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1 Introduction

Let X : Σn → Rn+1 be an isometrically immersed hypersurface in Euclidean space. One
of the most fundamental geometric quantity of Σ is the mean curvature which is given
by the trace of the second fundamental form. In physical theoretic view point, the mean
curvature is also important since it arises from the first variation of the volume of Σ. For
example, surfaces with constant mean curvature describe the shapes of interfaces between
two non mixing media such as soap films or bubbles. It is well known that a constraint
on the mean curvature restricts the geometric invariants of a hypersurface such as the
volume, the intrinsic or extrinsic diameter, or the first eigenvalue of the Laplacian (see
[2, 3, 5, 14, 20, 27] for instance).

On the other hand, over the past years, many authors considered the geometric prob-
lems involving the anisotropic mean curvature (see [8, 15, 17, 18, 19, 24, 28] for instance).
The setting is given as follows. Let γ : Sn → R>0 be a smooth, positive function satisfying
the convexity condition

Aγ = (HessS
n

γ + γI)ν > 0,

for any ν ∈ Sn. Here, I denotes the identity operator on TνSn and > 0 means the positivity
of self-adjoint operators. The anisotropic mean curvature of Σ is defined as the trace of
the composition of tensors Aγ ◦ S, where S denotes the shape operator of Σ. As in the
isotropic setting, the anisotropic mean curvature can be derived from the variation of
the anisotropic surface energy Fγ(Σ) =

∫
Σ γ(N)dΣ, where N is the unit normal vector

field on Σ. The anisotropic surface energy is considered as the free energy of surfaces of
materials which have anisotropy such as crystals or nematic liquid crystals. For a function
γ satisfying Aγ > 0, we can consider a unique convex set Wγ , called the Wulff shape of γ,
the supporting function of which is γ.

In the recent years, lots of classical results for hypersurfaces with mean curvature
constraints have been generalized to the anisotropic case. For instance, Chodosh and Li
[8] considered the Bernstein problem for anisotropic minimal hypersurfaces in R4 and they
showed that complete stable minimal hypersurface must be flat when γ is close to 1 in C2

sense. In the case of closed hypersurfaces, Scheuer and Zhang [28] studied the quantitative
stability of Wulff shape for the anisotropic Heintze–Karcher inequality and the anisotropic
Alexandrov theorem.

The aim of this article is to obtain some anisotropic generalizations to the classical
results on hypersurfaces in Euclidean space.

In Section 2, we consider the Morse index of anisotropic minimal surfaces. The Morse
index is defined through the second variation of given functional and measures how unstable
a solution to the considering variational problem is. For minimal surfaces, the Gauss map
is used to relate the Morse index to the genus (see [3, 21, 30] for instance).

In this section, we study the behavior of the Gauss map of anisotropic minimal surfaces
with convex integrand γ and apply it to obtain a Tysk [30] type upper bound and a
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Nayatani [21] type lower bound of the Morse index. As an application of the latter lower
estimate of the Morse index, we also prove the instability of anisotropic minimal surfaces
with low genus.

In Section 3, we prove the Hasanis–Koutroufiotis [13] type inequality for the anisotropic
extrinsic radius of hypersurfaces in Euclidean space involving the anisotropic mean curva-
tures. We also study the equality case and proved that an almost extremal hypersurface
must be close to the Wulff shape in the sense of the Hausdorff distance.
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2 On the Gauss map of anisotropic minimal surfaces and
applications to the Morse index estimates

2.1 Introduction

Let γ : S2 → R>0 be a smooth positive function on the unit sphere. For an isometric
immersion Σ → R3 from an oriented surface, the anisotropic surface energy Fγ(Σ) is
defined by

Fγ(Σ) =

∫
Σ
γ(N)dΣ, (2.1)

where N is the unit normal vector field along Σ and dΣ is the area element of Σ.
A surface Σ is called a γ-anisotropic minimal surface if it satisfies d

dt

∣∣
t=0

Fγ(Σt) = 0 for
all compactly supported variations. We note that if we let γ = 1 in (2.1), then Fγ coincides
with the area functional. In this sense, we may consider anisotropic minimal surfaces as a
generalization of minimal surfaces.

The stability and the instability of solutions to the variational problem of given func-
tional is an important problem in differential geometry. For minimal surfaces, the Gauss
map is a fundamental tool in the study of the stability. Barbosa and Do Carmo [3] gave a
sufficient condition for stability of subdomains of minimal surfaces by studying the image
of Gauss map. Tysk [30] studied the spectrum of the Laplacian of covering manifolds and
applied it to the Gauss map of a minimal surface to get an upper bound of the Morse index
in terms of the total curvature. Nayatani [21] gave a lower bound for the Morse index by
considering the pre-image of a great circle in the unit sphere via the Gauss map.

In this section, we study the behavior of the Gauss map of anisotropic minimal surfaces
with convex integrand γ and apply it to obtain an estimate of the Morse index. A positive
function γ on the unit sphere is called convex if the second derivative Aγ = (∇S2)2γ+γI of
γ is positively definite. When γ is convex, the Euler–Lagrange equation of the variation of
Fγ becomes an elliptic equation. Moreover, the Jacobi operator, which is defined through
the second variation of Fγ , becomes a second order linear elliptic operator and its Morse
index can be well-defined. For the behavior of the Gauss map, we obtain the following
result.

Theorem 2.1. Let Σ ⊂ R3 be a γ-anisotropic minimal surface. Assume γ is convex. Then
the critical set of the Gauss map of Σ has no accumulation points.

This result is a generalization of the well known fact for minimal surfaces. The discrete-
ness of the critical set of the Gauss map allows us to consider the Gauss map as a branched
covering map onto the unit sphere. In the anisotropic case, we define the anisotropic Gauss
map Nγ by the composition of the Gauss map N : Σ → S2 and ξ : S2 → R3 defined by

ξ(ν) = ∇S2γ(ν)+ γ(ν)ν for ν ∈ S2. Applying an argument in [30] to the anisotropic Gauss
map, we obtain the following index upper bound.
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Theorem 2.2. Let Σ ⊂ R3 be a γ-anisotropic minimal surface with convex integrand γ.
Then there exists a positive constant C(γ) which depends only on γ such that

Ind(Σ) ≤ C(γ)deg(Nγ),

where deg(Nγ) is the mapping degree of the anisotropic Gauss map Nγ on Σ.

Another application of Theorem2.1 is the following generalization of Nayatani’s Morse
index lower bound in [21].

Theorem 2.3. Let Σ ⊂ R3 be a γ-anisotropic minimal surface with convex integrand γ.
Let S be a great circle in the unit sphere S2. Then, the Morse index Ind(Σ) of Σ satisfies

Ind(Σ) ≥ b(N,N−1(S)) + 1− 2g,

where b(N,N−1(S)) is the branching order of the Gauss map N with respect to N−1(S)
and g is the genus of Σ.

2.2 Geometry of anisotropic minimal surfaces

In this section, we prepare some basic properties of γ-anisotropic minimal surfaces. We refer
to [17] and [18]. Let Σ → R3 be an immersion of an oriented surface. Let γ : S2 → R>0 be
a smooth positive function on the unit sphere. For any variation Σt of Σ, the first variation
of the anisotropic surface energy Fγ defined by (2.1) is given by

d

dt

∣∣∣∣
t=0

Fγ(Σt) = −
∫
Σ
HγudΣ, (2.2)

where u is the normal component of given variation and Hγ is the anisotropic mean cur-
vature. As a consequence of (2.2), we see that Σ is a critical point of the functional Fγ if
and only if its anisotropic mean curvature vanishes identically.

The integrand γ is called convex or elliptic if the hessian Aγ = (∇S2)2γ + γI of γ
(extended 1-homogeneously) satisfies Aγ > 0. Geometrically speaking, the convexity of γ
implies that γ is the support function of the convex body∩

ν∈S2
{x ∈ R3|⟨x, ν⟩ ≤ γ(ν)}. (2.3)

The boundary Wγ of the convex set (2.3) is called the Wulff shape of γ. We note that if γ
is convex, the Wulff shape Wγ has a parametrization

Wγ = ξ(S2),

where ξ is the map, which is called the Cahn–Hoffman map for γ (see [17] for details),
defined by ξ(ν) = ∇S2γ(ν) + γ(ν)ν from S2 to Wγ . The following fact is a fundamental
property for the Cahn–Hoffman map (see [29]).
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Lemma 2.1. Let γ : S2 → R>0 be a smooth positive function on S2. Then the Cahn–
Hoffman map ξ for γ satisfies ⟨dξν(X), ν⟩ = 0 for any ν ∈ S2 and X ∈ TνS2.

By Lemma 2.1, the tangent planes TνS2 at ν ∈ S2 and Tξ(ν)Wγ at ξ(ν) ∈ Wγ are parallel.
In particular, we may consider the differential dξ = Aγ at ν ∈ S2 of the Cahn–Hoffman
map ξ as an endomorphism on TνS2.

For a surface Σ, the map Nγ = ξ ◦ ν from Σ to Wγ is called the anisotropic Gauss
map. Since the planes TpΣ at p ∈ Σ and TNγ(p)Wγ at Nγ(p) ∈ Wγ are parallel, we may
consider the differential dNγ = −AγS as an endomorphism on TpΣ. Here, S denotes the
usual shape operator of Σ. Hence, the anisotropic mean curvature can be written as

Hγ = tr(−dNγ) = tr(AγS). (2.4)

Let us assume that Σ is a γ-anisotropic minimal surface with convex integrand γ. We
give a local expression of (2.4). Given p ∈ Σ, choose a frame {ei}i diagonalizing the second
fundamental form A and let {κi}i be the principal curvatures. We set ai = ⟨Aγei, ei⟩. Note
that a1 and a2 are positive by the convexity of γ. Under these notations, we have

Hγ = a1κ1 + a2κ2. (2.5)

Using (2.5), the Gaussian curvature KΣ of Σ is given by

KΣ = κ1κ2 = −a1
a2

κ1
2 ≤ 0. (2.6)

Here, we used the convexity of γ. Therefore, a γ-anisotropic minimal surface has nonposi-
tive Gaussian curvature.

Before showing Theorem 2.1, we consider a graphical surface. Let u = u(x, y) be a
smooth function on a domain Ω ⊂ R2. Since the unit normal N of Graphu is given by

N =
(−ux,−uy, 1)√

1 + |∇u|2
,

the anisotropic energy Fγ of Graphu becomes

Fγ(Graphu) =

∫
Ω
γ(N)

√
1 + |∇u|2 dxdy =

∫
Ω
γ̄(−ux,−uy, 1) dxdy. (2.7)

Taking a variation of (2.7), we obtain the γ-anisotropic minimal surface equation:

2∑
i,j=1

γ̄ij(−∇u, 1)uij = 0. (2.8)
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We next show a curvature estimate for graphical surfaces. Using (x, y) as local coordi-
nates on Graphu, the induced metric g and its inverse g−1 can be written as

g =

(
1 + u2x uxuy
uxuy 1 + u2y

)
, g−1 =

1

1 + |∇u|2

(
1 + u2y −uxuy
−uxuy 1 + u2x

)
.

Since the eigenvalues of g are 1 and 1 + |∇u|2, g−1 satisfies the following inequality as a
symmetric matrix

1

1 + |∇u|2
I ≤ g−1 ≤ I. (2.9)

Similarly, the second fundamental form A in the coordinate (x, y) is expressed as

A =
1

(1 + |∇u|2)
1
2

(
uxx uxy
uxy uyy

)
.

The norm squared of A is given by |A|2 = AijAkl g
ikgjl. Hence the matrix inequality (2.9)

yields the following curvature estimate:

|Hessu|2

(1 + |∇u|2)3
≤ |A|2 ≤ |Hessu|2

1 + |∇u|2
. (2.10)

Finally, we recall the following fact from [9].

Lemma 2.2. Let Σ ⊂ R3 be an immersed surface with

16s2 sup
Σ

|A| ≤ 1

for some s > 0. If x0 ∈ Σ and distΣ(x0, ∂Σ) ≥ 2s, then BΣ
2s(x0) can be written as a graph

of a functtion u over a domain of Tx0Σ with |∇u| ≤ 1 and
√
2|Hessu| ≤ 1.

Proof of Therorem2.1. Let p ∈ Σ be a point in Σ such that KΣ(p) = 0. Let κi be the i-th
principal curvature of Σ at p. It follows from (2.6) that

|A|2 = κ21 + κ22 = κ21 +
a21
a22

κ21 =

(
a2
a1

+
a1
a2

)
a1
a2

κ21 =

(
a2
a1

+
a1
a2

)
(−KΣ),

so |A|2(p) = 0.
Up to translation and rotation, we may assume that p = 0, TpΣ = {x3 = 0}, and

N(p) = (0, 0, 1).
Since |A|2(0) = 0, there exists a δ > 0 such that |A|2 < 1 on BΣ

δ (0). Rescaling the
canonical metric on R3 by factor λ > 0, we have

|Ã|2 < 1

λ2
on BΣ

λδ(0),
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where Ã denotes the second fundamental form of Σ given by the rescaled metric. Choosing
λ > 0 large, we may assume that

|A|2 ≤ 1

16
on BΣ

4 (0).

By Lemma 2.2 the geodesic disk BΣ
2 (0) can be written as a graph of a function u over a

domain in R2 = TpΣ with |∇u| ≤ 1 and |Hessu| ≤ 1√
2
.

Since Σ is γ-minimal, u satisfies a quasilinear elliptic equation (2.8) with bounded coeffi-
cients. Up to linear transform of local coordinate, we may assume that γ̄ij(−∇u(0), 1) = δij .
In this coordinate, u satisfies ∆u = 0 at p.

By the theorem of Bers [4], there exists a homogeneous polynomial P of degree n and
a constant ε ∈ (0, 1) such that

u(x) = P (x) +O(|x|n+ε),

ui(x) = Pi(x) +O(|x|n−1+ε), i = 1, 2,

uij(x) = Pij(x) +O(|x|n−2+ε), 1 ≤ i, j ≤ 2,

and
∆P = 0 (2.11)

hold around 0. Since u(0) = 0 and ∇u(0) = 0, it follows that n ≥ 2.
Moreover, by (2.10), we have

|Hessu|2 ≤ (1 + |∇u|2)3|A|2 ≤ 8|A|2,
which implies uij(0) = 0 and hence n ≥ 3.

We now introduce the complex coordinate z on R2 = TpΣ by z = x1 +
√
−1x2. The

harmonicity (2.11) of P yields Pzz̄ = 0. Hence, the function Pz is holomorphic.
Since P is a polynomial of degree n ≥ 3 and Pz is holomorphic, there exists a holomor-

phic function G around 0 such that

Pzz(z) = zn−2G(z) and G(0) ̸= 0.

Assume that there exists a sequence {zk}k such that zk → 0 and |A|(zk) = 0. Then
uij(zk) = 0 for each k, and hence uzz(zk) = 0.

On the other hand, we have

uzz = Pzz +O(|z|n−2+ε)

= zn−2 (G(z) +O(|z|ε)).
For each zk, we get

0 = uzz(zk) = zn−2
k (G(zk) +O(|zk|ε)).

Since n ≥ 3, this implies G(zk) = O(|zk|ε) which contradicts the fact that G(0) ̸= 0.
Therefore, the set {p ∈ Σ|KΣ(p) = 0} has no accumulation points, which proves the

theorem.
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2.3 Index upper bound for anisotropic minimal surfaces

Let Σ be a complete, oriented γ-anisotropic minimal surface. Recall that the second vari-
ation formula for the anisotropic surface energy Fγ is given by

d2

dt2

∣∣∣∣
t=0

Fγ = −
∫
Σ
uLudΣ,

where L is the Jacobi operator given by L = divΣ(Aγ∇Σ) + tr(AγS
2). For relatively

compact domain Ω ⊂ Σ, we define Ind(Ω) as the number of negative eigenvalues (counted
with multiplicity) of the Dirichlet eigenvalue problem

Lu+ λu = 0 in Ω, u = 0 on ∂Ω.

Note that the number Ind(Ω) is always finite by the theory of elliptic operators. The Morse
index Ind(Σ) of Σ is defined as the supremum of the numbers Ind(Ω) over all relatively
compact domains in Σ. The associated quadratic form to L is given by

Q(u) =

∫
Σ
(⟨Aγ∇Σu,∇Σu⟩ − tr(AγS

2)u2)dΣ.

We set

λγ = min
ν∈S2

min
v∈TνS2,|v|=1

⟨Aγv, v⟩, Λγ = max
ν∈S2

max
v∈TνS2,|v|=1

⟨Aγv, v⟩.

By the convexity of γ, we have

0 < λγI ≤ Aγ ≤ ΛγI, (2.12)

where I denotes the identity matrix.
To estimate the quadratic form, we define the anisotropic Gaussian curvature Kγ by

Kγ = det(−dNγ) = det(AγS) = det(Aγ)K
Σ. (2.13)

Lemma 2.3. Let Σ be a γ-anisotropic minimal surface with convex integrand γ. We have

− 2

Λγ
Kγ ≤ tr(AγS

2) ≤ − 2

λγ
Kγ .

Proof. Let κi be the principal curvature. Using the identity a1κ1 + a2κ2 = 0, we have

tr(AγS
2) = a1κ1

2+a2κ2
2 = −a2κ1κ2−a1κ1κ2 = −(a1+a2)K

Σ = −tr(Aγ)K
Σ = −tr(Aγ)

detAγ
Kγ .

If we let µ1 and µ2 be the eigenvalues of Aγ , we have

tr(Aγ)

detAγ
=

µ1 + µ2

µ1µ2
=

1

µ1
+

1

µ2
.
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Moreover, since (2.12) gives λγ ≤ µ1, µ2 ≤ Λγ , we obtain

2

Λγ
≤ tr(Aγ)

detAγ
≤ 2

λγ
.

By Lemma 2.3, the quadratic form Q can be estimated below by

Q(u) =

∫
Σ
(⟨Aγ∇Σu,∇Σu⟩ − tr(AγS

2)u2)dΣ

≥
∫
Σ

(
λγ |∇Σu|2 + 2

λγ
Kγu

2

)
dΣ

= λγQγ(u), (2.14)

where we defined Qγ(u) =
∫
Σ

(
|∇Σu|2 + 2

λγ
2Kγu

2
)
dΣ, which is the quadratic form cor-

responding to the elliptic operator Lγ = ∆Σ − 2
λγ

2Kγ . By (2.14), if u satisfies Q(u) < 0,

it also follows that Qγ(u) < 0. This implies that the Morse index can be bounded from
above by the number of negative eigenvalues Neg(Lγ) of Lγ .

We now assume that Σ has finite total curvature. Since the Gaussian curvature of γ-
anisotropic minimal surface is nonpositive by (2.6), the theorem of Osserman [23, Theorem
9.1] asserts that there exists a compact surface Σ̃ such that Σ is conformally diffeomorphic
to Σ̃ \ {p1, · · · pk}. By the theorem of White [31], the Gauss map N can be extended
continuously to Σ̃. Thus, it follows from Theorem2.1 that the set C = {p ∈ Σ̃|KΣ(p) = 0}
is a finite set. Since C is the critical set of N , N is locally diffeomorphic outside of C.
Letting B = N(C) ⊂ S2, we obtain the following:

Lemma 2.4. The restricted Gauss map N : Σ̃ \ N−1(B) → S2 \ B is a covering map.
Moreover, N : Σ̃ → S2 is surjective.

Since γ is convex, (2.13) asserts that the critical set of Nγ coincides with C. Hence,
the anisotropic Gauss map Nγ : Σ̃ \N−1(B) → Wγ \ ξ(B) is also a covering map onto the
Wulff shape Wγ .

Now, let h be the metric on Wγ induced from the immersion Wγ → R3. In the case
of minimal surfaces, the pullback metric from S2 via the Gauss map is conformal to the
original one. Since the index form for the Jacobi operator on a minimal surface is invariant
under conformal changes, we may relate the Morse index with the eigenvalue problem of
the Laplacian on S2. Motivated by these facts, we consider the energy density of given
function with respect to the pullback metric N∗

γh on Σ.

Lemma 2.5 (cf. Lemma 3.10 in [3]). Let Σ be a γ-anisotropic minimal surface with convex
integrand γ. Assume that p is a point at which Nγ is regular. Then there exists a constant
c(γ) > 0 which depends only on γ such that it follows for any smooth function u on Σ that

−c(γ)−1 1

Kγ
|du|2(p) ≤ |du|2N∗

γh
(p) ≤ −c(γ)

1

Kγ
|du|2(p).
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Proof. Let {ei}i be an orthonormal frame around p. Since the tangent planes TpΣ and
TNγ(p)Wγ are parallel, we may consider {ei(p)}i as an orthonormal basis of TNγ(p)Wγ . In
this basis, the metric N∗

γh is expressed as

(N∗
γh)ij = ⟨dNγ(ei), dNγ(ej)⟩ = ⟨AγSei, AγSej⟩ = (SA2

γS)ij .

To obtain the last equality, we used the symmetry of Aγ and S.
Note that the matrix SA2

γS is symmetric. Choose {ei(p)}i so that it diagonalizes SA2
γS

and let λ1 and λ2 be the corresponding eigenvalues. Since Nγ is regular at p, the matrix
SA2

γS is invertible. Hence, we have

|du|2N∗
γh
(p) = ⟨(SA2

γS)
−1du, du⟩ = λ1

−1u21 + λ2
−1u22.

This equality yields

1

tr(SA2
γS)

|du|2 = 1

λ1 + λ2
|du|2 ≤ |du|2N∗

γh
(p) ≤ λ1 + λ2

λ1λ2
|du|2 =

tr(SA2
γS)

det(SA2
γS)

|du|2. (2.15)

Since A2
γ satisfies λ2

γI ≤ A2
γ ≤ Λ2

γI, we have

⟨SA2
γSv, v⟩ = ⟨A2

γSv, Sv⟩ ≤ Λ2
γ⟨S2v, v⟩,

for any vector v ∈ TpΣ. Hence,

tr(SA2
γS) ≤ Λ2

γtr(S
2) = Λγ |A|2 = −Λ2

γ

(
a2
a1

+
a1
a2

)
KΣ

≤ −Λ2
γ

(
Λγ

λγ
+

λγ

Λγ

)
KΣ

≤ −
(
Λγ

λγ

)2(Λγ

λγ
+

λγ

Λγ

)
Kγ

= −c(γ)Kγ ,

by (2.13). Combining this with (2.15), we obtain

−c(γ)−1 1

Kγ
|du|2 ≤ |du|2N∗

γh
≤ −c(γ)

1

Kγ
|du|2.

Before the proof of the index upper bound, we prepare the following notation. For any
second order linear differential operator A and any subdomain Ω of Σ, let Nλ(A,Ω) be the
number of the eigenvalues of A less than λ on Ω.
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Proof of Theorem 2.2. If the degree of Nγ is infinity, there are nothing to prove. Assume
that the degree of Nγ is finite.

Since

−λ2
γ

∫
Σ
KΣdΣ ≤ deg(Nγ) ≤ −Λ2

γ

∫
Σ
KΣdΣ,

by (2.12), the finiteness of deg(Nγ) implies the finiteness of total curvature. Thus, it follows
from Lemma 2.4 that Nγ is a branched covering map from Σ to Wγ .

For each ε > 0, let Ωε be the subset of Σ subtracting the ε-neighborhood of N−1(B).
By Lemma 2.5, we have

Qγ(u) =

∫
Σ

(
|du|2 + 2

λγ
2Kγu

2

)
dΣ

≥
∫
Σ

(
−c(γ)−1Kγ |du|2N∗

γh
+

2

λγ
2Kγu

2

)
dΣ

= c(γ)−1

∫
Σ

(
|du|2N∗

γh
− 2c(γ)

λγ
2 u2

)
(−Kγ)dΣ

= c(γ)−1

∫
Σ

(
|du|2N∗

γh
− 2c(γ)

λγ
2 u2

)
d(N∗

γh)

for any function u with compact support in Ωε. This implies that

N0(Lγ ,Ωε) ≤ Nc′(γ)(∆
N∗

γh,Ωε),

where c′(γ) = 2c(γ)λ−2
γ and ∆N∗

γh is the Laplacian with respect to N∗
γh. Letting ε → 0,

we obtain
Ind(Σ) ≤ N0(Lγ ,Σ) ≤ Nc′(γ)(∆

N∗
γh.Σ).

We now estimate the number of eigenvalues of ∆N∗
γh. Let {λi}i and {µi}i be the

eigenvalues of the Laplacians ∆N∗
γh and ∆Wγ . Since Nγ is a branched covering map from

Σ to Wγ , we may apply Tysk’s heat trace estimate [30] to Nγ and obtain for any t > 0
that ∑

i

e−λit ≤ deg(Nγ)
∑
i

e−µit.

Combining this with the heat kernel estimate by Cheng and Li [8], we have

Nc′(γ)(∆
N∗

γh,Σ) =
∑

λi<c′(γ)

1

≤ ec
′(γ)t

∑
λi<c′(γ)

e−λit

≤ ec
′(γ)tdeg(Nγ)

∑
i

e−µit

≤ deg(Nγ)C(Wγ)
ec

′(γ)t

t
, (2.16)
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where C(Wγ) is the Sobolev constant of Wγ . Taking a minimum of the right hand side of
(2.16), we finally obtain that

Ind(Σ) ≤ c′(γ)−1C(Wγ)deg(Nγ) = C(γ)deg(Nγ).

2.4 Index lower bound for anisotropic minimal surfaces

In this section, we assume that Σ → R3 is an embedded, complete, non-planner γ-minimal
surface.

Proposition 2.1. Assume Ind(Σ) is finite. Let u is a nontrivial solution to the equation
Lu = 0 and let Nu be the number of connected components of Σ \ u−1(0). Then it follows
that

Ind(Σ) ≥ Nu − 1.

Proof. Let I = Ind(Σ). Then u is an (I + 1)-th eigenfunction of L. By the Courant nodal
domain theorem, the number of nodal domains of u is not greater than I + 1. Therefore,
I ≥ Nu − 1.

The following lemma asserts that nontrivial solutions of Lu = 0 can be constructed by
the Gauss map N .

Lemma 2.6. Let Σ be a γ-minimal surface in R3 and let a ∈ R3 be a non-zero fixed vector.
Then the function ϕa = ⟨N, a⟩ satisfies the equation Lu = 0.

Proof. Under the variation Xt = X + ta of a γ-minimal immersion X : Σ → R3, it is clear
that the anisotropic mean curvature Hγ does not change. Differentiating Hγ in t gives
Lϕa = 0.

Let us consider the nodal set ϕ−1
a (0) of ϕa. If x ∈ ϕ−1

a (0), we have ⟨N(x), a⟩ = ϕa(x) =
0. This implies thatN(x) is contained in the great circle in S2 determined as the intersection
of S2 and the plane which is normal to a. Therefore, the nodal set of ϕa is given by the
inverse image by N of a great circle.

We observe the behavior of N around critical points. Pick any point p in the critical
set C of N . By Theorem2.1, we may choose a local coordinate neighborhood U around p
which has no other points of C. Let D ⊂ S2 be a coordinate disk centered at N(p). Up to a
linear transformation on U , we may assume that N(p) = 0. Since N satisfies the equation
LN = 0, we may also assume that ∆N + tr(AγS

2)N = 0 at p.
By the theorem of Aronszajn [1], the vanishing order of N at p is finite. Hence, by

the theorem of Bers [4], there exists a homogeneous polynomial P of order b(p) + 1 and a
constant ε ∈ (0, 1) such that

N(x, y) = P (x, y) +O(rb(p)+1+ε),
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where (x, y) denotes the local coordinate around p. By Lemma2.4 of [6], there exists a
C1-diffeomorphism Ψ around p such that N = P ◦Ψ. Hence, for any regular value q′ of N
in D, we have #N−1(q′) = b(p) + 1.

Thus, we may define the branching order of p ∈ C by the number b(p) defined as above.
Considering a triangulation of S2 and its pullback on Σ via N , we obtain a Riemann–
Hurwitz type formula.

Proposition 2.2. For any γ-anisotropic minimal surface Σ which has finite total curvature
with Aγ > 0, it follows that

χ(Σ̃) = 2deg(N)−
∑
p∈Σ̃

b(p).

Let S be a great circle in S2. The following lemma asserts that the nodal set N−1(S)
forms a pseudograph on Σ.

Lemma 2.7. N−1(S) forms a pseudograph on Σ.

Proof. Let q1, · · · , qs be singular values of N on S. We may assume that q1, · · · , qs lie on
S in this order. For each qi, we set {pi1, · · · , piti} = N−1(qi). Set t =

∑
i ti and b =

∑
i,j b

i
j ,

where bij = b(pij).

Consider a local disk around pij . By the above argument, the arc qiqi+1 is lifted to

bij + 1 curves starting from pij and the terminal points are among pi+1
1 , · · · , pi+1

ti+1
(here we

interpreted as qs+1 = q1, etc.). Since N is local homeomorphism away from its critical sets,
each edge has no self-intersections and any two edges do not intersect at their interiors.
Thus, N−1(S) forms an embedded pseudograph on Σ consisting of t-vertices and b + t-
edges.

For a subset A of Σ, we define the branching order b(N,A) of N with respect to A by

b(N,A) =
∑
p∈A

b(p).

To show an index lower estimate, we need the following graph theoretic lemma (see [21]).

Lemma 2.8. Let Γ be an embedded pseudograph on the compact surface S of genus g.
Suppose Γ has v-vertices and e-edges, and S \ Γ has N -components. Then

v − e+N ≥ 2− 2g.

proof of Theorem 2.3. Let Σ̃ be the compactification of Σ. By Lemma 2.7, N−1(S) forms
a pseudograph on Σ̃ consisting of t-vertices and b+ t-edges where b and t are the numbers
defined in the proof of the lemma. Notice that N−1(S) coincides with the nodal set of
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the Jacobi function ϕa where a is a unit vector in R3 which is orthogonal to S. Hence, by
Lemma 2.8, we obtain

Nϕa ≥ b+ 2− 2g.

Since b is the total branching order b(N,N−1(S)), it follows from Proposition 2.1 that

Ind(Σ) ≥ Nϕa − 1 ≥ b(N,N−1(S)) + 1− 2g.

Corollary 2.1. Let Σ be a γ-anisotropic minimal surface which has finite total curvature
with Aγ > 0. If the image of critical points N(C) is contained in some great circle in S2,
it follows that

Ind(Σ) ≥ − 1

2π

∫
Σ
KΣdΣ− 1.

Proof. Let S be a great circle which contains the image of critical set N(C). By Proposition
2.2, we obtain

b(N,N−1(S)) =
∑
p∈Σ̃

b(p) = 2deg(N) + 2g − 2.

Since the absolute total curvature of Σ coincides with 4πdeg(N), it follows from Theorem
2.3 that

Ind(Σ) ≥ 2deg(N) + 2g − 2 + 1− 2g = − 1

2π

∫
Σ
KΣdΣ− 1.

Using Theorem 2.3, we may prove the instability of anisotropic minimal surface with
low genus.

Corollary 2.2. Let Σ be a γ-anisotropic minimal surface which has finite total curvature
with Aγ > 0. If the genus g of Σ is 0 or 1, then Σ is unstable.

Proof. If g = 0, Theorem 2.3 gives Ind(Σ) ≥ 1.
Assume that g = 1. Since Σ is not a plain, the mapping degree of the Gauss map

deg(N) is greater than 0. It follows from Proposition 2.2 that∑
p∈Σ̃

b(p) = 2deg(N) + 2g − 2 ≥ 2g = 2.

This implies the existence of a great circle S which contains at least two branch points
(counted with multiplicity). Hence, we have b(N,N−1(S)) ≥ 2. Thus, Theorem 2.3 gives
Ind(Σ) ≥ 2 + 1− 2 = 1.
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3 Anisotropic extrinsic radius pinching for hypersurfaces and
the stability of the Wulff shape

3.1 Introduction

Let X : Σn → Rn+1 be a closed, isometrically immersed hypersurface. The extrinsic radius
of Σ is defined as the smallest radius of balls containing Σ. It is well-known that the
extrinsic radius of Σ can be bounded from below in terms of the mean curvature. Namely,
T. Hasanis and D. Koutroufiotis [13] showed that

Rext∥H∥∞ ≥ 1, (3.1)

where Rext and H denote the extrinsic radius and the mean curvature of Σ respectively.
For closed hypersurfaces, this inequality can be proved from an L2-estimate of the radius
as follows (see [2]): (∫

Σ
|H|2

) 1
2
(∫

Σ
|X −X0|2

) 1
2

≥ Vol(Σ), (3.2)

where X0 is the center of mass of Σ which is defined by X0 = 1
Vol(Σ)

∫
ΣX and Vol(Σ) is

the volume of Σ. Moreover, the equality holds in (3.2) (hence in (3.1)) if and only if Σ is
the n-dimensional sphere of radius 1/∥H∥∞ centered at X0 ∈ Rn+1.

The aim of this section is to obtain an anisotropic generalization of the extrinsic radius
estimate (3.2) and quantitative and qualitative stability results proved in [2, 5, 26] for the
isotropic setting.

To state our main results, we need some notations. Let γ : Sn → R>0 be a smooth,
positive function satisfying the convexity condition

Aγ = (HessS
n

γ + γI)ν > 0, (3.3)

for any ν ∈ Sn. Here, I denotes the identity operator on TνSn and > 0 means the positivity
of self-adjoint operators. We consider the map given by

ξ : Sn −→ Rn+1

ν 7−→ γ(ν)ν +∇Snγ(ν).

The image Wγ = ξ(Sn) is called the Wulff shape with respect to γ. Note that Wγ is a
convex hypersurface in Rn+1 by the convexity condition (3.3).

The Wulff shape Wγ can be seen as the ”round sphere” for an anisotropic norm on
Rn+1. Namely, if we introduce the Minkowski norm γ∗ : Rn+1 → R≥0 by

γ∗(x) = sup
|z|γ( z

|z| )≤1
⟨x, z⟩, (3.4)
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then Wγ can be represented as Wγ = {γ∗ = 1} (see [29] for details). For a positive s > 0,
we call the set sWγ = {γ∗ = s} the Wulff shape of radius s. We now define the anisotropic
extrinsic radius Rγ

ext for a closed, isometrically immersed hypersurface X : Σn → Rn+1 by

Rγ
ext = inf

x0∈Rn+1
max
p∈Σ

γ∗(X(p)− x0). (3.5)

We note that Rγ
ext is a natural anisotropic generalization of Rext. Indeed, we have that

Rγ
ext = inf{s > 0|Σ ⊂ Int(sWγ) + x0 for some x0 ∈ Rn+1}

Throughout of this paper, we let X0 ∈ Rn+1 denote a point at which minimizes the right
hand side of (3.5).

The anisotropic shape operator Sγ of Σ is defined be Sγ = Aγ ◦ S, where S denotes
the usual shape operator of Σ. We define the anisotropic mean curvature Hγ by Hγ =
(−1/n)trSγ . It is known that the Wulff shape Wγ is a stable constant anisotropic mean
curvature hypersurface with Hγ = 1, like a round sphere in the isotropic setting (see for
example [17, 24]).

Finally, we define the Lp norm of a function f on Σ by

∥f∥p =
(

1

Fγ(Σ)

∫
Σ
|f |pγ(N)

) 1
p

,

where Fγ(Σ) =
∫
Σ γ(N) is the anisotropic surface energy of Σ and N is the unit normal

vector field along Σ.
Our first result is the following anisotropic version of the extrinsic radius estimate.

Theorem 3.1. Let X : Σn → Rn+1 be a closed, isometrically immersed hypersurface. Let
γ : Sn → R>0 be a smooth positive function satisfying the convexity condition (3.3). Then,
it follows that

∥Hγ∥2∥γ∗(X −X0)∥2 ≥ 1. (3.6)

In particular, the anisotropic extrinsic radius of Σ satisfies

∥Hγ∥∞Rγ
ext ≥ 1. (3.7)

Moreover, equality occurs in (3.6) or (3.7) if and only if Σ is the Wulff shape with respect
to γ of radius Rγ

ext up to translations.

A natural question related to the equality case in (3.6) is the following: If the equality
almost holds in (3.6) (or (3.7)), is Σ close to a rescaled Wulff shape ∥Hγ∥−1

2 Wγ in a certain
sense? More precisely, we consider the following pinching condition for p > 2 and ε > 0:

∥Hγ∥p∥γ∗(X −X0)∥2 ≤ 1 + ε. (Pp,ε)
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In recent years, many authors study generalizations of classical pinching results for
geometric invariants of hypersurfaces to the anisotropic case. In [11], De Rosa and Gioffrè
studied the anisotropic almost totally umbilical hypersurfaces and proved the stability of
the Wulff shapes. More precisely, they proved that if the Lp norm of the trace-free part of
the anisotropic second fundamental form of a hypersurface Σ is sufficiently small, then Σ
must be close to the Wulff shape in the Sobolev W 2,p sense. Roth [27] used their results to
prove that a convex hypersurface with almost constant anisotropic mean curvatures of the
first and the second order must be close to the Wulff shape. Recently, Scheuer and Zhang
[28] studied the quantitative stability of Wulff shape for the anisotropic Heintze–Karcher
inequality and the anisotropic Alexandrov theorem.

Our next result shows that, when ∥Sγ∥q is bounded for some q > n, the pinching
condition (Pp,ε) implies that Σ is close to Wγ with respect to the Hausdorff distance.

Theorem 3.2. Let X : Σn → Rn+1 be a closed, isometrically immersed hypersurface. Let
γ : Sn → R>0 be a smooth positive function satisfying the convexity condition. Let q > n,
p > 2, and A > 0 be some real constants. Assume that the anisotropic shape operator
satisfies Fγ(Σ)

1/n∥Sγ∥q ≤ A. Then there exists some positive constants C = C(n, p, q, A, γ)
and α = α(n, q) such that if Σ satisfies (Pp,ε), then we have∥∥∥∥γ∗(X −X0)−

1

∥Hγ∥2

∥∥∥∥
∞

≤ Cεα
1

∥Hγ∥2
, (3.8)

and for any r ∈ [1, p) there exists some positive D = D(n, p, q, r, A, γ) such that

∥Hγ − ∥Hγ∥2∥r ≤ Dε
α(p−r)
r(p−1) ∥Hγ∥2. (3.9)

Moreover, given ε0 > 0, there exist a positive ε = ε(n, p, q, A, γ, ∥Hγ∥∞, ε0) such that the
pinching condition (Pp,ε) implies dH(Σ, ∥Hγ∥−1

2 Wγ) < ε0, where dH denotes the Hausdorff
distance.

3.2 Preliminaries

Let X : Σn → Rn+1 be a closed, isometrically immersed hypersurface and let N be the
unit normal vector field along Σ. Let ⟨·, ·⟩ and ∇ denote the canonical Riemannian metric
and the connection on Rn+1 respectively. Let ∇Σ be the connection on Σ with respect the
induced Riemannian metric from ⟨·, ·⟩. The shape operator S of Σ is a (1, 1)-tensor on Σ
defined by Sv = ∇vN .

Let γ : Sn → R>0 be a smooth positive function on Sn satisfying the convexity condition
(3.3). We define the anisotropic shape operator Sγ by Sγ = Aγ ◦ S. The anisotropic mean
curvature Hγ is given by Hγ = −(1/n)trSγ .
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In [15], He and Li proved that the anisotropic mean curvature satisfies the Hsiung–
Minkowski type formula [16] given by∫

Σ
(γ(N) +Hγ⟨X,N⟩) = 0. (3.10)

Such an integral formula plays an important role in the rigidity results involving anisotropic
mean curvatures (see [15, 17, 24] for example).

Let us now consider the Wulff shape Wγ for γ. Let γ∗ be the dual of γ defined by (3.4).
We extend γ 1-homogeneously to Rn+1 by letting

γ(x) = |x|γ
(

x

|x|

)
As an immediate consequence of the definition of γ∗, we have the Fenchel inequality given
by

⟨x, y⟩ ≤ γ∗(x)γ(y) (3.11)

for x, y ∈ Rn+1. Moreover, since γ is the supporting function of Wγ , the equality holds
in (3.11) if and only if x is perpendicular to the tangent plane of Wγ at y

γ∗(y) ∈ Wγ . We

now fix a point x and let ν be the unit normal vector to Wγ at x
γ∗(x) . Differentiating the

function G(x) = γ(ν)γ∗(x)− ⟨ν, x⟩ as in [22], we can obtain the gradient of γ∗ as

∇γ∗(x) =
ν

γ(x)
. (3.12)

Proof of Theorem 3.1. By the Hsiung–Minkowski formula (3.10) and the Fenchel inequality
(3.11), we have

1 =

∣∣∣∣ 1

Fγ(Σ)

∫
Σ
Hγ⟨X −X0, N⟩

∣∣∣∣ ≤ 1

Fγ(Σ)

∫
Σ
|Hγ |γ∗(X −X0)γ(N) ≤ ∥Hγ∥2∥γ∗(X −X0)∥2,

which concludes the inequality.
Assume the equality holds. Set Xγ∗ = X−X0

γ∗(X−X0)
. We have the equality of the Fenchel

inequality (3.11), which implies that the unit normal N is perpendicular to the tangent
space of Wγ at Xγ∗ . Moreover, by (3.12), we have ∇Σγ∗(X −X0) = 0, which implies that
γ∗(X −X0) is constant. Therefore, we have Σ = H−1

γ Wγ +X0.

3.3 Upper bound on the anisotropic extrinsic radius

For hypersurfaces, we have the following Michael–Simon Sobolev inequality [20]:
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(∫
Σ
|f |

n
n−1

)n−1
n

≤ C(n)

(∫
Σ
|∇Σf |+

∫
Σ
|Hf |

)
. (3.13)

Let {ei} be an orthonormal frame along Σ which diagonalizes Aγ and set ai = ⟨Aγei, ei⟩.
By the Cauchy–Schwartz inequality, we have

H =
1

n

∑
i

⟨Sei, ei⟩ =
1

n

∑
i

⟨A−1
γ Sγei, ei⟩ =

1

n

∑
i

a−1
i ⟨Sγei, ei⟩

≤ 1

n

(∑
i

a−2
i

) 1
2
(∑

i

|⟨Sγei, ei⟩|2
) 1

2

≤ 1

λ
|Sγ |,

where λ is a positive constant given by

λ = min
ν∈Sn,u∈ν⊥,|u|=1

⟨Aγ(ν)u, u⟩.

Combining this with (3.13), we have

∥f∥ n
n−1

≤ C(n, γ)Fγ(Σ)
1
n (∥∇Σf∥1 + ∥|Sγ |f∥1). (3.14)

To obtain the inequality (3.8), we prove the following estimate, which is an anisotropic
version of [2, Theorem 1.6].

Proposition 3.1. Let q > n be a real. There exists a constant C = C(n, q, γ) > 0 such
that for any isometrically immersed hypersurface X : Σ → Rn+1, we have

∥γ∗(X −X0)− ∥γ∗(X −X0)∥2∥∞ ≤ C(Fγ(Σ)
1
n ∥Sγ∥2)β∥γ∗(X −X0)∥2

(
1− ∥γ∗(X −X0)∥1

∥γ∗(X −X0)∥2

) 1
2(1+β)

,

where β = nq
2(q−n) .

Proof. Up to translation, we may assume that X0 = 0. We set φ = |γ∗(X) − ∥γ∗(X)∥2|.
For a positive a > 0, we have |∇Σφ2a| ≤ 2(min γ)−1φ2a−1 by (3.12). Letting f = φ2a in
(3.14), we have
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∥φ∥2a2an
n−1

≤ C(n, γ)Fγ(Σ)(2a∥φ∥2a−1
2a−1 + ∥|Sγ |φ2a∥1)

≤ C(n, γ)Fγ(Σ)(2a∥φ∥2a−1
2a−1 + ∥Sγ∥q∥φ∥2a2aq

q−1

)

≤ C(n, γ)Fγ(Σ)(2a∥φ∥2a−1
(2a−1)q

q−1

+ ∥Sγ∥q∥φ∥2a2aq
q−1

)

≤ C(n, γ)Fγ(Σ)(2a+ ∥Sγ∥q∥φ∥∞)∥φ∥2a−1
(2a−1)q

q−1

. (3.15)

We set ν = n(q−1)
(n−1)q and a = ak

q−1
2q + 1

2 where ak+1 = νak +
n

n−1 and a0 =
2q
q−1 . Plugging

them into (3.15) gives

(∥φ∥ak+1

∥φ∥∞

) ak+1

νk+1

≤

{
C(n, γ)Fγ(Σ)

1
n

(
ak

q−1
q + 1

∥φ∥∞
+ ∥Sγ∥q

)} n
νp+1(n−1)

(
∥φ∥ak
∥φ∥∞

) ak
νk

Since q > n then ν and ak
νk

converges to a0 +
qn
q+n and we have

1 ≤
(
∥φ∥a0
∥φ∥∞

)2 ∞∏
k=0

{
2C(n, γ)Fγ(Σ)

1
nak

(
1

∥φ∥∞
+ ∥Sγ∥q

)} 1

νk

≤
(
∥φ∥a0
∥φ∥∞

)2 ∞∏
k=0

a
1

νk

k

{
2C(n, γ)Fγ(Σ)

1
n

(
1

∥φ∥∞
+ ∥Sγ∥q

)} ν
ν−1

= C(q, n, γ)

(
∥φ∥a0
∥φ∥∞

)2{
Fγ(Σ)

1
n

(
1

∥φ∥∞
+ ∥Sγ∥q

)}n(q−1)
q−n

≤ C(q, n, γ)

(
∥φ∥a0
∥φ∥∞

) 2(q−1)
q
{
Fγ(Σ)

1
n

(
1

∥φ∥∞
+ ∥Sγ∥q

)}n(q−1)
q−n

,

hence we have

∥φ∥∞ ≤ C(n, q, γ)

{
Fγ(Σ)

1
n

(
1

∥φ∥∞
+ ∥Sγ∥q

)} nq
2(q−n)

∥φ∥2.

We set β = nq
2(q−n) . If ∥φ∥∞ ≥ ∥Sγ∥

− β
1+β

q ∥φ∥
1

1+β

2 , then
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∥φ∥∞ ≤ C(q, n, γ)

{
Fγ(Σ)

1
n

(
1

∥φ∥∞
+ ∥Sγ∥q

)}β

∥φ∥2

≤ C(q, n, γ)(Fγ(Σ)
1
n (∥Sγ∥

β
1+β
q ∥φ∥

− 1
1+β

2 + ∥Sγ∥q))β∥φ∥2

≤ C(q, n, γ)(Fγ(Σ)
1
n ∥Sγ∥q)β(∥Sγ∥

− 1
1+β

q + ∥φ∥
1

1+β

2 )β∥φ∥
1

1+β

2

≤ C(q, n, γ)(Fγ(Σ)
1
n ∥Sγ∥q)β(∥γ∗(X)∥

1
1+β

2 + ∥φ∥
1

1+β

2 )β∥φ∥2

≤ C(q, n, γ)(Fγ(Σ)
1
n ∥Sγ∥q)β∥γ∗(X)∥

β
1+β

2 ∥φ∥2,

where we have used 1 ≤ ∥Hγ∥2∥γ∗(X)∥2 ≤ ∥Sγ∥q∥γ∗(X)∥2. Since we have

∥φ∥22 = ∥γ∗(X)− ∥γ∗(X)|2∥22 = 2∥γ∗(X)∥2
(
1− ∥γ∗(X)∥1

∥γ∗(X)∥2

)
,

the desired inequality follows.

If ∥φ∥∞ ≤ ∥Sγ∥
− β

1+β
q ∥φ∥

1
1+β

2 , the result follows immediately from the above expression
of ∥φ∥2 and the fact that ∥Sγ∥q∥γ∗(X)∥2 ≥ 1.

Proof of (3.8). We may assume that X0 = 0. From the Hsiung–Minkowski formula (3.10),
it follows that 1 ≤ ∥Hγ∥p∥γ∗(X)∥ p

p−1
. By the Hölder inequality and the pinching condition

(Pp,ε), we have

∥Hγ∥p∥γ∗(X)∥2 ≤ 1 + ε ≤ (1 + ε)∥Hγ∥p∥γ∗(X)∥ p
p−1

≤ (1 + ε)∥Hγ∥p∥γ∗(X)∥
1− 2

p

1 ∥γ∗∥
2
p

2 ,

hence

1− ∥γ∗(X)∥1
∥γ∗(X)∥2

≤ 1− 1

(1 + ε)
p

p−2

≤ p

p− 2
2

2
p−2 ε.

Combining this inequality with Proposition 3.1, we obtain

∥γ∗(X)− ∥γ∗(X)∥2∥∞ ≤ C(n, p, q, γ)(Fγ(Σ)∥Sγ∥q)β∥γ∗(X)∥2ε
1

2(1+β)

≤ C(n, p, q, γ)Aβ 1

∥Hγ∥2
ε

1
2(1+β) ,

Here, we used ∥Hγ∥2∥γ∗(X)∥2 ≤ 1 + ε ≤ 2 to get the second inequality.
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Letting α = 1
2(1+β) , we obtain∥∥∥∥γ∗(X)− 1

∥Hγ∥2

∥∥∥∥
∞

≤ ∥γ∗(X)− ∥γ∗(X)∥2∥∞ +

∥∥∥∥∥γ∗(X)∥2 −
1

∥Hγ∥2

∥∥∥∥
∞

≤ CAβ εα

∥Hγ∥2
+

ε

∥Hγ∥2

≤ C(n, p, q, A, γ)
εα

∥Hγ∥2
.

Proof of (3.9). By the Hsiung–Minkowski formula (3.10) and the Fenchel inequality (3.11),
we have

1 ≤ 1

Fγ(Σ)

∫
Σ
|Hγ |γ∗(X)γ(N).

Using this and (Pp,ε), we have∥∥∥∥ |Hγ |
∥Hγ∥22

− γ∗(X)

∥∥∥∥2
2

= ∥γ∗(X)∥22 +
1

∥Hγ∥22
− 2

∥Hγ∥22
1

Fγ(Σ)

∫
Σ
|Hγ |γ∗(X)γ(N)

≤ ∥γ∗(X)∥22 −
1

∥Hγ∥22

≤
(
1− 1

(1 + ε

2
)
∥γ∗(X)∥22

≤ 3ε∥γ∗(X)∥22,

hence

∥H2
γ − ∥Hγ∥22∥1 ≤ ∥H2

γ − γ∗(X)2∥Hγ∥42∥1 + ∥γ∗(X)2∥Hγ∥42 − ∥Hγ∥22∥1

= ∥Hγ∥42
(∥∥∥∥ |Hγ |2

∥Hγ∥22
− γ∗(X)2

∥∥∥∥
1

+

∥∥∥∥γ∗(X)2 − 1

∥Hγ∥22

∥∥∥∥
1

)
≤ ∥Hγ∥42

(∥∥∥∥ |Hγ |
∥Hγ∥2

− γ∗(X)

∥∥∥∥
2

∥∥∥∥ |Hγ |
∥Hγ∥2

+ γ∗(X)

∥∥∥∥
2

+ CAβ εα

∥Hγ∥2

∥∥∥∥γ∗(X) +
1

∥Hγ∥2

∥∥∥∥
1

)

≤ ∥Hγ∥42
(√

3ε∥γ∗(X)∥2 + CAβ εα

∥Hγ∥2

)(
∥γ∗(X)∥2 +

1

∥Hγ∥2

)
≤ C(n, p, q, A, γ)εα∥Hγ∥22.

Therefore, we obtain

∥|Hγ | − ∥Hγ∥2∥1 ≤
∥|Hγ |2 − ∥Hγ∥22∥1

∥Hγ∥2
≤ Cεα∥Hγ∥2
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Moreover, we have

∥|Hγ | − ∥Hγ∥2∥p ≤ 2∥Hγ∥p ≤ 2∥Hγ∥2∥γ∗(X)∥2∥Hγ∥p ≤ 4∥Hγ∥2

by (Pp,ε). Hence, for any r ∈ [1, p), we obtain

∥|Hγ | − ∥Hγ∥2∥r ≤ ∥|Hγ | − ∥Hγ∥2∥
p−r

r(p−1)

1 ∥|Hγ | − ∥Hγ∥2∥
p(r−1)
r(p−1)
p

≤ D(n, p, q, r, A, γ)ε
α(p−r)
r(p−1) ∥Hγ∥2.

3.4 Proof of the Hausdorff closeness

In this section, we prove the Hausdorff closeness in Theorem 3.2. To prove this, we need
an anisotropic version of the lemma due to B. Colbois and J. -F. Grosjean [5, Lemma 3.2].

Lemma 3.1. For any R > 0 and ρ ∈ (0, 1), there exists a positive η = η(R, ρ, n, γ) > 0
satisfying the following property: Let z0 ∈ RWγ and let ν0 be the outer unit normal vector
to RWγ at z0. Let X : Σ → Rn+1 be a closed hypersurface isometrically immersed in
((R + η)Wγ \ (R − η)Wγ) \Bρ(z0). If there exists a point p ∈ Σ with ⟨X(p), ν0⟩ > 0, then
there exists a point q ∈ Σ such that |Hγ(q)| > λ

2nη .

Before proving Lemma 3.1, we prepare some notations. For ν ∈ Sn and t > 0, we set
Πt(ν) = ν⊥ + tν, where ν⊥ denote the n-dimensional subspace of Rn+1 which is perpen-
dicular to ν. Let z0 = Rξ(ν) ∈ RWγ .

We now let t0(ν) = max{t > 0|Πt(ν) ∩ (∂Bρ(z0) ∩ RWγ) ̸= ∅}. Note that for every
t ∈ [0, t0(ν)], the set W (ν, t) = RWγ ∩ Πt(ν) is convex. Considering W (ν, t) as a convex

hypersurface in Rn, we let SW (ν,t) and κ
W (ν,t)
i be the shape operator of W (ν, t) and the i-th

principal curvature of W (ν, t) respectively. Set H
W (ν,t)
γ = tr(AγS

W (ν,t). Since the function

hν : [0, t0(ν)] ∋ t 7→ maxW (ν,t)H
W (ν,t)
γ ∈ R>0 is non-decreasing we have hν(t0(ν)) =

maxhν . We now define

H0 = max
ν∈Sn

hν(t0(ν)) ∈ (0,∞).

Similarly, we set

κ0 = max
ν∈Sn

max{κW (ν,t)
i (x)|t ∈ [0, t0(ν)], x ∈ W (ν, t), 1 ≤ i ≤ n− 1}.

Proof of Lemma 3.1. For η ∈ (0, ρ) and t ∈ [0, t0(ν0)], consider the family of smooth maps

Φη,t : W (ν0, t)× S1 −→ Rn+1

(x, θ) 7−→ x− η cos θN(x) + η sin θν0 + tν0,
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where N(x) denotes the unit normal vector of W (ν0, t) ⊂ Rn at x. Let Sη,t denote the
image of Φη,t.

We calculate the curvature of Sη,t. Let {ei}n−1
i=1 be the orthonormal frame which diag-

onalize SW (ν0,t) at x. We have

Φi = dΦη,t(ei) = (1− η cos θκ
W (ν0,t)
i )ei,

Φθ = dΦη,t(∂θ) = η(sin θN(x) + cos θν0).

Note that there exists a positive ρ0 ∈ (0, ρ) such that Sη,t is an embedded hypersurface for
η ∈ (0, ρ0). Since the outer unit normal vector field of Sη,t is given by N = − cos θN +

sin θν0, the anisotropic shape operator S
Sη,t
γ of Sη,t can be calculated by

S
Sη,t
γ ei = − cos θAγS

W (ν0,t)ei, S
Sη,t
γ ∂θ = −η−1AγΦθ.

Since ⟨Φi,Φj⟩ = δij and ⟨Φi,Φθ⟩ = 0, the anisotropic mean curvature H
Sη,t
γ is given by

H
Sη,t
γ = − 1

n
trS

Sη,t
γ

= − 1

n

⟨SSη,t
γ ∂θ, ∂θ⟩
|Φθ|2

− 1

n

n−1∑
i=1

⟨SSη,t
γ ei, ei⟩
|Φi|2

=
⟨AγΦθ,Φθ⟩
nε|Φθ|2

− 1

n

n−1∑
i

cos θ⟨AγS
W (ν0,t)ei, ei⟩

(1− η cos θκ
W (ν0,t)
i )2

≥ λ

nη
− (n− 1)H0

n(1− ηκ0)2

We now let η = min
{

1
2κ0

, λ
8(n−1)H0

, ρ0

}
, then

H
Sη,t
γ ≥ λ

2nη

Since there exists a point p ∈ Σ so that ⟨X(p), ν0⟩ by assumption, we can find t ∈
[0, t0(ν0)] and a point q ∈ Σ which is a contact point with Sη,t. Therefore |Hγ(q)| ≥ 1

2nη .

Hausdorff closeness in Theorem 3.2. LetBε(∥Hγ∥−1
2 Wγ) denote the ε-neighborhood of ∥Hγ∥−1

2 Wγ .
Assume a positive ε0 > 0 is given. If Σ satisfies (Pp,ε) for a small η > 0, by (3.8), it follows
for a small ε ∈ (0, ε0) that Σ ⊂ Bε(∥Hγ∥−1

2 Wγ) ⊂ Bε(∥Hγ∥−1
2 Wγ).

Assume Σ ⊂ Bε(∥Hγ∥−1
2 Wγ) \ Bε0(y) occurs for some y ∈ ∥Hγ∥−1

2 Wγ . Choosing ε
so small that ε < min{η, n/∥Hγ∥∞}, where η is a positive as in Lemma 3.1, it follows
from Lemma 3.1 that there exists a point q ∈ Σ such that Hγ(q) > ∥Hγ∥∞/2, which is a
contradiction.

Hence, we have dH(Σ, ∥Hγ∥−1
2 Wγ) ≤ ε0.
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