1

P (om, λ3, γ),

and the partial of the object function as

H(w0,W, U,O) =
T∑

m=1

1

nm

L(wm0,wm) +
λ1
2
‖W − U −O‖2F +

T∑
m=1

P (om;λ3, γ).

To prove the theorem, we show the following four steps:

1. Lν(w
(t)
0 ,W

(t), U (t), O(t), B(t), S(t)) is lower bounded for all t ∈ N.

2.
{
w

(t)
0 ,W

(t), U (t), O(t), B(t), S(t)
}

is bounded.

3.
{
w

(t)
0 ,W

(t), U (t), O(t), B(t), S(t)
}

converges to a limit point, that is,

limt→∞

{
w

(t)
0 ,W

(t), U (t), O(t), B(t), S(t)
}
→
{
w

(∗)
0 ,W (∗), U (∗), O(∗), B(∗), S(∗)

}
.

4. Any limit point is a stationary point, that is, ∂Lν(w
(∗)
0 ,W (∗), U (∗), O(∗), B(∗), S(∗)) 3

0.

Note that the objective function Q(w0,W, U,O,B) is coercive over the feasible set,

that is, Q(w0,W, U,O,B) → ∞ ifAEU−B = 0 and ‖w0, vec(W ), vec(U), vec(O), vec(B)‖2 →

∞. Moreover, as Im(AE) ⊆ Im(I|E|) with Im(·) being the image of a matrix, there exists

B′ such that AEU
(t) −B′ = 0. Therefore, we have

Q(w
(t)
0 ,W

(t), U (t), O(t), B′) ≥ min
w0,W,U,O,B

{Q(w0,W, U,O,B) : AEU −B = 0} > −∞.

(5.20)

By the optimality condition for the updates of (U (t+1), B(t+1)), it holds that for a sub-

gradient d(t+1)
(m1,m2)

∈ ∂(λ2rm1,m2‖b
(t+1)
(m1,m2)

‖2):

d
(t+1)
(m1,m2)

+ s
(t)
(m1,m2)

+ ν(b
(t+1)
(m1,m2)

− (u(t+1)
m1

− u(t+1)
m2

)) = 0, for (m1,m2) ∈ E ,

− λ1(W
(t+1) − U (t+1) −O(t)) + A>

E (S
(t) + ν(B(t+1) − AEU

(t+1))) = 0.
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In addition, by the update of S(t+1), we have

s
(t+1)
(m1,m2)

= −d(t+1)
(m1,m2)

, for (m1,m2) ∈ E .

For the subgradients d(t)
(m1,m2)

∈ ∂(λ2rm1,m2‖b
(t)
(m1,m2)

‖2) and d′
(m1,m2)

∈ ∂(λ2rm1,m2‖b′(m1,m2)
‖2)

from the convexity, we have

λ2rm1,m2‖b
(t)
(m1,m2)

‖2 − λ2rm1,m2‖b′(m1,m2)
‖2 ≥ 〈d(′)

(m1,m2)
, b

(t)
(m1,m2)

− b′(m1,m2)
〉

λ2rm1,m2‖b
(t)
(m1,m2)

‖2 + 〈d(t)
(m1,m2)

, b′(m1,m2)
− b(t)(m1,m2)

〉 ≥ λ2rm1,m2‖b′(m1,m2)
‖2

+ 〈d′
(m1,m2)

− d(t)
(m1,m2)

, b
(t)
(m1,m2)

− b′(m1,m2)
〉.

Then, we have

Lν(w
(t)
0 ,W

(t), U (t), O(t), B(t), S(t))

= Q(w
(t)
0 ,W

(t), U (t), O(t), B(t))

+
∑

(m1,m2)∈E

{
s
(t)>
(m1,m2)

(b
(t)
(m1,m2)

− (u(t)
m1

− u(t)
m2

)) +
ν

2
‖b(t)(m1,m2)

− (u(t)
m1

− u(t)
m2

)‖22
}

= H(w
(t)
0 ,W

(t), U (t), O(t)) +
∑

(m1,m2)∈E

rm1,m2‖b
(t)
(m1,m2)

‖2+

+
∑

(m1,m2)∈E

{
d
(t)>
(m1,m2)

(b′(m1,m2)
− b(t)(m1,m2)

) +
ν

2
‖b(t)(m1,m2)

− b′(m1,m2)
‖22
}

≥ H(w
(t)
0 ,W

(t), U (t), O(t)) +
∑

(m1,m2)∈E

{
rm1,m2‖b′(m1,m2)

‖2 + 〈d′
(m1,m2)

− d(t)
(m1,m2)

, b
(t)
(m1,m2)

− b′(m1,m2)
〉

+
ν

2
‖b(t)(m1,m2)

− b′(m1,m2)
‖22
}

≥ Q(w
(t)
0 ,W

(t), U (t), O(t), B′)

+
∑

(m1,m2)∈E

{ν
2
‖b(t)(m1,m2)

− b′(m1,m2)
‖22 − 2λ2rm1,m2‖b

(t)
(m1,m2)

− b′(m1,m2)
‖2
}

> −∞

The second inequality is based on the fact ‖∂b‖b‖2‖2 ≤ 1 for ∀b ∈ Rp and Cauchy –

Schwarz inequality. The last inequality is derived from the (5.20). This completes the

proof of the first step.
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To bound Lν(w
(t)
0 ,W

(t), U (t), O(t), B(t), S(t))−Lν(w
(t+1)
0 ,W (t+1), U (t+1), O(t+1), B(t+1), S(t+1)),

we show the following bounds regarding each update:

(i) Lν(w
(t)
0 ,W

(t), U (t), O(t), B(t), S(t))− Lν(w
(t+1)
0 ,W (t+1), U (t), O(t), B(t), S(t)),

(ii) Lν(w
(t+1)
0 ,W (t+1), U (t), O(t), B(t), S(t))−Lν(w

(t+1)
0 ,W (t+1), U (t+1), O(t), B(t+1), S(t)),

(iii) Lν(w
(t+1)
0 ,W (t+1), U (t+1), O(t), B(t+1), S(t))−Lν(w

(t+1)
0 ,W (t+1), U (t+1), O(t+1), B(t+1), S(t)),

(iv) Lν(w
(t+1)
0 ,W (t+1), U (t+1), O(t+1), B(t+1), S(t))−Lν(w

(t+1)
0 ,W (t+1), U (t+1), O(t+1), B(t+1), S(t+1)).

For (i), we have

Lν(w
(t)
0 ,W

(t), U (t), O(t), B(t), S(t))− Lν(w
(t+1)
0 ,W (t+1), U (t), O(t), B(t), S(t))

=
T∑

m=1

1

nm

{
L(w

(t)
m0,w

(t)
m )− L(w

(t+1)
m0 ,w(t+1)

m )
}

+
λ1
2

{
‖W (t) − U (t) −O(t)‖2F − ‖W (t+1) − U (t) −O(t)‖2F

}
≥ λ1

2
‖W (t) −W (t+1)‖2F .

The inequality is derived from the convexity of the loss function. For (ii), we have

Lν(w
(t+1)
0 ,W (t+1), U (t), O(t), B(t), S(t))− Lν(w

(t+1)
0 ,W (t+1), U (t+1), O(t), B(t+1), S(t))

=
λ1
2

{
‖W (t+1) − U (t) −O(t)‖2F − ‖W (t+1) − U (t+1) −O(t)‖2F

}
+ λ2

∑
(m1,m2)∈E

{
‖b(t)(m1,m2)

‖2 − ‖b(t+1)
(m1,m2)

‖2
}

+ 〈S(t), B(t) − AEU
(t) − (B(t+1) − AEU

(t+1))〉

+
ν

2

{
‖B(t) − AEU

(t)‖2F − ‖B(t+1) − AEU
(t+1)‖2F

}
=
λ1
2
‖U (t) − U (t+1)‖2F + λ2

∑
(m1,m2)∈E

{
‖b(t)(m1,m2)

‖2 − ‖b(t+1)
(m1,m2)

‖2
}

+ ν〈B(t+1) − AEU
(t+1), AE(U

(t) − U (t+1))〉

+ 〈D(t+1), B(t+1) −B(t)〉+ ν〈AEU
(t) −B(t+1), B(t) −B(t+1)〉

+
ν

2

{
‖B(t) − AEU

(t)‖2F − ‖B(t+1) − AEU
(t)‖2F

}
≥ λ1

2
‖U (t) − U (t+1)‖2F +

ν

2
‖(B(t) − AEU

(t))− (B(t+1) − AEU
(t+1))‖2F
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where D(t+1) is a |E| × p matrix whose each row is d(t+1)
(m1,m2)

. The second equality

is derived from the optimality condition of (U (t+1), B(t+1)), and the cosine rule ‖A −

B‖2F − ‖A− C‖2F + 2〈A− C,B − C〉 = ‖B − C‖2F . The inequality is derived from the

convexity of ‖b(t+1)
(m1,m2)

‖2. For (iii), we have

Lν(w
(t+1)
0 ,W (t+1), U (t+1), O(t), B(t+1), S(t))− Lν(w

(t+1)
0 ,W (t+1), U (t+1), O(t+1), B(t+1), S(t))

=
λ1
2

{
‖W (t+1) − U (t+1) −O(t)‖2F − ‖W (t+1) − U (t+1) −O(t+1)‖2F

}
+

T∑
m=1

{
P (o(t)m , λ3, γ)− P (o(t+1)

m , λ3, γ)
}

≥ λ1 − Cp

2
‖O(t+1) −O(t)‖2F .

The inequality is derived from the weakly convexity of the regularization term with the

constant Cp > 0. For (iv), we have

Lν(w
(t+1)
0 ,W (t+1), U (t+1), O(t+1), B(t+1), S(t))− Lν(w

(t+1)
0 ,W (t+1), U (t+1), O(t+1), B(t+1), S(t+1))

= 〈S(t) − S(t+1), B(t+1) − AEU
(t+1)〉

= −1

ν
‖S(t) − S(t+1)‖2F

≥ − 1

νλ++(A>
EAE)

‖A>
E (S

(t) − S(t+1))‖2F

= − λ21
νλ++(A>

EAE)
‖W (t) − U (t) −O(t−1) − (W (t+1) − U (t+1) −O(t))‖2F

≥ − λ21
νλ++(A>

EAE)

{
‖W (t) −W (t+1)‖2F + ‖U (t) − U (t+1)‖2F + ‖O(t−1) −O(t)‖2F

}
,

By combining the above upper bound of each update, we obtain

Lν(w
(t)
0 ,W

(t), U (t), O(t), B(t), S(t))− Lν(w
(t+1)
0 ,W (t+1), U (t+1), O(t+1), B(t+1), S(t+1))

≥ λ1

(
νλ++(A

>
EAE)− 2λ1

2νλ++(A>
EAE)

)(
‖W (t) −W (t+1)‖2F + ‖U (t) − U (t+1)‖2F

)
+
ν

2

∥∥(B(t) − AEU
(t))− (B(t+1) − AEU

(t+1))
∥∥2
F

+
λ1 − Cp

2
‖O(t) −O(t+1)‖2F − λ21

νλ++(A>
EAE)

‖O(t−1) −O(t)‖2F .
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Then, we have

Lν(w
(0)
0 ,W (0), U (0), O(0), B(0), S(0))− Lν(w

(t)
0 ,W

(t), U (t), O(t), B(t), S(t))

≥
t∑

l=0

{
λ1

(
νλ++(A

>
EAE)− 2λ1

2νλ++(A>
EAE)

)(
‖W (l) −W (l+1)‖2F + ‖U (l) − U (l+1)‖2F

)
+
ν

2

∥∥(B(t) − AEU
(t))− (B(t+1) − AEU

(t+1))
∥∥2
F

}
+

(
νλ++(A

>
EAE)(λ1 − Cp)− 2λ21
2νλ++(A>

EAE)

) t∑
l=1

‖O(l) −O(l−1)‖2F

+
λ1 − Cp

2
‖O(t) −O(t+1)‖2F − λ21

νλ++(A>
EAE)

‖O(0)‖2F .

(5.21)

From this, Lν(w
(t)
0 ,W

(t), U (t), O(t), B(t), S(t)) is upper bounded by Lν(w
(0)
0 ,W (0), U (0), O(0), B(0), S(0))+

λ2
1

νλ++(A>
E AE)

‖O(0)‖2F . Thus, Q(w(t)
0 ,W

(t), U (t), O(t), B′) and ‖B(t)−AEU
(t)‖2F are also up-

per bounded. Since the objective function Q(w0,W, U,O,B) is coercive over the feasible

set, {w(t)
0 ,W

(t), U (t), O(t), B(t)} is bounded. Then, from the following inequality:

‖S(t)‖2F ≤ λ++(A
>
EAE)

−1‖A>
E S

(t)‖2F = λ++(A
>
EAE)

−1λ21‖W (t+1) − U (t+1) −O(t)‖2F ,

(5.22)

S(t) is also bounded. Furthermore, from the lower boundness of the Lν(w
(t)
0 ,W

(t), U (t), O(t), B(t), S(t)),

the value of right hand side of (5.21) converges to some non-negative constant with-

out the last term as t → ∞. Therefore, we obtain limt→∞ ‖W (t) − W (t+1)‖2F = 0,

limt→∞ ‖U (t) − U (t+1)‖2F = 0, limt→∞ ‖(B(t) − AEU
(t))− (B(t+1) − AEU

(t+1))‖2F=0, and

limt→∞ ‖O(t) −O(t+1)‖2F = 0. Moreover, from triangle inequality

‖B(t) −B(t+1)‖2F ≤ ‖(B(t) − AEU
(t))− (B(t+1) − AEU

(t+1))‖2F + ‖AE(U
(t) − U (t+1))‖2F

and the fact ‖AE(U
(t)−U (t+1))‖ ≤ λ+(A

>
EAE)‖U (t)−U (t+1)‖2F , we obtain limt→∞ ‖B(t)−

B(t+1)‖2F = 0. These convergence and (5.22) also imply limt→∞ ‖S(t) − S(t+1)‖2F = 0.

Since the estimation ofw0 calculated by Algorithm 3 only depends on U (t−1) and O(t−1),

limt→∞ ‖w(t)
0 −w(t+1)

0 ‖22 = 0. This concludes the steps 2 and 3.
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To prove the limit point of the ADMM algorithm satisfies the optimality condition,

we show

lim
t→∞

∥∥∥∂Lν(w
(t)
0 ,W

(t), U (t), O(t), B(t))
∥∥∥
F
= 0.

We denote Lν(w
(t)
0 ,W

(t), U (t), O(t), B(t), S(t)) = L
(t)
ν . From the optimality condition of

update for o(t)m , we have ∂omL
(t)
ν 3 0. We have

lim
t→∞

∥∥∥∥∥ ∂L
(t)
ν

∂(w0,W )

∥∥∥∥∥
F

≤ lim
t→∞

T∑
m=1

∥∥∥∥∥∂L(t)
ν

∂w′
m

∥∥∥∥∥
2

= lim
t→∞

T∑
m=1

∥∥λ1(w(t−1)
m − u(t−1)

m − o(t−1)
m )− λ1(w

(t)
m − u(t)

m − o(t)m )
∥∥
2
= 0

and

lim
t→∞

‖∂BL(t)
ν ‖F ≤ lim

t→∞

∑
(m1,m2)∈E

∥∥∥∂b(m1,m2)
L(t)
ν

∥∥∥
2

= lim
t→∞

∑
(m1,m2)∈E

∥∥∥d(t)
(m1,m2)

+ s
(t)
(m1,m2)

+ ν(b
(t)
(m1,m2)

− (u(t)
m1

− u(t)
m2

))
∥∥∥
2

= lim
t→∞

∑
(m1,m2)∈E

ν
∥∥∥b(t)(m1,m2)

− (u(t)
m1

− u(t)
m2

)
∥∥∥
2

≤ lim
t→∞

ν
∥∥B(t) − AEU

(t)
∥∥2
F
= 0.

Similarly, we have

lim
t→∞

∥∥∥∥∥∂L(t)
ν

∂U

∥∥∥∥∥
F

= lim
t→∞

∥∥−λ1(W (t) − U (t) −O(t))− 〈AE , S
(t) + ν(B(t) − AEU

(t))〉
∥∥
F

= lim
t→∞

∥∥λ1(W (t) −W (t+1) − (U (t) − U (t+1))

+ ν〈AE , (B
(t) −B(t+1))− AE(U

(t) − U (t+1))〉
∥∥
F

≤ lim
t→∞

λ1
{
‖W (t) −W (t+1)‖F + ‖U (t) − U (t+1)‖F

}
+ ν

{
‖A>

E (B
(t) −B(t+1))‖F + ‖A>

EAE(U
(t) − U (t+1))‖F

}
= 0.

The last equality is derived from the fact
∥∥A>

E (B
(t) −B(t+1))

∥∥2
F
≤ λ+(A

>
EAE)

∥∥B(t) −B(t+1)
∥∥2
F
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and
∥∥A>

EAE(U
(t) − U (t+1))

∥∥2
F
≤ λ+(A

>
EAE)

∥∥AE(U
(t) − U (t+1))

∥∥2
F

. Finally, we have

lim
t→∞

∥∥∥∥∥∂L(t)
ν

∂S

∥∥∥∥∥
F

= lim
t→∞

∥∥B(t) − AEU
(t)
∥∥
F

= lim
t→∞

1

ν

∥∥S(t+1) − S(t)
∥∥
F
= 0.

Therefore, we have limt→∞

∥∥∥∂L(t)
ν

∥∥∥
F
= 0.

Because {w(t)
0 ,W

(t), U (t), O(t), B(t), S(t)} is bounded and converges to a limit point

denoted by {w(∗)
0 ,W (∗), U (∗), O(∗), B(∗), S(∗)}. Moreover, it holds that limt→∞ ‖∂L(t)

ν ‖F =

‖∂L(∗)
ν ‖F = 0. From the definition of general subgradient, we have ∂L(∗)

ν 3 0. Therefore,

the sequence {w(t)
0 ,W

(t), U (t), O(t), B(t), S(t)} has at least a limit point {w(∗)
0 ,W (∗), U (∗), O(∗), B(∗), S(∗)}

and any limit point is a stationary point. This completes the proof.
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Chapter 6

Concluding remarks

6.1 Summary

In this thesis, we proposed two novel multi-task learning methods that consider the

clustering of tasks.

The first one is Multi-Task Learning via ConVeX clustering (MTLCVX). Because

the parameters are split into those for regression and clustering, we can expect to

reduce the shrinkages between irrelevant tasks caused by fused group regularization.

In simulation studies, our proposed methods showed better results than the existing

method based on the network lasso called MTLNL in almost all cases. MTLCVX can

be more robust against noise in the weights than MTLNL. For the application to real

data, if there are multiple clusters in the data, MTLCVX showed better performance.

Second, we proposed a robust multi-task learning method called Multi-Task Learn-

ing via Robust Regularized Clustering (MTLRRC). To perform the clustering of tasks

and detection of outlier tasks simultaneously, we incorporated regularization terms

based on robust regularized clustering (RRC), which can detect outlier samples by se-

lecting outlier parameters through group sparse penalties. We showed that the solution

of the RRC obtained by the BCD algorithm shares the same optimality condition with
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convex clustering whose loss function is replaced by the multivariate robust loss func-

tion. Thus, MTLRRC is expected to perform robust clustering of tasks. Furthermore,

the solution of MTLRRC by the BCD algorithm is also viewed as a convergence point

of alternative optimization that involves the RRC for tasks and regression problems,

reducing the shrinkage of outlier tasks toward the estimated centroid. To mitigate com-

putational costs, we developed an estimation algorithm based on the modified ADMM

and provided the theoretical convergence guarantees. Numerical studies showed that if

there are outlier tasks with large unique characteristics, MTLRRC effectively detects

them and improves estimation and prediction accuracy. Moreover, the application to

the three real datasets showed that they have three different characteristics. Specifi-

cally, one has two clusters with potentially outlier tasks, one has one cluster with outlier

tasks with high probability, and one has one cluster without outlier tasks. Interestingly,

MTLRRC with group SCAD performed the best among the competing methods regard-

less of the existence of cluster structure and outlier tasks.

6.2 Limitations and future works

Finally, we discuss the limitations of our proposed methods and future works.

First, our proposed methods only consider the situations where the obtained features

are identical across the tasks. Because the tasks may be obtained from heterogeneous

data sources and experiment environments in practical situations, some of the features

may differ across the tasks. Thus, it is desirable to develop MTL methods that consider

feature heterogeneity. An approach is to map the features to a common feature space.

It is also interesting to develop MTL methods that estimate feature mapping and cluster

tasks in the mapped space simultaneously.

Second, we do not consider the sparsity of the variables. Although sparse approach

methods consider the joint sparsity across the tasks, having different sparse patterns
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among different clusters would be favorable. However, to cluster the variables that exist

in different spaces may be non-trivial. For instance, if a regression coefficient is zero for a

task and non-zero for another task, the distance between tasks would be large depending

on only one variable regardless of other common non-zero features. Therefore, using

L1 penalty to shrink a difference would be reasonable in sparse settings. In particular,

Tang et al. (2021) proposed the regularization term that shrinks a regression coefficient

towards either zero or the cluster center, whichever is closer. Although the method can

prevent the shrinkage of nonzero variables toward zero, the way of estimating the cluster

center itself is not given. In other words, it would be essential to consider appropriate

clustering methods for cluster centers with different nonzero variables.

Third, the selection of tuning parameters is also challenging in light of computa-

tional complexity. In MTL, the total dimension of variables tends to be huge, as the

number of tasks increases. The validation for selecting tuning parameters takes much

computation time compared to single-task learning. Thus, developing a method that

can effectively select the tuning parameters, such as information criteria, is necessary.

One of the approaches would be to reformulate the MTL methods as those in the

Bayesian framework. In the Bayesian perspective, the tuning parameters are deter-

mined by maximizing marginal likelihood, which can be computed by algorithms such

as the EM algorithm. In addition, the extension to a Bayesian model enables us to

analyze estimation and prediction uncertainty by calculating a posterior distribution.

Consequently, the extension to the Bayesian framework is attractive in some aspects.

However, calculating the posterior distribution itself is computationally demanding. Es-

tablishing an efficient calculation method would also be challenging in model selection

and Bayesian multi-task learning.

Many challenges remain in the field of multi-task learning. We leave these topics as

future work.
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