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Abstract
Dijkgraaf–Witten theory is the Chern–Simons theory with finite gauge groups.

Over the past several years, Minhyong Kim and his collaborators have been studying
an arithmetic analog for number rings of Dijkgraaf–Witten theory of 3-manifolds, based
on the analogies between 3-manifolds and number rings, knots and primes in arithmetic
topology. Then Hirano computed the mod 2 arithmetic Dijkgraaf–Witten invariant Zk

for the ring of integers of the quadratic field k = Q(
√
p1 · · · pr), where pi’s are distinct

prime numbers with pi ≡ 1 (mod 4). We compute Hirano’s formula for the mod 2
arithmetic Dijkgraaf–Witten invariant Zk, and give a simple formula for Zk in terms
of the graph obtained from quadratic residues among p1, · · · , pr. Our result answers
the question posed by Ken Ono. We also give a density formula for mod 2 arithmetic
Dijkgraaf–Witten invariants.
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1 Introduction
In [Kim20], Minhyong Kim initiated the study of arithmetic Chern–Simons the-

ory for number rings, based on Dijkgraaf–Witten theory of 3-manifolds ([DW90]) and
the analogies between number rings and 3-manifolds, primes and knots in arithmetic
topology ([Mor24]). Kim’s theory is concerned with totally imaginary number fields
since it employs some results on étale cohomology groups of the integer rings of totally
imaginary number fields ([Maz73]). Later Kim’s construction was extended for any
number field which may have real primes by Hirano [Hir23] and by Lee–Park [LP23],
and Hirano [Hir23] introduced the mod n arithmetic Dijkgraaf–Witten invariant for
any number ring containing a primitive n-th root of unity. As an interesting exam-
ple, Hirano computed the mod 2 arithmetic Dijkgraaf–Witten invariant Zk for the real
quadratic field k = Q(

√
p1 · · · pr), where pi’s are distinct prime numbers with pi ≡ 1

(mod 4), and showed the following formula expressing Zk in terms of the quadratic
residue symbols among pi’s:

Zk =
1

2

∑
ρ∈Hom(T,Z/2Z)

(∏
i<j

(
pi
pj

)ρ(bij)
)
, (1.1)

where T := {(x1, · · · , xr) ∈ (Z/2Z)r |
∑r

i=1 xi = 0}, bij = (0, · · · , 0, ˘
i

1, 0, · · · , 0, ˘
j

1, 0, · · · , 0),
and Hom(T,Z/2Z) is the set of homomorphisms T → Z/2Z.

At the conference of “Low dimensional topology and number theory XI” held at
Osaka University in March of 2019, Ken Ono asked us if the right-hand side of Hirano’s
formula (1.1) could be simplified and suggested computing numerically many examples
for pi’s in order to find such a simple formula.

In this paper, we answer Ono’s question. In fact, after many numerical computer
calculations, we found and proved the following simple formula for Zk using a certain
graph G(S), called the quadratic residue graph associated with the set S = {p1, . . . , pr},
which is determined by the quadratic residue symbols

(
pi
pj

)
, (see Section 4.3 for the

definition of G(S)).

Theorem A (Theorem 4.4 below). We have

Zk =

{
2r−2 if any connected component of G(S) is a circuit,
0 if otherwise.

(1.2)

We note that the graph G(S) is an arithmetic analog of the linking diagram in
link theory, and the idea to use the graph G(S) was suggested by the analogy between
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primes and knots in arithmetic topology. In fact, we can show a similar formula for the
topological mod 2 Dijkgraaf–Witten invariants for double covers of S3 using the linking
diagram of branched knots.

Let Gr be the set of all graphs with the vertex set {1, 2, . . . , r} and Cr be the subset
of Gr consisting of graphs whose connected components are all circuits. We compute
the density of Cr in Gr (Theorem 6.3 below). Let P denote the set of all prime numbers
and Pr(x) := {{p1, · · · , pr} ⊂ P ∩ [1, x] | pi ≡ 1 (mod 4), pi 6= pj (i 6= j)}. Then we
show the density formula for mod 2 arithmetic Dijkgraaf–Witten invariants among all
real quadratic field k = Q(

√
p1 · · · pr), where p1, · · · , pr are distinct prime numbers with

pi ≡ 1 (mod 4).

Theorem B (Theorem 6.4 below). We have

lim
x→∞

# {{p1, · · · , pr} ∈ Pr(x) | Zk = 2r−2}
#Pr(x)

=
#Cr

#Gr

=
1

2r−1
.

The contents of this paper are organized as follows. In Section 2, we provide an
overview of the Dijkgraaf–Witten theory for 3-manifolds, which is a topological quan-
tum field theory associated with finite gauge groups. Then Section 3 introduces the
mod n arithmetic Dijkgraaf–Witten invariants Zk for the ring of integers of a num-
ber field k containing a primitive n-th root of unity, based on analogies between 3-
manifolds and number rings in arithmetic topology. In Section 4.1, we recall Hirano’s
formula for the mod 2 arithmetic Dijkgraaf–Witten invariant Zk of real quadratic field
k = Q(

√
p1 · · · pr), where pi’s are distinct prime numbers with pi ≡ 1 (mod 4). In

Section 4.2, we recall some basic notions on graphs. In Section 4.3, we introduce
the quadratic residue graph G(S) associated with the set S = {p1, . . . , pr}, and state
our main theorem (cf. Theorem 4.4 below), which is a simple formula expressing Zk,
k = Q(

√
p1 · · · pr), in terms of G(S). In Section 4.4, we give a proof of the main

theorem. In Section 5, we give a topological counterpart of our result for the mod 2
topological Dijkgraaf–Witten invariant for a double cover of the 3-sphere S3 branched
over a link. In Section 6.1, we calculate the density of graphs with r vertices whose
connected components are all circuits. In Section 6.2, we propose a density formula
for mod 2 arithmetic Dijkgraaf–Witten invariants, based on the properties of quadratic
residue graphs, and we prove it based on Theorem 6.7 [HB95]. Finally, we find the
density of graphs whose connected components are all circuits and the density of mod
2 arithmetic Dijkgraaf–Witten invariants are equal.
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2 Dijkgraaf–Witten invariants of 3-manifolds
In this section, we recall the Dijkgraaf–Witten theory for closed 3-manifolds ([DW90]).

The contents of this section are based on [Hir23].

In order to define the Dijkgraaf–Witten invariant, we recall the following proposi-
tion.

Proposition 2.1. Let M be a connected compact 3-manifold. Then, for n ≥ 2, there
exists a cohomological spectral sequence

Hp(π1(M), Hq(M̃,Z/nZ))⇒ Hp+q(M,Z/nZ),

where M̃ denotes the universal cover of M .

Then we define the Dijkgraaf–Witten invariant for a 3-manifold.

Definition 2.2. Let M be a connected oriented closed 3-manifold. For a finite group
A and an integer n ≥ 2, let c ∈ H3(A,Z/nZ) for a finite group A and n ≥ 2. Let
Hom(π1(M), A) denote the set of all homomorphisms π1(M) → A. Note that the
fundamental class [M ] generates H3(M,Z/nZ) ∼= Z/nZ. For each ρ ∈ Hom(π1(M), A),
the Chern–Simons invariant CSc(ρ) of ρ associated to c is defined by the image of c
under the composition of the maps

H3(A,Z/nZ) ρ∗−→ H3(π1(M),Z/nZ) j3−→ H3(M,Z/nZ) 〈−,[M ]〉−−−−→ Z/nZ,

where j3 denotes the edge homomorphism in the spectral sequence

Hp(π1(M), Hq(M̃,Z/nZ))⇒ Hp+q(M,Z/nZ)

of Proposition 2.1. The Dijkgraaf–Witten invariant of M associated to c is then defined
by

Zc(M) =
1

#A

∑
ρ∈Hom(π1(M),A)

exp

(
2πi

n
CSc(ρ)

)
.

We call CSc(ρ) and Zc(M) the mod n Chern–Simons invariant and the mod n Dijkgraaf–
Witten invariant respectively.
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3 Arithmetic Dijkgraaf–Witten invariants of num-
ber fields
In this section, we introduce the mod n arithmetic Dijkgraaf–Witten invariants for

number rings, based on the analogies between 3-manifolds and number rings, as well as
knots and primes.

Let k be a number field of finite degree over Q. We fix a primitive n-th root of
unity ζn and assume that k contains ζn. Let Ok denote the ring of integers of k and
S∞
k the set of infinite primes of k. Define Xk = Spec(Ok) t S∞

k , and let π1(Xk) be
the modified étale fundamental group of Xk defined by considering the Artin–Verdier
topology over Xk, which takes the real primes of k into account (cf. [Hir23, §2.1]). It
is the Galois group of the maximal extension over k unramified at all finite and infinite
primes.

Let A be a finite group with discrete topology, and c be a fixed cohomology class
c ∈ H3(A,Z/nZ). Let Homc(π1(Xk), A) be the set of continuous homomorphisms from
π1(Xk) to A. For ρ ∈ Homc(π1(Xk), A), we define the mod n arithmetic Chern–Simons
invariant CSc(ρ) by the image of c under the composition

H3(A,Z/nZ) ρ∗→ H3(π1(Xk),Z/nZ)
j→ H3(Xk,Z/nZ) ∼= Z/nZ,

where the cohomology group of Xk is the modified étale cohomology group defined in the
Artin–Verdier topology, and j is the edge homomorphisms in the modified Hochschild–
Serre spectral sequence

Hp(π1(Xk), H
q(X̃k,Z/nZ))⇒ Hp+q(Xk,Z/nZ),

where X̃k = lim←−Yi, Yi running over a finite Galois covering of Xk (cf. [Hir23, §2.2]).
Note that the isomorphism H3(Xk,Z/nZ) ∼= Z/nZ depends on the choice of ζn.

We then define the mod n arithmetic Dijkgraaf–Witten invariant Zc(Xk) of Xk by

Zc(Xk) :=
1

#A

∑
ρ∈Homc(π1(Xk),A)

ζn
CSc(ρ).

This definition differs from [Hir23] by a factor of 1/#A. In the following, we write
simply Zk for Zc(Xk).

8



4 Mod 2 arithmetic Dijkgraaf–Witten invariants of
real quadratic fields

4.1 Hirano’s formula
In this section, we recall Hirano’s formula for the mod 2 arithmetic Dijkgraaf–

Witten invariant Zk of real quadratic fields k = Q(
√
p1 · · · pr), where pi’s are distinct

primes satisfying pi ≡ 1 (mod 4), and Ono’s question.

We consider the case that n = 2 and A = Z/2Z. Let c be the unique non-trivial
class in H3(A,Z/2Z). We set

T := {(x1, · · · , xr) ∈ (Z/2Z)r |
r∑

i=1

xi = 0}

and bij := (0, · · · , 0, ˘
i

1, 0, · · · , 0, ˘
j

1, 0, · · · , 0) ∈ T . Let Hom(T,Z/2Z) be the abelian
group of homomorphisms from T to Z/2Z. Then Hirano showed the following formula
for the mod 2 Dijkgraaf–Witten invariants Zk.

Theorem 4.1 ([Hir23, Corollary 4.2.4]). We have

Zk =
1

2

∑
ρ∈Hom(T,Z/2Z)

(∏
i<j

(
pi
pj

)ρ(bij)
)
.

Ken Ono asked us the question, “Can we simplify the right-hand side of the formula
in Theorem 4.1”, and he suggested computing numerically the right-hand side for many
examples of pi’s.

In the following, we shall compute the right-hand side of Hirano’s formula in The-
orem Theorem 4.1 and establish a simple formula, by introducing graphs attached to
primes p1, . . . , pr.

4.2 Preliminaries on graphs
In this section, we recall some basic notions on graphs, which will be used in the

subsequent sections.

A graph G consists of two sets V = V (G) and E = E(G), where V is the set of
vertices and E is the set of edges. The graph is denoted by G = (V,E). The set E is
regarded as a subset of the power set P(V ) consisting of 2-sets, E ⊂ {e ∈ P(V ) | #e =
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2}. We denote by eij (= {vi, vj}) the edge joining the vertices vi and vj. Here eii is not
considered as an edge.

We say that G′ = (V ′, E ′) is a subgraph of G = (V,E) if V ′ ⊂ V , E ′ ⊂ E, denoted
by G′ ⊂ G. Two graphs G and H are isomorphic if there is a bijection f between the
vertex sets V (G) and V (H) such that any two vertices u and v of G are adjacent in G
if and only if f(u) and f(v) are adjacent in H.

The degree of a vertex v ∈ V , denoted by deg(v), is the number of vertices that are
adjacent to v. We say that v is an even (resp. odd) vertex if deg(v) is even (resp. odd),
(deg(v) = 0 included). We call a graph G an even (resp. odd) graph if all v ∈ V are
even (resp. odd).

A path is a graph P = (V,E) of the form

V = {v0, v1, · · · , vl}, E = {e01, e12, e23, · · · , el−1,l},

where vertices v0, v1, . . . , vl are distinct each other. This path P is denoted by v0v1 · · · vl.
A graph is connected if there exists a path between any two vertices in the graph. A
graph with only one vertex is regarded as a connected graph. A maximal connected
subgraph of a graph G is called a connected component of G.

A sequence vi1ei1i2vi2 · · · vij · · · vir−1eir−1irvir is called a trail in a graph, when ver-
tices vi1 , . . . , vir and edges ei1i2 , . . . , eir−1ir appear alternately and every edge appear
exactly once, as in Figure 1 below. The path is an example of the trail. The first vertex
vi1 , the last vertex vir , and the other vertices vij of the trail are called the starting
vertex, the terminal vertex, and passing vertices, respectively. When the starting vertex
and the terminal vertex of a trail coincide, the trail is called a circuit. (In some refer-
ences, it is called an Euler tour.) A graph G consisting of a single vertex is considered
to be a circuit.

v1

v2

v3

v4

e12 e23

e34

v1 v2
v3

v4

e12

e42 e34

e23

v1 v2

v3 v4

e12

e23 e41

e34

Figure 1: Examples for trails. The right one is a circuit.

The following is Euler’s famous result concerning the classification of graphs that
we will use later (cf. [Bol98, Chapter I, Theorem 12]).
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Theorem 4.2 (Euler 1736). For a graph G, the following conditions are equivalent.

(1) Any connected component of G is a circuit.

(2) G is an even graph.

4.3 Main theorem
In this section, we introduce the quadratic residue graph associated to a finite set

of prime numbers p1, · · · , pr ≡ 1 (mod 4), and we present the main theorem of this
paper, which computes Hirano’s formula explicitly. The contents of this chapter are
based on [DKM23].

Let S = {p1, p2, · · · , pr} be a finite set of distinct prime numbers, where pi ≡ 1
(mod 4) (1 ≤ i ≤ r). We define the quadratic residue graph G(S) associated to S by

• V = V (G(S)) = {p1, . . . , pr}.

• E = E(G(S)) = {e = {pi, pj} ∈ P(V ) |
(

pi
pj

)
= −1}.

We can also illustrate the graph G(S) as follows. We set primes p1, p2, · · · , pr in or-
der so that p1 < p2 < · · · < pr. Then, we put the vertices of G(S) evenly on a unit circle
counterclockwise starting at the point (1, 0). Namely, the vertex (cos 2π(i−1)

r
, sin 2π(i−1)

r
)

corresponds to the prime pi, and we denote the vertices by pi’s. Then, two vertices pi

and pj are linked (adjacent) if and only if
(

pi
pj

)
= −1 (i 6= j). Since pi ≡ 1 (mod 4),

the graph G(S) is uniquely well-defined by the quadratic reciprocity.

Example 4.3. (1) r = 3, S = {5, 13, 37}.

5

13

37

(2) r = 4, S = {5, 13, 37, 41}.
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5

13

37

41

Many numerical examples are given in Appendix A, from which we find the fol-
lowing main theorem.

Theorem 4.4. We have

Zk =
1

2

∑
ρ∈Hom(T,Z/2Z)

(∏
i<j

(
pi
pj

)ρ(bij)
)

=

{
2r−2 if any connected component of G(S) is a circuit,
0 if otherwise.

Example 4.5. Let S = {5, 29, 37, 73} so that
(

5
37

)
=
(

5
73

)
=
(
29
37

)
=
(
29
73

)
= −1,(

5
29

)
=
(
37
73

)
= 1. Then the quadratic residue graph G(S) is given by the following figure.

Let k = Q(
√
5 · 29 · 37 · 73) = Q(

√
391645). By Theorem 4.4, we have Zk = 22 = 4.

5

29

37

73

Example 4.6. Let S = {5, 13, 61, 73} so that
(

5
13

)
=
(

5
73

)
=
(
13
73

)
= −1,

(
5
61

)
=
(
13
61

)
=(

61
73

)
= 1. Then the quadratic residue graph G(S) is given by the following figure. Let

k = Q(
√
5 · 13 · 61 · 73) = Q(

√
289445). By Theorem 4.4, we have Zk = 22 = 4.
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5

13

61

73

4.4 Proof of the main theorem
We give a proof of Theorem 4.4 by using the orthogonality of characters of a finite

abelian group. Throughout this section, we use the notations given in the previous
sections.

Lemma 4.7. Let G(S) be the quadratic residue graph associated to S = {p1, · · · , pr},
pi ≡ 1 (mod 4) (1 ≤ i ≤ r). Then, G(S) is an even graph if and only if∑

{pi,pj}∈E(G(S))

bij = 0.

Proof. By the definition of bij ∈ T , we easily see that∑
{pi,pj}∈E(G(S))

bij = (deg(pi) mod 2)1≤i≤r .

Therefore, the right-hand side equals 0 if and only if G(S) is an even graph.

Next we recall that the following orthogonality of characters of a finite abelian
group, (see, for example, [Ono90, Section 1.12].)

Lemma 4.8. Let A be a finite abelian group of order n. Let χ : A → C× be a
homomorphism (character of A). Then we have

∑
a∈A

χ(a) =

{
n if χ = ε,

0 if χ 6= ε,

where ε is the identity character defined by ε(a) = 1 for any a ∈ A.
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Now we define the map ϕ : Hom(T,Z/2Z)→ C× by

ϕ(ρ) :=
∏
i<j

(
pi
pj

)ρ(bij)

∈ {±1}.

Since we have, for ρ1, ρ2 ∈ Hom(T,Z/2Z),

ϕ(ρ1 + ρ2) =
∏
i<j

(
pi
pj

)ρ1(bij)+ρ2(bij)

= ϕ(ρ1)ϕ(ρ2),

ϕ is a homomorphism. By Lemma 4.8, we have

∑
ρ∈Hom(T,Z/2Z)

ϕ(ρ) =

{
2r−1 if ϕ = ε,

0 if ϕ 6= ε,

since the order of Hom(T,Z/2Z) is 2r−1.

Therefore, proving Theorem 4.4 is equivalent to showing the following theorem.

Theorem 4.9. For a quadratic residue graph G(S), the following conditions are equiv-
alent.

(1) ϕ = ε.

(2) Any connected component of G(S) is a circuit.

Proof. Suppose that any connected component of G(S) is a circuit. According to
Lemma 4.7, we know that

∑
{pi,pj}∈E(G(S)) bij = 0. For any ρ ∈ Hom(T,Z/2Z),

ϕ(ρ) =
∏
i<j

(
pi
pj

)ρ(bij)

=
∏

{pi,pj}∈E(G(S))

(−1)ρ(bij) = (−1)
∑

{pi,pj}∈E(G(S)) ρ(bij). (4.1)

Since the exponent equals ρ(0) = 0, we have ϕ = ε.

On the other hand, if ϕ = ε, then (4.1) implies that ρ
(∑

{pi,pj}∈E(G(S)) bij

)
= 0

for any ρ ∈ Hom(T,Z/2Z). Therefore, we have
∑

{pi,pj}∈E(G(S)) bij = 0. By Lemma 4.7
again, the graph G(S) is even and any connected component of G(S) is a circuit.

14



5 Mod 2 Dijkgraaf–Witten invariants for double cov-
ers of the 3-sphere
In this section, we give a topological counterpart of Theorem 4.4 for the mod 2

topological Dijkgraaf–Witten invariant for a double cover of the 3-sphere S3 branched
over a link (cf. [Hir23, §5]). Let M be a connected, oriented, and closed 3-manifold, and
let n be an integer with n ≥ 2. Let A be a finite group and let c ∈ H3(A,Z/nZ). We
have H3(M,Z/nZ) ∼= Z/nZ and we denote by [M ] ∈ H3(M,Z/nZ) the fundamental
homology class of M .

According to Definition 2.2, Dijkgraaf–Witten invariant of M associated to c is

Zc(M) =
1

#A

∑
ρ∈Hom(π1(M),A)

exp

(
2πi

n
CSc(ρ)

)
.

We write simply ZM for Zc(M).

Now consider the case where A = Z/2Z and c ∈ H3(A,Z/2Z) is the unique non-
trivial class. Let L = K1 ∪ K2 ∪ · · · ∪ Kr be a tame link in the 3-sphere S3 and
let h : M → S3 be the double covering ramified over L obtained by the unramified
covering Y → X := S3 \L corresponding to the kernel of the surjective homomorphism
H1(X)→ Z/2Z that maps any meridian of Ki to 1 ∈ Z/2Z.

Then Hirano showed the following formula for the mod 2 Dijkgraaf–Witten invari-
ants of double covers of the 3-sphere.

Theorem 5.1 ([Hir23, Corollary 5.3.2]). We have

ZM =
1

2

∑
ρ∈Hom(T,Z/2Z)

exp

(
πi
∑
i<j

ρ (bij) lk (Ki,Kj) mod 2

)
,

where lk(·, ·) mod 2 denotes the mod 2 linking number.

Then, we define the linking graph DL associated to L as follows.

We arrange K1,K2, . . . ,Kr in counterclockwise order as vertices of the regular r-
polygon. Two vertices Ki and Kj are linked (adjacent) if lk (Ki,Kj) ≡ 1 mod 2. Since
lk (Ki,Kj) = lk (Kj,Ki), DL is well-defined.

Then by the same method as in the arithmetic case, we have,

Theorem 5.2. We have

ZM =

{
2r−2 if any connected component of DL is a circuit,
0 if otherwise.
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Example 5.3. Let L = K1 ∪ K2 ∪ K3 ∪ K4 be the following link (left figure) in S3 so
that the linking graph DL is given by the right figure. Let M be the double covering
of S3 ramified along L. By Theorem 5.2, we have ZM = 22 = 4.

K1

K2 K4K3

K2 K1

K4K3
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6 A density formula for mod 2 arithmetic Dijkgraaf–
Witten invariants

6.1 The number of quadratic residue graphs with r vertices
In this section, we calculate the number of quadratic residue graphs with r vertices

(r ≥ 1). Let Gr the set of all graphs with the vertex set V = {1, 2, . . . , r}, and Cr be
the subset of Gr consisting of graphs whose connected components are all circuits. We
recall by Theorem 4.2 that Cr is the subset of Gr consisting of even graphs. It is a crucial
remark that, for instance, the graphs G,G′ ∈ G3, defined by E(G) = {{1, 2}, {1, 3}},
and E(G′) = {{1, 2}, {2, 3}}, are isomorphic but are distinct in G3.

Lemma 6.1. We have #Gr = 2
r(r−1)

2 .

Proof. For two distinct vertices vi and vj, there are 2 possible ways according that vi
and vj are connected by an edge or not. Since there are

(
r
2

)
= 1

2
r(r − 1) ways for

choosing 2 distinct vertices, the number of all graphs is 2
r(r−1)

2 .

Lemma 6.2. For any graph G = (V,E), the number of odd vertices is even.

Proof. Let t :=
∑

v∈V deg(v). Then we have t = 2 · #E and so t is even, from which
the assertion follows.

Theorem 6.3. We have #Cr = 2
(r−1)(r−2)

2 . Hence

#Cr

#Gr

=
1

2r−1
.

Proof. For r = 1, we have #C1 = 1. For any r ≥ 2, we define a map γ : Gr−1 → Cr

as follows. For G = (V,E) ∈ Gr−1, V (G) = {1, 2, · · · , r − 1}, E(G) ⊆ {{i, j} |
1 6 i, j 6 r, i 6= j}, we have γ(V (G)) = {1, 2, · · · , r}, γ(E(G)) = E(G) ∪ {{s, r} |
s is odd vertex in G}. Because odd vertices always come in even numbers, we have
γ(G) ∈ Cr.

To prove γ is injective, assuming γ(G1
r−1) = γ(G2

r−1). G1
r−1, G

2
r−1 ∈ Gr−1, mean-

ing γ(E(G1
r−1)) = γ(E(G2

r−1)). So E(G1
r−1) ∪ {{s, r} | s is odd vertex in G1

r−1} =
E(G2

r−1) ∪ {{s, r} | s is odd vertex in G2
r−1}. Since the equality holds, all elements

in the form of {∗, r} on both sides of the equation must be identical. So {{s, r} |
s is odd vertex in G1

r−1} = {{s, r} | s is odd vertex in G2
r−1}. Thus E(G1

r−1) = E(G2
r−1).

Since V (G1
r−1) = V (G2

r−1) = {1, 2, · · · , r − 1}, we have G1
r−1 = G2

r−1, γ is injective.
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To prove γ is surjective, let G0
r ∈ Cr. We need to find a G0

r−1 ∈ Gr−1 such that
γ(G0

r−1) = G0
r. Define E(G0

r−1) as the set obtained by removing all edges connected
to the vertex r from E(G0

r). Combining V (G0
r−1) = {1, 2, · · · , r − 1}, we have G0

r−1 =
{V (G0

r−1), E(G0
r−1)} ∈ Gr−1. So γ is surjective.

Since γ is bijective, we have #Cr = #Gr−1 = 2
(r−1)(r−2)

2 .

6.2 The density formula for mod 2 arithmetic Dijkgraaf–Witten
invariants and its proof

In this section, we propose a density formula for mod 2 arithmetic Dijkgraaf–
Witten invariants, based on the properties of quadratic residue graphs. First, we prepare
some notations. Let P be the set of all prime numbers and P≡b(a) the subset defined
by P≡b(a) = {p ∈ P | p ≡ b (mod a)}. For a positive integer r > 0, we define
Pr(x) = {{p1, . . . , pr} ⊂ P≡1(4) ∩ [1, x] | pi 6= pj (i 6= j)}. Our objective is to calculate
the natural density of mod 2 arithmetic Dijkgraaf–Witten invariants defined by

dr := lim
x→∞

#{{p1, . . . , pr} ∈ Pr(x) | Zk = 2r−2}
#Pr(x)

.

Let Sr(x) = {{p1, . . . , pr} ∈ Pr(x) | any connected component of G({p1, . . . , pr}) is a circuit},
where G({p1, . . . , pr}) is the quadratic residue graph associated to {p1, . . . , pr}. Ac-
cording to Theorem 4.2 and Theorem 4.4, the above density is also expressed as
dr = limx→∞ #Sr(x)/#Pr(x). Since we have∏

1≤j≤r

(
1 +

∏
1≤i≤r
i 6=j

(
pi
pj

))
=

{
2r if G({p1, . . . , pr}) is an even graph,
0 if otherwise,

the number #Sr(x) is given by

#Sr(x) =
1

2r

∑
{p1,...,pr}∈Pr(x)

∏
1≤j≤r

(
1 +

∏
1≤i≤r
i 6=j

(
pi
pj

))
.

Theorem 6.4. The density dr is given by

dr =
1

2r−1
=

#Cr

#Gr

.

To prove this theorem, we begin by rephrasing the above counting formula for
#Sr(x).
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Lemma 6.5. For any positive integer r > 0, we have

#Sr(x) =
1

2r
1

r!

∑
(p1,...,pr)∈(P≡1(4)∩[1,x])r

pi 6=pj (i 6=j)

∏
1≤j≤r

(
1 +

∏
1≤i≤r
i 6=j

(
pi
pj

))
.

Proof. The action of the symmetric group Sr to the set

Qr(x) := {(p1, . . . , pr) ∈ (P≡1(4) ∩ [1, x])r | pi 6= pj (i 6= j)} (6.1)

implies a natural r! to 1 correspondence between Qr(x) and Pr(x), which immediately
gives the desired equation.

Furthermore, the right-hand side can be expanded as follows.

#Sr(x) =
1

2rr!

∑
(p1,...,pr)∈Qr(x)

2 +
∑

e1,...,er∈{0,1}
0<e1+···+er<r

( ∏
1≤i≤r p

ei
i∏

1≤i≤r p
1−ei
i

)
=

#Qr(x)

2r−1r!
+

1

2rr!

∑
e1,...,er∈{0,1}
0<e1+···+er<r

∑
(p1,...,pr)∈Qr(x)

( ∏
1≤i≤r p

ei
i∏

1≤i≤r p
1−ei
i

)
,

where
( ·
·

)
is the Jacobi symbol. To evaluate each term, we recall the following classical

result (cf. [LeV56, Section 7-4]).

Proposition 6.6 (The prime number theorem for arithmetic progressions). For positive
integers a and b with (a, b) = 1, the number πa,b(x) = #(P≡b(a) ∩ [1, x]) satisfies

πa,b(x) ∼
1

ϕ(a)

x

log x

as x→∞, where ϕ(a) is the Euler function.

The estimation of the term #Qr(x) immediately follows from the proposition. In
fact, we have

#Qr(x) =
r−1∏
j=0

(π4,1(x)− j) ∼ π4,1(x)
r ∼ 1

2r
xr

logr x

as x → ∞. To evaluate the remaining terms, a more detailed evaluation on Jacobi
symbols is required.
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Theorem 6.7 ([HB95, Theorem 1]). For any ε > 0, there exists a constant Cε > 0 such
that the following holds. Let M,N be positive integers, and let a1, . . . , aN be arbitrary
complex numbers. Then

∑∗

m≤M

∣∣∣∣∣∑∗

n≤N

an

( n

m

)∣∣∣∣∣
2

≤ Cε(MN)ε(M +N)
∑∗

n≤N

|an|2,

where
∑∗ indicates restriction to positive odd square-free values and

( ·
·

)
stands for the

Jacobi symbol.

By symmetric properties, all we need to estimate are the following cases.

Lemma 6.8. For any positive integer 0 < s < r, we have

Es(x) :=
∑

(p1,...,pr)∈Qr(x)

(
ps+1 · · · pr
p1 · · · ps

)
= or(π4,1(x)

r)

as x→∞.

Proof. We define

a(s)m (x) =

{
s! if m is a product of s distinct primes in P≡1(4) ∩ [1, x],

0 otherwise

and

bm(x) =


∑

(ps+1,...,pr)∈(P≡1(4)∩[1,x])r−s

pi 6=pj (i 6=j)

(ps+1 · · · pr
m

)
if m is square-free and odd,

0 otherwise.

Then we have Es(x) =
∑

m≤xs a
(s)
m (x)bm(x), where we change the variables via m =

p1 · · · ps. By the Cauchy–Schwarz inequality,

Es(x)
2 ≤

(∑
m≤xs

a(s)m (x)2

)
·

(∑
m≤xs

bm(x)
2

)

≤ (s!)2π4,1(x)
s
∑∗

m≤xs

∣∣∣∣∣ ∑
(ps+1,...,pr)∈(P≡1(4)∩[1,x])r−s

pi 6=pj (i 6=j)

(ps+1 · · · pr
m

) ∣∣∣∣∣
2
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= (s!)2π4,1(x)
s
∑∗

m≤xs

∣∣∣∣ ∑∗

n≤xr−s

a(r−s)
n (x)

( n

m

) ∣∣∣∣2,
where we change the variables via n = ps+1 · · · pr. Therefore, by applying Theorem 6.7,
we obtain

Es(x)
2 �r,ε π4,1(x)

sxrε(xs + xr−s)
∑∗

n≤xr−s

|a(r−s)
n (x)|2

�r,ε π4,1(x)
sxrε+r−1π4,1(x)

r−s,

which implies Es(x) �r,ε x(rε+r−1)/2π4,1(x)
r/2. By taking 0 < ε < 1/2r, we have

Es(x) = or(π4,1(x)
r).

In conclusion, we have

#Sr(x) =
#Qr(x)

2r−1r!
+ or(π4,1(x)

r) ∼ π4,1(x)
r

2r−1r!

as x → ∞. Since #Pr(x) =
(
π4,1(x)

r

)
∼ π4,1(x)

r/r!, we conclude the proof of Theo-
rem 6.4.
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A Appendix: Some numerical examples of Zk

We give numerical computer calculations for Hirano’s formula,

Zk =
1

2

∑
ρ∈Hom(T,Z/2Z)

(∏
i<j

(
pi
pj

)ρ(bij)
)
.

The case that r = 3

We define ρ0, ρ1, ρ2, and ρ3 in Hom(T,Z/2Z) by

x (0, 0, 0) (1, 1, 0) (0, 1, 1) (1, 0, 1)
ρ0(x) 0 0 0 0
ρ1(x) 0 1 0 1
ρ2(x) 0 0 1 1
ρ3(x) 0 1 1 0
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A set of prime numbers S Quadratic residue graph Zk

5 , 13 , 17

5

13

17 0

5 , 13 , 37

5

13

37 2

5 , 13 , 41

5

13

41 0

5 , 13 , 61

5

13

61 0

5 , 29 , 37

5

29

37 0

The case that r = 4

We define ρ0, ρ1, . . . , ρ7 in Hom(T,Z/2Z) by
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x (0, 0, 0, 0) (1, 1, 0, 0) (1, 0, 1, 0) (1, 0, 0, 1) (0, 1, 1, 0) (0, 1, 0, 1) (0, 0, 1, 1) (1, 1, 1, 1)
ρ0(x) 0 0 0 0 0 0 0 0
ρ1(x) 0 1 0 0 1 1 0 1
ρ2(x) 0 0 1 0 1 0 1 1
ρ3(x) 0 0 0 1 0 1 1 1
ρ4(x) 0 1 1 0 0 1 1 0
ρ5(x) 0 1 0 1 1 0 1 0
ρ6(x) 0 0 1 1 1 1 0 0
ρ7(x) 0 1 1 1 0 0 0 1
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A set of prime numbers S Quadratic residue graph Zk

5 , 13 , 17 , 29

5

13

17

29 0

5 , 13 , 17 , 41

5

13

17

41 4

5 , 13 , 29 , 53

5

13

29

53 0

5 , 13 , 29 , 61

5

13

29

61 0

5 , 13 , 37 , 101

5

13

37

101 4

5 , 17 , 29 , 37

5

17

29

37 0
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A set of prime numbers S Quadratic residue graph Zk

5 , 13 , 37 , 113

5

13

37

113 0

13 , 17 , 29 , 97

13

17

29

97 0

5 , 17 , 41 , 53

5

17

41

53 4

13 , 17 , 53 , 73

13

17

53

73 0

5 , 17 , 37 , 113

5

17

37

113 0

5 , 29 , 41 , 89

5

29

41

89 4
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