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Abstract
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Data-Driven Immersive Optimization - Enhancing Architectural Design using Virtual Reality
and Computer Vision

by Fabian JARRIN

The Architecture, Engineering, and Construction (AEC) industry faces critical challenges in
aligning precision, sustainability, and stakeholder engagement in design workflows, compounded
by limited adoption of advanced technologies. This study addresses the gap by proposing the
Data-Driven Immersive Design Optimization (DIDO) framework, which integrates Data-Driven
Building Design (DBD), Virtual Reality (VR), and Computer Vision (CV) to enhance decision-
making and optimize architectural practices. This study investigates the question on how immer-
sive and data-driven technologies can bridge computational optimization with user-centered de-
sign goals in diverse architectural contexts. A mixed-methods approach was employed to validate
the DIDO framework. Two applications were explored: ‘Site Layout Planning’ (SLP) and ‘Facade
Complexity Analysis’. In the SLP application, VR simulations were used to enhance stakeholder
engagement and decision-making accuracy, aligning multi-objective optimization (MOO) recom-
mendations with user preferences. In the facade complexity analysis, the Computational Image
Complexity Analysis (CICA) system integrated CV and VR to quantify complexity and analyze
user preferences across historical, contemporary, and experimental datasets. Data from experi-
ments involving 17 participants in SLP and 26 participants in facade analysis provided quantita-
tive and qualitative insights. The results demonstrated DIDO’s transformative potential. In SLP,
VR immersion improved decision-making accuracy by an average of 48.3%, reducing deviations
between stakeholder selections and MOO recommendations (Chapter 4). For facade complex-
ity analysis, the CICA system revealed a clear preference for moderate complexity (mean CICA
score: 4.05/10), with 40% of participants selecting designs near this score, underscoring its util-
ity in balancing intricate and simple designs (Chapter 5). The study also highlighted the impor-
tance of aligning analytical rigor with user experience, fostering sustainable and culturally respon-
sive design practices. The findings suggest significant implications for architectural workflows.
DIDO bridges performance-based metrics with immersive technologies, enhancing collaboration,
sustainability, and decision-making precision. It addresses challenges in both macro-level urban
planning and micro-level design optimization, contributing to innovative design methodologies
in the AEC industry. Limitations include sample size constraints, VR system usability variations,
and CICA’s focus on 2D facade analysis, suggesting areas for refinement. Future research should
expand DIDO’s applications to broader datasets, explore real-world adoption scenarios, and in-
tegrate emerging technologies such as Mixed Reality (MR) to bridge virtual and physical design
experiences. By addressing its limitations and extending its capabilities, DIDO has the potential to
reshape architectural practices, enabling sustainable, user-aligned, and technologically advanced
design solutions.
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Chapter 1

Introduction

Chapter 1 introduces the thesis by highlighting the transformative potential of advanced tech-
nologies in architectural design, focusing on the Data-Driven Immersive Design Optimization
(DIDO) framework as a novel approach to integrate Data-Driven Building Design (DBD), Virtual
Reality (VR), and Computer Vision (CV). The chapter establishes the research background, em-
phasizing the growing need for precision, sustainability, and stakeholder engagement in the AEC
industry. It identifies key challenges, including resistance to adopting advanced tools and the lim-
itations of traditional heuristic-based methods, framing the problem statement around the lack of
an integrated framework to bridge computational rigor and human-centered goals. The research
objectives detail the development and validation of DIDO through applications in ‘Site Layout
Planning’ (SLP) and ‘Facade Complexity Analysis’, showcasing its ability to enhance decision-
making and align user preferences with optimized design outcomes. The chapter underscores the
significance of the study in advancing sustainable, data-driven architectural practices, aligning
with evolving industry needs, and positions the research as a critical contribution to the discourse
on technology-enabled design innovation.

1.1 Background

The integration of advanced technologies into architectural design has opened new frontiers in
how buildings are conceived, planned, and executed. Rapid advancements in Building Infor-
mation Modeling (BIM), parametric design, and digital fabrication are enabling architects to ap-
proach design with unprecedented precision and flexibility. BIM supports cross-disciplinary col-
laboration by providing a centralized repository for all project data, improving coordination and
reducing errors [1]. Parametric design introduces adaptive flexibility through algorithmic pro-
cesses, allowing complex forms to be generated based on specific design criteria [2]. Digital fab-
rication, meanwhile, automates the materialization of these forms, supporting efficient and ac-
curate construction. As AI and robotics advance, digital fabrication’s role will continue to grow,
fostering a deeper integration between human creativity and computational efficiency in the con-
struction process, with machines increasingly taking on construction tasks guided by data-driven
models [3].

Among these technological advancements, Data-Driven Building Design (DBD) optimization
has emerged as a powerful approach, enabling the systematic exploration of multiple design al-
ternatives based on quantitative performance metrics. Moving beyond traditional prescriptive de-
sign methods, which rely heavily on set standards and personal intuition, DBD optimization offers
a pathway to solutions optimized for factors such as energy efficiency, sustainability, and func-
tional performance [4]. By leveraging multi-objective optimization (MOO) algorithms, designers
can evaluate alternatives that balance aesthetic, functional, and environmental criteria, enhancing
both the quality and feasibility of architectural projects. DBD optimization thus represents a shift
toward a more analytical and data-supported design practice, facilitating decision-making that
aligns with diverse project objectives.
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Virtual Reality (VR) is another transformative tool in architectural design, offering immersive
and interactive environments that enable stakeholders to experience building models at a human
scale. By visualizing complex data within a realistic spatial context, VR makes it easier for users to
engage with design elements, enhancing their understanding and contributing to more intuitive
decision-making. In architectural applications, VR serves as a bridge between technical data and
human perception, allowing optimized designs to be evaluated based on functional requirements
and user preferences. Furthermore, VR enables collaborative engagement by allowing multiple
stakeholders to interact with and provide feedback on design models, leading to more accepted
and informed design outcomes [5].

Computer Vision (CV) is a relatively unexplored tool in architectural design when compared
to the more prominent technologies like BIM, parametric design, and VR. While often employed
in background roles within automation and decision-making processes, CV holds significant po-
tential for architectural analysis, especially in evaluating visual and structural complexity [6]. By
processing images to assess patterns, textures, and structural features, CV algorithms can pro-
vide detailed insights into design elements like facades, interior design or even urban networks,
allowing architects to balance intricate visual details to enhance both functionality and appeal.
Although CV is less frequently highlighted in design practices, its role in supporting detailed
analysis and objective decision-making makes it a valuable asset for more data-informed and aes-
thetically aligned architecture.

These technologies collectively reflect a trend toward data-driven, user-centered approaches in
the Architecture, Engineering, and Construction (AEC) industry. With continued advancements
in AI, robotics, and digital fabrication, the integration of human and computational creativity
will only strengthen, establishing a collaborative design process where both machine intelligence
and human insight play critical roles. By leveraging DBD, VR, and CV in tandem, this research
highlights the transformative potential of these technologies to contribute to a more integrated
design process, aligning technical performance with user satisfaction and shaping a new era of
innovative, sustainable, and functional architecture.
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1.2 Problem Statement

The Architecture, Engineering, and Construction (AEC) industry is under growing pressure to
meet demands for precision, sustainability, and efficiency in building design. Despite advance-
ments in technology, such as Building Information Modeling (BIM), parametric design, and digital
fabrication, the industry continues to rely heavily on traditional, heuristic-based methods and 2D
drawings [7]. These outdated approaches hinder the integration of cutting-edge technologies like
Virtual Reality (VR), Computer Vision (CV), and Data-Driven Building Design (DBD), which have
demonstrated potential to enhance design precision, stakeholder collaboration, and sustainability.

This resistance to adopt advanced technologies stems from multiple barriers, including per-
ceived high implementation costs, steep learning curves, and concerns about disrupting estab-
lished workflows [7]. Many professionals worry that adopting these tools might compromise cre-
ativity or require significant operational adjustments. Yet, evidence suggests that the long-term
benefits far outweigh these initial challenges. For example, a McGraw-Hill Construction survey
(2008) revealed that 48% of firms tracking BIM’s return on investment (ROI) reported substantial
gains, with returns ranging from 140% to as high as 39,900% [7]. This indicates that technological
adoption can significantly improve outcomes when properly implemented.

Even with these demonstrated benefits, the industry lacks a cohesive framework that inte-
grates DBD, immersive visualization, and computational analysis to address the growing com-
plexity of architectural workflows. Key challenges include insufficient stakeholder engagement,
inadequate tools to quantify and balance design complexity with user preferences, and limited
integration of sustainability goals into decision-making processes. These gaps result in design
solutions that fail to align technical performance with user-centric and environmental priorities,
leading to suboptimal project outcomes.

To address these issues, this research introduces the Data-Driven Immersive Design Optimiza-
tion (DIDO) framework, an innovative methodology that combines DBD with immersive VR and
CV technologies. By leveraging VR for real-time stakeholder interaction and CV for quantify-
ing facade complexity, DIDO bridges computational precision with intuitive user engagement.
This framework aims to optimize decision-making in areas such as ‘Site Layout Planning’ (SLP)
and ‘Facade Complexity Analysis’, demonstrating its versatility across diverse architectural chal-
lenges.

The DIDO framework provides a practical solution for integrating advanced technologies into
architectural workflows, fostering better alignment between technical metrics, user preferences,
and sustainability goals. Through its applications, this research seeks to enable the AEC industry
to transition toward data-driven, user-centered, and environmentally responsible design prac-
tices, addressing current limitations and establishing a foundation for innovation and efficiency
in architectural design.



4 Chapter 1. Introduction

1.3 Research Objectives

The overarching goal of this research is to develop, validate, and apply the ‘Data-Driven Immer-
sive Design Optimization’ (DIDO) framework, an innovative methodology that integrates data-
driven building design (DBD) principles with immersive visualization technologies such as Vir-
tual Reality (VR) and Computer Vision (CV). By combining computational rigor with stakeholder-
centric tools, DIDO seeks to bridge the gap between technical optimization and user-centered
design, enhancing decision-making in architectural workflows and fostering collaboration across
diverse stakeholders.

This research validates the applicability of the DIDO framework through two focused case
studies: ‘Site Layout Planning’ (SLP) and ‘Facade Complexity Analysis’. The first case study in-
vestigates the potential of VR to enhance stakeholder engagement in SLP, aiming to align data-
driven optimization with user preferences. The second case study integrates CV with DBD and
VR to establish a framework for assessing facade complexity, linking computational metrics to
user perception and exploring the implications for historical and contemporary architectural con-
texts.

Through these applications, the study contributes to the AEC industry by advancing sustain-
able, efficient, and user-focused architectural design. The following objectives outline the primary
goals and specific tasks within each case study.

Primary Objectives:

1. Explore the integration of immersive and computational tools in architectural design: In-
vestigate how DBD, VR, and CV technologies can enhance user engagement and improve
decision-making in design workflows.

2. Develop and validate the DIDO framework:

• Establish a unified approach that combines performance-based metrics with immersive
visualization tools.

• Demonstrate DIDO’s ability to align computational optimization with stakeholder col-
laboration for cohesive, user-driven design outcomes.

3. Assess the impact of immersive technology on stakeholder engagement:

• Evaluate how VR and CV can simplify complex architectural data, making it accessible
to non-expert stakeholders.

• Measure the effectiveness of immersive experiences in fostering engagement, eliciting
collaborative feedback, and enabling informed decision-making in architectural pro-
cesses.

4. Evaluate DIDO’s practical applications and limitations:

• Conduct case studies in SLP and facade complexity analysis to assess the framework’s
adaptability, robustness, and potential as a standardized tool.

• Identify limitations in integrating these methodologies and provide actionable insights
for refining the DIDO framework to broaden its application in the AEC industry.

DIDO for SLP-Specific Objectives:

1. Optimize ‘Site Layout‘ decisions through the integration of Multi-Objective Optimization
(MOO) and Data-Driven Building Design (DBD), improving precision, efficiency, and sus-
tainability in layout planning.
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2. Assess VR’s role in enhancing stakeholder engagement and decision accuracy during ‘Site
Layout‘ evaluations.

3. Measure the impact of immersive, data-driven design workflows on achieving optimized
‘Site Layout‘ that align with stakeholder priorities.

DIDO for Facade Complexity Analysis-Specific Objectives:

1. Develop and validate the ‘Computational Image Complexity Analysis’ (CICA) system as a
CV-based tool within the DIDO framework, integrating VR to facilitate real-time stakeholder
interaction and decision-making.

2. Quantify and analyze facade complexity across historical, contemporary, and experimen-
tal datasets, establishing correlations with user preferences to inform designs that balance
intricate detailing with simplicity.

3. Expand the application of the CICA system to urban streetscapes, leveraging its insights
to analyze facade complexity across diverse architectural contexts, and develop actionable
recommendations for urban renewal and contemporary design practices.

4. Evaluate the CICA system’s effectiveness in predicting and optimizing facade complexity by
benchmarking it against user feedback, identifying discrepancies, and refining its metrics to
enhance both aesthetic and functional outcomes.
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1.4 Significance of the Study

This study contributes to the evolving discourse on integrating advanced technologies in archi-
tectural practice. At its core is the development and validation of the Data-Driven Immersive
Design Optimization (DIDO) framework, a novel approach that combines Virtual Reality (VR),
Computer Vision (CV), and Data-Driven Building Design (DBD) to support decision-making in
architectural design. By merging these technologies, DIDO addresses critical gaps in the Architec-
ture, Engineering, and Construction (AEC) industry’s approach to adopting new tools. Through
this integration, the research advances both performance-based optimization and user-centered
design, promoting a cohesive and effective workflow that aligns computational precision with
human-centered design goals.

In fulfilling these goals, the study contributes to several key areas that emphasize both inno-
vation and practical impact:

• Bridging Technology Gaps in the AEC Industry: By introducing the DIDO framework, this re-
search addresses the industry’s resistance to adopting advanced tools. DIDO responds to
this resistance by offering a unified platform that aligns technical objectives with the user-
centered design process and aesthetic goals, reducing reliance on traditional heuristic ap-
proaches while promoting evidence-based decision-making.

• Enhancing Stakeholder Engagement: VR technology within DIDO improves communication
and decision-making by allowing stakeholders to experience design models in real time,
fostering a more intuitive understanding of complex data. The study demonstrates how
immersive VR simulations bridge data-driven recommendations with user experience, as
evidenced by 48.3% improvement in decision accuracy in Site Layout Planning (SLP) (see
Chapter 4, Section 4.4). This approach strengthens the alignment between technical perfor-
mance and stakeholder preferences, advancing participatory design.

• Promoting Sustainable and Precise Architectural Design Solutions: DIDO’s data-driven optimiza-
tion promotes sustainability by enabling precise simulations and calculations that minimize
waste and enhance energy efficiency. This positions DIDO as a method that not only im-
proves design quality but also contributes to environmentally responsible practices in the
AEC industry. The ability to integrate VR and CV ensures an adaptable and future-oriented
approach for sustainable design workflows.

• Providing a Practical and Adaptable Framework for Industry Application: DIDO’s adaptability
across diverse applications, including SLP and facade complexity analysis, exemplifies its
versatility, as detailed in Chapters 4 and 5. Its integration of data analytics and immersive
environments positions it as a standardized tool for enhancing workflows and improving
project outcomes across the AEC industry.

• Enhanced Decision-Making in Site Layout Planning (SLP): Through the implementation of im-
mersive VR simulations, DIDO highlights VR’s potential to transform stakeholder engage-
ment and decision-making in SLP. By reducing deviations between user-selected layouts and
optimization model recommendations (Section 4.4), DIDO bridges the gap between heuristic
insights and data-driven planning, enhancing project precision and efficiency. This approach
positions VR as a valuable tool in collaborative site planning processes, offering intuitive in-
sights into optimized spatial arrangements.

• Quantifying Aesthetic and Functional Complexity in Facade Design with CV: DIDO introduces the
Computational Image Complexity Analysis (CICA) system, which quantifies facade com-
plexity through CV algorithms, enabling a balance between aesthetic appeal, functionality,
and user preferences. This contribution is particularly significant for sustainability, as the
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ability to quantify intricate design through a facade complexity score could theoretically es-
tablish an optimal range of intricacy that enhances the aesthetic and cultural value of build-
ings. By creating more memorable and appreciated facades, CICA supports the design of
buildings that are less likely to face demolition, thereby contributing to long-term sustain-
ability through the preservation of architectural heritage and reduced construction waste.
The alignment of CICA-based evaluations with user preferences (mean score 4.05) in facade
complexity experiments (Section 5.4.2, Chapter 5) underscores its utility in guiding future
facade design practices.

In summary, this research establishes a holistic approach to integrating advanced technologies
within architectural design, positioning DIDO as a versatile framework with applications that ex-
tend beyond this study’s immediate scope. By emphasizing adaptability, sustainability, and user-
centered design, DIDO aligns closely with the AEC industry’s commitment to environmentally
responsible practices and modernized workflows.

These contributions offer the AEC industry innovative methodologies that not only improve
design processes but also enhance project outcomes. Ultimately, this research underscores the
transformative potential of immersive, data-driven tools in shaping a more collaborative, efficient,
and sustainable future in architecture.
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1.5 Overview of Structure of the Thesis

This thesis is organized as follows:

• Chapter 1: Introduction - This chapter provides the foundation of the research, detailing the
background, problem statement, objectives, and significance of the study. It introduces the
thesis title, “Enhancing Architectural Design through Data-Driven Building Design using Virtual
Reality and Computer Vision”, emphasizing the integration of these technologies within the
Data-Driven Immersive Design Optimization (DIDO) framework. Additionally, it outlines
the structure of the thesis and its relevance to architectural workflows.

• Chapter 2: Literature Review - This chapter reviews the theoretical foundations of DBD, VR,
and CV in architecture and their applications in the AEC industry. It discusses key concepts
such as multi-objective optimization, user-centered design, and facade complexity analysis,
identifying research gaps that the DIDO framework aims to address.

• Chapter 3: Data-Driven Immersive Design Optimization (DIDO) Framework and Method-
ology - This chapter introduces the DIDO framework, integrating data-driven insights, im-
mersive VR environments, and CV algorithms to optimize architectural workflows. It elab-
orates on the methodology, detailing the development of VR and CV systems, the CICA
system for facade analysis, and tools used for data collection and analysis.

• Chapter 4: Implementation of Virtual Reality-based Site Layout Planning for Building
Design - This chapter applies the DIDO framework to Site Layout Planning (SLP), explor-
ing the role of VR in enhancing stakeholder engagement and decision-making accuracy. It
evaluates the effectiveness of VR-enhanced multi-objective optimization (MOO) in reduc-
ing decision-making deviations, with quantitative results showing a 48.3% improvement in
alignment with MOO recommendations (Section 4.4).

• Chapter 5: Implementation of VR and Computer Vision-based Facade Complexity Analy-
sis for Building Design - This chapter explores the application of the DIDO framework in fa-
cade complexity analysis using the Computational Image Complexity Analysis (CICA) sys-
tem. It quantifies complexity across historical, experimental, and urban streetscape datasets,
aligning computational metrics with user preferences (mean CICA score of 4.05). The chap-
ter highlights the system’s capability to inform both contemporary design practices and ur-
ban renewal strategies.

• Chapter 6: Conclusions, Contributions, Limitations, and Future Work - This chapter syn-
thesizes the main findings of the thesis, emphasizing the transformative potential of the
DIDO framework in enhancing architectural workflows. It addresses limitations, such as
participant demographics and technological constraints, and proposes future research direc-
tions, including the exploration of volumetric complexity and cultural adaptation of facade
designs. The chapter concludes with reflections on the broader implications of the research
for sustainable, user-centered architectural practices.
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Chapter 2

Literature Review

The literature review for this thesis examines the theoretical and technological foundations that
support the Data-Driven Immersive Design Optimization (DIDO) framework. In recent years, the
Architecture, Engineering, and Construction (AEC) industry has experienced a rapid evolution
in design and construction methodologies due to advancements in digital tools. Building Infor-
mation Modeling (BIM), parametric design, digital fabrication, Virtual Reality (VR), and Com-
puter Vision (CV) have expanded how architects approach design and stakeholder engagement.
In today’s era of rapid technological advancement, digitization is a key factor shaping the con-
struction industry. The use of BIM, ISO 19650 standards, and technologies like VR, Augmented
Reality (AR), Virtual Design and Construction (VDC), and Common Data Environment (CDE) en-
hances efficiency, improves design quality, and reduces project costs and timelines [8]. Despite this
progress, the integration of these tools within a cohesive, adaptable framework remains limited,
particularly when attempting to align technical optimization with user-centered design.

This chapter systematically reviews the major technologies influencing modern architecture,
focusing on Data-Driven Building Design (DBD), VR, and CV, which together form the core of the
DIDO framework developed for this study. These technologies reflect a trend toward data-driven,
user-centered approaches in the AEC field, where precision, efficiency, and adaptability are in-
creasingly prioritized. By addressing the intersections and gaps between these advancements,
this review establishes the rationale for the DIDO framework and identifies specific challenges
that the methodology aims to resolve.
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2.1 Data-Driven Building Design (DBD) in Architecture

Data-Driven Building Design (DBD) marks a significant evolution in architectural practice, mov-
ing from conventional, intuition-based methodologies toward a data-centric, performance-oriented
approach. This transformation aligns architecture with other fields increasingly shaped by digi-
talization, where operational and strategic decisions rely heavily on real-time data and advanced
analytics [4]. Traditional design processes, which typically depend on subjective expertise and
static standards, are now increasingly supplemented—and, in many cases, replaced—by quan-
titative performance metrics that enable more precise, adaptable decision-making. These data-
driven methods allow architects to assess design alternatives across multiple criteria, such as en-
ergy efficiency, sustainability, and cost, contributing to more targeted, high-performance building
outcomes.

Digitalization has not only enhanced data accessibility but has fundamentally altered the de-
sign and construction landscape by enabling continuous data flow across platforms and disci-
plines. This change is driven by advances in Internet of Things (IoT) technology, cloud comput-
ing, data mining, and machine learning [4]. In architecture, these tools allow the integration of
on-site building performance data (OBPD) into the design process, supporting iterative, data-
backed decision-making that improves alignment between design intent and actual building per-
formance [9]. As Tian et al. (2021)notes, accumulated OBPD has proven invaluable in closing the
performance gap between simulations and real-world outcomes, making DBD a crucial compo-
nent in building high-performance structures that meet both functional and environmental stan-
dards [9].

Central to DBD is Multi-Objective Optimization (MOO), which allows architects to evaluate a
spectrum of design options based on diverse, often competing objectives. By leveraging big data
and advanced analytics, MOO enables designers to navigate complex trade-offs [10], balancing
criteria such as energy efficiency, structural integrity, and cost-effectiveness. For example, data-
driven modeling can assess energy performance more accurately than traditional simulations, as
OBPD provides insights into actual usage patterns, environmental conditions, and system effi-
ciency [9]. This approach not only enhances design quality but also supports architects in achiev-
ing more sustainable, cost-efficient outcomes.

As data-driven methodologies reshape the design process, they also introduce new collabo-
rative demands on architects, data scientists, and engineers. Cantamesa et al. (2020) highlights
the need for cross-functional teams with overlapping technical and analytical skills to interpret
complex data and translate insights into actionable design improvements [4]. Designers are now
expected to work closely with data analysts and other specialists, moving away from isolated,
discipline-specific workflows to integrated, interdisciplinary frameworks. This collaboration en-
hances the depth and precision of design decisions, as data scientists gain insights into archi-
tectural goals, while designers become proficient in interpreting data-driven analyses to support
functional and aesthetic design elements (see Figure 2.1).

Despite its advantages, DBD still faces challenges related to data accessibility, model scala-
bility, and industry adoption. Tian et al. (2021) [9] underscore the need for more extensive OBPD
databases and models that address specific design features, such as building envelopes, insulation,
and ventilation. Practical applications of DBD in industry remain limited, although initiatives like
the US Department of Energy’s Building Performance Database are paving the way for broader
adoption by providing tools to compare energy use across building types. Moving forward, the
AEC industry must focus on creating data-driven frameworks that are adaptable to various build-
ing contexts, fostering a balance between technical optimization and user-centered design.
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FIGURE 2.1: The data-driven design paradigm in product development. This figure illustrates
the interactions among designers, data analysts, producers, and end users within a data-driven

design framework. Source: Cantamesa et al. (2020) [4].

2.1.1 DBD’s Role in Transforming Architectural Design and Applications

Data-Driven Building Design (DBD) has redefined architectural decision-making by integrating
real-time data and performance metrics into every stage of the design and construction process. By
basing decisions on material efficiency, building systems, and user behavior, DBD enables a data-
driven, iterative design process that aligns closely with key performance goals. Furthermore, DBD
applications extend beyond the initial design phase, incorporating lifecycle considerations—from
material durability and maintenance costs to environmental impact—supporting a comprehensive
approach to architectural planning that promotes resilience and adaptability.

In modern architecture and the AEC industry, data-driven methodologies significantly con-
tribute to improving efficiency, sustainability, and user comfort in building design. While appli-
cations often address multiple objectives simultaneously, they are generally categorized by their
primary focus. Key categories include:

• Energy Efficiency

• Spatial Optimization

• Urban Planning and Infrastructure Optimization

• Material Selection and Structural Analysis

• Predictive Maintenance and Lifecycle Management

These categories illustrate DBD’s versatility and impact across various scales and objectives in
architecture. Each application contributes uniquely to the development of resilient, sustainable,
and user-aligned architectural environments.
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DBD Applications in Energy Efficiency
DBD models simulate building energy performance, allowing architects to design more sus-

tainable buildings by optimizing insulation, orientation, and material properties. These models
enable the testing of different scenarios to identify energy-saving strategies that align with sus-
tainability goals, ensuring that buildings meet both user needs and environmental standards.

For example, Yesilyurt et al. employed machine learning to predict energy consumption in
a university office, integrating air conditioning demand as a new parameter to improve model
accuracy [11]. Similarly, Zhang et al. applied a multi-objective optimization framework to address
energy efficiency while accounting for urban heat island effects, achieving a 54% improvement in
building energy optimization [12]. These studies underscore DBD’s role in sophisticated energy
modeling that adapts to local environmental factors and sustainability objectives.

DBD Applications in Spatial Optimization
DBD facilitates spatial optimization by enabling architects to balance functional and aesthetic

requirements, especially critical in high-density urban areas. These data-driven approaches ensure
efficient use of space while meeting design and performance standards.

For instance, Fan et al. utilized a multi-objective optimization framework based on genetic al-
gorithms and neural networks to optimize gymnasium layouts, achieving notable reductions in
cooling energy consumption and solar radiation exposure, as well as improved thermal comfort.
This framework highlights the potential of algorithm-driven layout design to enhance environ-
mental performance in early design stages [13].

Similarly, Zhou et al. developed an integrated data-driven and knowledge-based approach
for optimizing residential space layouts with a focus on health and comfort performance. Their
method, which incorporates parameters like adjacency preference and noise score, offers a genera-
tive design tool that provides multiple layout alternatives, ultimately enhancing decision-making
in spatial planning [14].

These studies exemplify how spatial optimization through data-driven methods can address
various performance objectives—ranging from energy efficiency to occupant well-being—reinforcing
DBD’s versatility in creating adaptable, high-performance and user-centered spaces.

DBD Applications in Urban Planning and Infrastructure
DBD’s influence extends to urban planning, where data-driven models contribute to energy-

efficient urban environments and sustainable land-use planning. By integrating technologies like
image recognition, light sensors, and big data, DBD provides real-time insights that guide urban
space allocation, thermal management, and ecological preservation.

Huang and Li, for example, implemented a thermal energy optimization model using image
recognition and light sensors, dynamically adjusting building energy usage based on outdoor
light changes to support urban green environment planning. This approach not only reduces en-
ergy consumption within individual buildings but also serves as a scalable model for creating
energy-efficient, low-carbon city zones [15]. By adjusting building energy usage according to real-
time light data, the study supports sustainable urban green environment planning, highlighting
DBD’s potential for broader applications in urban energy optimization.

In another example of DBD in urban contexts, Mohammadyari et al. implemented a hybrid
simulated annealing-genetic algorithm to optimize land-use allocation within an urban water-
shed in Ilam, Iran. By integrating ecosystem services (ES) such as water yield, sediment retention,
and habitat quality, the model optimizes land allocation for sustainable landscape planning[16].
The study’s findings reveal that optimizing land allocation with ES not only preserves ecological
functions but also supports the efficient distribution of urban green spaces and natural resources.
These studies demonstrate DBD’s capability to balance urban infrastructure with environmental
needs, ensuring a balanced coexistence of urban infrastructure and natural ecosystems.

DBD Applications in Material Selection and Structural analysis
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Data-driven methods play an essential role in optimizing material selection to enhance sus-
tainability and efficiency in architectural projects. By analyzing properties like durability, lifecycle
costs, and environmental impact, architects can make informed choices that ensure both cost-
effectiveness and environmental responsibility. For instance, Zhong et al. (2024) developed a low-
carbon design method that optimizes material usage alongside factors like daylight and carbon
emissions. This approach enabled a greenhouse design that reduced carbon emissions by 23%
while significantly improving daylight performance, demonstrating the potential of data-driven,
multi-objective optimization for sustainable material selection [17]. Such methods allow architects
to evaluate multiple factors simultaneously, balancing structural requirements with ecological im-
pacts for optimized, resilient building designs.

In structural analysis, DBD is capable of producing high-performance solutions by leveraging
advanced modeling and optimization techniques. For example, Li et al. applied multi-material
topology optimization to the design of the “Xiong’an Wings” building, focusing on structural
performance and material efficiency. Their methodology resulted in a design that lowered ma-
terial costs while improving both static and dynamic structural performance [18]. This research
underscores the potential of data-driven structural analysis to enhance architectural innovation
by supporting complex geometries and minimizing material waste, particularly for challenging
architectural forms.

DBD Applications in Predictive Maintenance and Lifecycle Management:
DBD has broadened its scope to predictive maintenance and lifecycle management, essen-

tial for optimizing long-term building performance. By leveraging data analytics, sensors, and
advanced modeling, predictive maintenance identifies potential failures, reducing unexpected re-
pairs and ensuring operational efficiency.

DBD approaches have extended beyond initial design and construction phases to include pre-
dictive maintenance and lifecycle management, essential for optimizing building performance
over time. By leveraging data analytics, sensors, and advanced modeling, predictive maintenance
helps identify potential system failures before they occur, minimizing unexpected repairs and en-
suring continuous operational efficiency. Lifecycle management, on the other hand, uses simula-
tion tools to anticipate and plan for the future environmental and economic impacts of buildings,
guiding decision-makers in both new construction and retrofit projects.

For instance, Satola et al. explored lifecycle optimization in the context of multifamily hous-
ing in India, emphasizing the importance of integrating sensitivity analysis and multi-objective
optimization to reduce lifecycle greenhouse gas emissions and lifecycle costs. Their findings re-
veal substantial reductions in both lifecycle GHG emissions (62–75%) and lifecycle costs (40–54%)
by optimizing critical design parameters such as mechanical ventilation and renewable energy
use [19].

Similarly, Motalebi et al. presented a framework that combines Building Information Modeling
(BIM) with Life Cycle Assessment (LCA) for energy retrofits in existing buildings. Their study
demonstrates how integrating mathematical optimization with lifecycle cost and environmental
impact analysis can guide decision-makers towards sustainable retrofit measures. This approach
achieved a reduction in global warming impacts by over 45% and lowered lifecycle costs through
optimized energy efficiency upgrades [20].

These examples illustrate DBD’s value in supporting sustainable, long-term building opera-
tions, highlighting its role beyond initial design phases.

2.1.2 Multi-Objective Optimization in Architecture

Multi-Objective Optimization (MOO) is essential in Data-Driven Building Design (DBD) as it en-
ables architects and designers to balance multiple, often competing objectives, such as cost, envi-
ronmental impact, and aesthetic quality. By integrating various performance metrics, MOO offers
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a structured approach to achieving balanced, high-performance design outcomes across different
stages of architectural planning.

MOO is part of the broader Multi-Criteria Decision-Making (MCDM) framework, which aims
to assess and select optimal solutions based on multiple criteria [21]. MCDM methods are widely
applied across diverse fields. As shown in Figure 2.2, MCDM methods are especially popular
in disciplines closely related to architecture and construction, such as engineering and energy.
This widespread use highlights the relevance of MOO techniques in addressing complex decision-
making needs in the Architecture, Engineering, and Construction (AEC) industry, where balanc-
ing numerous, often conflicting objectives is essential. In DBD, MOO allows designers to eval-
uate an expansive decision space with infinite possible solutions, adapting to the complexities
of architectural requirements. Unlike single-objective optimization, MOO accounts for multiple,
sometimes conflicting objectives, requiring trade-offs between design variables.

FIGURE 2.2: Subject Areas in MCDM Studies—Number of Articles based on Subject Area, 2012–
2021. Source: Taherdoost and Madanchian (2023) [21] MCDM methods are utilized in various
fields, with the highest number of applications in engineering and energy, directly aligning with

the goals of DBD in the AEC industry.

Two primary MOO methods, ‘Pareto Optimization’ and ‘Scalarization’, are frequently applied
in architecture to facilitate these trade-offs. The Pareto method keeps solution components inde-
pendent, creating a ‘Pareto Optimal Front‘ (POF), which represents a set of ‘non-dominated’ solu-
tions where one objective cannot be improved without compromising another [10]. This approach
offers decision-makers a range of compromise solutions, each representing a different balance
among objectives, from which they can select based on their specific priorities. Pareto Optimiza-
tion is particularly suitable for complex architectural projects where multiple stakeholders may
prioritize objectives differently. It enables visual trade-off analysis, allowing stakeholders to make
informed decisions based on a broad spectrum of feasible solutions.

In contrast, the Scalarization method simplifies multi-objective problems by combining them
into a single weighted objective function, producing a streamlined optimized solution. This method’s
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computational efficiency makes it ideal for cases with fewer objectives or when a single, priori-
tized solution is needed, such as in projects with clear objectives [10]. Scalarization also allows
designers to assign specific weights to objectives, tailoring the solution to meet project-specific
goals. This approach is particularly advantageous for tasks like material selection, where factors
such as cost or durability can be directly prioritized without extensive trade-off analyses.

MOO’s applications in architecture span a range of design challenges, from energy-efficient
building design to dynamic construction planning. For instance, Zavari et al. (2022) applied a
multi-objective optimization framework to optimize construction site layouts dynamically, using
Building Information Modeling (BIM) and Geospatial Information Systems (GIS) data to enhance
on-site safety and reduce travel distances for personnel [22]. Similarly, Pilechiha et al. (2020) de-
veloped an MOO model for office window design, balancing energy efficiency, daylight access,
and quality of views [23]. By employing a Pareto frontier, their approach demonstrates MOO’s
capability to address multiple design criteria within a unified framework, giving architects a com-
prehensive view of feasible solutions.

The integration of MOO into DBD represents a significant shift towards data-driven design
practices, enabling architects to navigate complex interdependencies between design factors. As
MOO techniques continue to evolve, future applications may focus on incorporating human-
centered and experiential factors, bridging the gap between quantitative performance metrics and
user-centered design elements [21].

2.1.3 Challenges and Limitations in DBD

Data-Driven Building Design (DBD) holds tremendous potential to improve building performance
and support sustainable, user-centered design. However, there are many challenges and limita-
tions to DBD’s implementation, which impinge upon its effectiveness and general uptake in indus-
try. This chapter addresses, in detail, these challenges facing data quality and accessibility, barriers
to integration, computational requirements, skill shortages, limitations of human-centered design,
and the requirements for future research.

Data Quality and Accessibility
High-quality data is the basic requirement for any successful DBD, but the burden of collecting

complete and consistent data remains a challenge. Such variability in data and gaps may impact
the reliability of the predictive models, creating discrepancies between the simulated and real
outcomes. On the other hand, where data completeness or consistency is missing, the decision-
making process—especially in projects involving historical or real-time inputs of data—is under-
mined [4].

The use of sensitive information in architectural design, such as occupancy trends and energy
consumption, raises high privacy and security issues. Satola et al. (2020) emphasize the protection
of this information, especially in lifecycle management, where detailed data is gathered on build-
ing performance and maintenance schedules [19]. With the increasing use of data in DBD, these
privacy and security issues will have to be addressed with much higher urgency.

Interoperability and Integration
One of the most critical issues in implementing DBD is interoperability between various soft-

ware tools. Zavari et al. (2022) point this out in their work on integrating BIM and GIS data for
dynamic site layout planning, where limitations in data exchange between platforms affect the
optimization process [22]. Issues with interoperability impede the seamless flow of information,
specifically when several tools are used throughout various design and construction stages.

One of the major integration barriers lies in a lack of standardized data formats across the
AEC industry. Zawada et al. (2024) points out that standardization—especially in BIM—could
further encourage collaboration and data exchange between project stakeholders [8]. Industry-
wide standards in data exchange have to be realized for DBD applications to be scalable and
interoperable.
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The scaling of DBD solutions across diverse architectural projects requires adaptable frame-
works that can respond to project size and complexity. Based on this consideration, Gunantara
(2018) argues that the presence of ‘multi-objective optimization’ (MOO) problems may limit DBD
to applications in small projects only due to computational limitation and increased variability in
project requirements [10].

Computational Complexity and Resource Demand
Data-driven models, in particular, those embracing complex simulations such as MOO, are

typically computationally expensive, especially when environmental factors are taken into con-
sideration [12]. Furthermore, with the increasing number of large projects that quite often require
energy-intensive simulations, the environmental cost of high-performance computing is begin-
ning to raise concern.

Implementing DBD can be costly, especially for smaller firms that may lack the resources to
invest in advanced software and computational infrastructure. Taherdoost and Madanchian (2023)
point out that the cost of implementing ‘multi-criteria decision-making’ (MCDM) methods, which
are often integral to DBD, is a significant barrier to adoption [21]. These costs not only include
software but also the expenses related to training and computational resources.

Skill Gaps and Industry Resistance
Specialized skills are in demand because DBD requires a wide range of skills, from architec-

ture to data science and computational optimization. Today architects are expected to understand
data analytics and simulation methods; this represents a radical change from traditional design
practices [4]. The rarity of professionals with the required skills prevents the general adoption of
DBD across the industry.

Within the AEC sector, a significant opposition exists against the incorporation of novel tech-
nologies, such as DBD, since this typically necessitates alterations in established workflows. Such
was the case for embracing Building Information Modeling (BIM) due to the anticipated disrup-
tions to operational practices, a concern that similarly pertains to DBD [7]. Furthermore, the chal-
lenges associated with reconciling objectives among interdisciplinary teams, especially when nav-
igating complex MOO processes that necessitate collaboration among stakeholders with varying
priorities [10].

Limitations of Human-Centered Design and User Experience
While DBD excels in quantitative assessment, it usually struggles to incorporate qualitative

considerations, which in many cases include occupant comfort and aesthetic considerations. For
example, Pilechiha et al. (2020), on their study of MOO framework for designing office windows,
emphasize the challenge of balancing energy efficiency with qualitative considerations—such as
daylight quality and aesthetic views—of the built environment [23]. More technically optimal
designs may come out of such limitations, but those may fail to translate in terms of appeal or
user comfort.

DBD models may introduce biases unintentionally, especially if data used are either incom-
plete or not representative. According to Taherdoost and Madanchian (2023) , MCDM methods
tend to focus on the quantitative indicators often leading to over-optimization of the measurable
fields at the expense of the human-centric concerns [21]. This risk of over-optimization can result
in designs that meet technical standards but fail to address occupant needs effectively.

Research Gap and Future Directions
With developments in real-time data collection and integration capabilities, DBD could use

increasingly responsive and adaptive design methodologies. As Tian et al. (2021) suggest that in-
corporating real-time building performance data into DBD models could significantly improve
the accuracy of decision-making [9]. What’s more, future studies should highlight the need for
reconciliation of the quantitative performance indicators with the qualitative aspects of user expe-
rience.

For bridging the skill gap, training in architecture, data science, and engineering has to be cre-
ated and realized that would stress interdisciplinary knowledge to fully realize the potential of
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BIM within DBD frameworks [8]. Such training should at least partially prepare the next genera-
tion of architects for the skills needed to work with data-driven methodologies.
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2.2 Virtual Reality (VR) in Architectural Design

This section explores the evolution and impact of VR in architectural design, examining its ap-
plications, benefits, and limitations. Virtual Reality (VR) has emerged as a transformative tech-
nology in the Architecture, Engineering, and Construction (AEC) industry, offering immersive
environments that bridge the gap between traditional design methods and modern, data-driven
approaches. Initially limited to wireframe models in the 1960s, VR has significantly evolved due
to advancements in graphics hardware, real-time rendering, and innovative tracking technolo-
gies [5]. This progression has enabled VR to provide architects, designers, and stakeholders with
intuitive, interactive tools for understanding complex architectural models, thereby enhancing
decision-making and collaboration. As the AEC industry seeks to address challenges of precision,
efficiency, and stakeholder engagement, VR plays a pivotal role in reshaping how buildings are
conceptualized, reviewed, and executed [5].

Initially constrained by technological limitations, VR has transitioned from simple wireframe
visualizations to highly realistic, immersive environments. This evolution has been powered by
advances in graphics processing units (GPUs), motion tracking, and real-time rendering software,
enabling unprecedented levels of interactivity and spatial awareness. Recent developments in-
clude the real-time synchronization of Building Information Modeling (BIM) data with zero la-
tency and cloud-based multiuser VR headset systems, facilitating seamless remote collaboration
and project communication [24]. These innovations have expanded VR’s applications from visual-
ization to active participation in design reviews, collaborative decision-making, and user feedback
collection. By enhancing visualization, collaboration, and coordination, VR continues to solidify
its role as a cornerstone technology in modern architectural workflows.

Traditional design methods, including 2D drawings and static 3D models, often fall short in
conveying the spatial nuances and dynamic interactivity needed for comprehensive stakeholder
comprehension. These methods lack the immersive experience required for stakeholders to fully
engage with a proposed design, making it challenging to visualize spatial relationships, propor-
tions, and scale [25]. Misunderstandings arising from these limitations can lead to misaligned
expectations, and suboptimal outcomes. Furthermore, traditional tools offer limited interactiv-
ity, restricting stakeholders from exploring design variations in real-time. These conventional ap-
proaches are often costly and time-consuming for iterative design revisions, particularly when
physical models are involved [25]. In contrast, VR allows users to experience design concepts at a
human scale, providing a tangible sense of depth, proportion, and functionality [5]. This capability
makes VR a powerful tool for refining layouts, visualizing performance metrics, and facilitating
stakeholder feedback, while ensuring that spatial designs align more closely with both technical
goals and user preferences.

The adoption of VR in the AEC industry has accelerated in recent years, driven by advance-
ments in hardware, software, and integration with tools like Building Information Modeling
(BIM) [24]. VR is now used for immersive design visualization, allowing architects and clients
to interact with 3D environments and explore projects in detail. It facilitates remote collaboration,
enabling teams to review designs in real time, regardless of location, and enhances client presen-
tations by offering realistic walkthroughs before construction. VR also supports simulations to
optimize factors like lighting and acoustics, virtual prototyping for testing design options, and
interactive showrooms to help clients make informed decisions. Additionally, it plays a growing
role in training, providing virtual construction site experiences for professionals. These applica-
tions highlight VR’s transformative impact on architectural practices, improving collaboration,
decision-making, and client engagement [5].

Despite its transformative potential, several challenges hinder the widespread adoption of
VR in the AEC industry. High upfront costs for VR hardware and software, as well as the need
for specialized skills to create VR content, present significant barriers, particularly for smaller
firms [24]. Additional concerns include hardware compatibility issues, data security, and privacy
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risks, as well as user comfort challenges like motion sickness, which can impact the overall VR ex-
perience. Resistance to change among professionals accustomed to traditional workflows further
limits VR integration into mainstream design practices [24]. Overcoming these obstacles requires
a multifaceted approach that includes targeted training programs, technological advancements to
improve hardware compatibility and usability, and cost-reduction strategies to make VR more ac-
cessible [26]. Moreover, establishing standardized workflows and industry guidelines is essential
for facilitating seamless integration of VR into AEC practices.

By delving into VR’s ability to enhance stakeholder engagement, enable performance opti-
mization, and support data-driven design decisions, we aim to highlight its role as a cornerstone
technology for modern architectural practices. Additionally, the section addresses the challenges
that must be overcome to unlock VR’s full potential, positioning it as a key component in frame-
works like Data-Driven Immersive Design Optimization (DIDO), where it bridges computational
rigor with intuitive user experiences. Despite the recognized potential of immersive VR simula-
tions and real-time feedback in bridging the gap between heuristic and data-driven processes,
limited attention has been paid to their impact within the context of Site Layout Planning (SLP)
and Facade Complexity Analysis; this topic is covered in detail in the literature review sections of
their dedicated chapters, Chapter 4 and Chapter 5, respectively.
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2.3 Computer Vision (CV) in Architectural Design

Computer Vision (CV) has emerged as a transformative technology in the Architecture, Engineer-
ing, and Construction (AEC) industry, enabling the automated analysis of visual data to enhance
design precision, functionality, and efficiency. By leveraging advanced algorithms, CV extracts
valuable data from construction sites, tracks project progress, enhances safety monitoring, and
improves communication among stakeholders. It complements Building Information Modeling
(BIM) by providing real-time data and visual insights, ultimately supporting decision-making
processes throughout the construction lifecycle [27]. These capabilities position CV as a vital tool
for bridging the gap between conceptual design and practical implementation, driving innovation
and efficiency in modern architectural practices.

The evolution of Computer Vision (CV) in the AEC sector has been driven by advancements in
artificial intelligence (AI), machine learning, and computational power. Initially employed in basic
tasks such as safety control and object detection, CV has expanded to address more complex chal-
lenges, including operation process monitoring, productivity analysis, and scene recognition [28].
This progression has been facilitated by the transition from traditional visual representations to
digital formats, enabling the explicit modeling and simulation of human vision for analyzing ar-
chitectural drawings, recognizing design decisions, and developing intelligent tools to enhance
architectural design processes [29]. Furthermore, the advent of large-scale datasets and refined
convolutional neural networks (CNNs) has enabled scalable and accurate applications, signifi-
cantly contributing to automation and efficiency in the AEC industry.

Traditional methods of analyzing architectural designs, such as manual evaluations of plans,
sections, and elevations, often rely on subjective heuristics and static models, which can be incon-
sistent, time-consuming, and prone to errors [30]. These approaches lack real-time adaptability
to changing environmental or project conditions and often fail to provide the cognitive insights
necessary for optimizing designs [29]. For instance—topics explored in detail in subsequent chap-
ters—, assessing elements like facade complexity or urban layouts, covered in subsequent chap-
ters, through manual methods may lack the precision required to align technical goals with aes-
thetic aspirations. Computer Vision (CV) addresses these limitations by automating the evaluation
of patterns, and proportions, enabling more systematic, repeatable, and data-driven analyses [29].
Additionally, by offering real-time insights into critical factors such as thermal energy distribu-
tion and environmental monitoring, CV empowers modern architects to optimize designs for en-
ergy efficiency, occupant comfort, and sustainability [30]. This automation reduces human error,
enhances decision-making, and provides architects with actionable insights, bridging the gap be-
tween traditional design representations and forward-thinking architectural practices.

Applications of CV in architecture have expanded significantly, encompassing a diverse range
of functions that improve both design efficiency and project management. Architects now leverage
CV to analyze building layouts, optimize material usage, and evaluate energy efficiency, enabling
more informed and sustainable decision-making [30]. Additionally, CV facilitates real-time con-
struction monitoring, automating progress tracking and safety analysis to prevent hazards and
ensure compliance with project timelines [28]. The integration of CV with virtual and augmented
reality technologies further enhances design visualization, allowing clients to experience immer-
sive simulations of projects prior to construction [28]. Moreover, CV supports facility management
by automating the detection of structural defects and maintenance needs, demonstrating its util-
ity throughout a building’s lifecycle. These advancements highlight CV’s transformative role in
architectural practices, offering solutions that improve aesthetic appeal, structural performance,
and operational efficiency.

Despite its transformative potential, the adoption of CV in the AEC industry faces notable
challenges. A significant barrier is the dependency on high-quality, diverse datasets to ensure ac-
curacy in architectural contexts, as inconsistent lighting, weather conditions, and camera angles
can degrade algorithmic performance [28]. Additionally, the computational intensity and resource
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demands of developing CV technologies tailored to architectural processes deter smaller firms,
exacerbating scalability issues for large or multi-site projects [28]. Aligning algorithmic outputs
with user-centered and culturally sensitive design goals remains complex, as architects must in-
terpret CV-generated insights within broader design narratives, often hindered by the limited
interpretability of results for non-technical users [29]. Furthermore, seamless integration into ex-
isting workflows, alongside ethical concerns related to data privacy and compliance with reg-
ulations such as GDPR, creates additional hurdles [28]. Addressing these challenges will require
investment in standardized datasets, user-friendly interfaces, targeted training programs, and col-
laborative efforts between AEC professionals and technology experts.

Beyond architecture, CV’s integration with emerging technologies like the Internet of Things
(IoT), Artificial Intelligence (AI), and data analytics drives advancements in real-time visual data
processing, predictive modeling, and immersive user experiences [30]. These synergies enable
smarter decision-making and automation across industries, reinforcing CV’s transformative po-
tential.

As part of the ‘Data-Driven Immersive Design Optimization’ (DIDO) framework, Computer
Vision (CV) plays a pivotal role in enhancing computational precision and supporting immersive
visualization technologies like Virtual Reality (VR). By quantifying design elements, CV comple-
ments VR’s ability to present intuitive visual simulations, enabling architects to bridge technical
analysis with experiential design. Together, these technologies foster a cohesive workflow that in-
tegrates data-driven optimization with user-centered design, ensuring architectural practices are
both innovative and responsive to stakeholder needs. In Chapter 5, DIDO’s application to facade
complexity analysis is explored in detail, illustrating how CV and VR work in tandem to translate
complex computational analysis into accessible, immersive simulations, showcasing their com-
bined capability to redefine modern architectural practices.
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2.4 Existing Research in Bridging Gaps in Data-Driven and Immersive
Architectural Research

The rapid evolution of digital technologies in architecture has transformed the way design and
construction are conceptualized, analyzed, and executed. Tools such as Data-Driven Design (DBD),
Virtual Reality (VR), and Computer Vision (CV) have each introduced significant advancements,
enabling optimization, immersive visualization, and automated analysis. However, prior stud-
ies often explore these technologies in isolation or within narrowly defined contexts, resulting in
fragmented methodologies that fail to fully exploit their synergistic potential.

This section explores key studies that have sought to bridge these gaps by integrating DBD,
VR, and CV into architectural workflows. By examining immersive visualization frameworks [31],
site safety monitoring using CV [27], and hybrid approaches for energy efficiency and design op-
timization [30], this review identifies recurring limitations in existing research. These include the
lack of cohesive integration across technologies, limited support for iterative and interactive feed-
back, task-specific methodologies that hinder generalization, and accessibility gaps in presenting
results to stakeholders.

The Data-Driven Immersive Design Optimization (DIDO) framework developed in this re-
search addresses these challenges by unifying DBD, VR, and CV into a seamless and adaptable
workflow. By providing real-time, interactive feedback and translating complex data into intuitive
visualizations, DIDO bridges the gap between technical precision and stakeholder collaboration.
This section positions DIDO within the context of prior research, emphasizing its innovative con-
tributions to advancing architectural design and decision-making.

Analysis of Existing Studies

a. Immersive and Data-Driven Frameworks

The study by Seyed et al. (2022), titled "Data-Driven Design Exploration with Immersive Visualiza-
tion," explores the integration of Virtual Reality (VR) and Data-Driven Design (DBD) method-
ologies to address the limited evaluation of design options during architectural simulation pro-
cesses [31]. The authors aim to enhance decision-making by linking performance metrics, such
as structural performance and spatial daylight autonomy, with immersive visualization, thereby
facilitating a more comprehensive exploration of complex design spaces [31].

This research utilizes VR to create interactive and immersive environments, coupled with DBD
methodologies for performance optimization. These technologies are integrated within a work-
flow that connects multi-objective optimization results to a dynamic VR environment, enabling
stakeholders to engage with design options and visualize associated performance metrics in real
time [31].

A notable strength of this study lies in its development of an early-stage prototype that ef-
fectively combines immersive visualization with efficient communication of design options. By
enabling users to interact directly with design parameters within a VR setting, the research un-
derscores the potential of immersive technologies in enhancing understanding and improving
decision-making processes in architectural design [31]. This contribution represents a significant
advancement in architectural research, particularly in demonstrating the application of VR and
DBD to facilitate data-driven exploration of architectural solutions [31].

Despite its contributions, the study presents certain limitations. It focuses primarily on specific
building typologies, such as detached classrooms, potentially restricting the generalizability of its
findings to other architectural contexts [31]. Additionally, while the proposed workflow promotes
interaction between users and performance metrics, it lacks a robust mechanism for iterative feed-
back, which is critical for refining design options in user-centered approaches [31]. Furthermore,
challenges related to the interoperability between tools, such as Building Information Modeling
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(BIM) and VR, remain insufficiently addressed, limiting the practical application of the proposed
methodology [31].

The results are presented through immersive and interactive environments that allow stake-
holders to visualize complex relationships effectively. However, the accessibility of these in-
sights may be limited for users without a fundamental understanding of the underlying perfor-
mance metrics [31]. Nonetheless, the study contributes to the field by establishing a foundational
framework for integrating immersive technologies with data-driven, performance-based design
methodologies [31]. Its methodologies hold potential for broader generalization and adaptation
to diverse design challenges within the architecture, engineering, and construction (AEC) indus-
try [31].

Although the study successfully combines VR and DBD, it does not adequately address the
need for iterative feedback mechanisms or seamless interoperability between multiple technolo-
gies [31]. The DIDO framework extends these foundations by incorporating Computer Vision
(CV) alongside VR and DBD, establishing a more comprehensive and integrated workflow. Un-
like the static evaluation of design options presented in the study, DIDO introduces real-time, im-
mersive feedback loops that allow iterative refinement based on user input. Furthermore, DIDO’s
application scope spans a broader range of design tasks, including facade complexity analysis and
site layout planning, addressing the narrow focus observed in the study. This positions DIDO as
a more adaptable and holistic framework for addressing contemporary challenges in architectural
design.

b. Computer Vision in Construction Safety Monitoring

The study by Kulinan et al. (2024), titled "Advancing Construction Site Workforce Safety Monitor-
ing through BIM and Computer Vision Integration," addresses critical challenges related to ensuring
workplace safety on dynamic and hazardous construction sites [27]. Specifically, it focuses on inte-
grating Building Information Modeling (BIM) and Computer Vision (CV) technologies to enhance
real-time monitoring of workforce safety and to identify potential hazards, thereby improving site
safety management practices [27].

The technologies employed in this research include BIM for 3D modeling and CV for real-time
visual data analysis. These tools are integrated into a cohesive workflow that also incorporates
Internet of Things (IoT) sensors for supplementary data collection. This integration facilitates
continuous monitoring of construction sites, enabling real-time data visualization that enhances
safety management practices [27].

A primary strength of the study is its novel approach to combining BIM with CV to improve
situational awareness for safety managers. This integration allows for proactive hazard manage-
ment, significantly reducing accident rates on construction sites [27]. By leveraging real-time tech-
nology, the study advances traditional safety management practices, offering valuable insights
into the effectiveness of combining digital tools for enhanced site management [27].

Despite its contributions, the study identifies several limitations. The effectiveness of com-
puter vision algorithms is highly dependent on environmental factors, such as lighting condi-
tions and occlusions, which can affect accuracy [27]. Moreover, the study focuses on specific use
cases and does not comprehensively explore the broader application of the integrated technolo-
gies across different construction project types [27]. Another notable gap is the lack of iterative
feedback mechanisms or user-centered design approaches that would allow for refinement based
on real-world input from workers and safety managers [27].

The study addresses integration challenges by proposing a framework that emphasizes in-
teroperability standards between BIM and CV, ensuring seamless data exchange without loss of
context [27]. The results are presented through interactive dashboards, providing safety managers
with accessible real-time data alongside static graphs that outline safety trends over time [27]. This
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dual presentation ensures that the insights are both actionable and easy to interpret for stakehold-
ers, including project managers and safety officers [27].

While Kulinan et al. (2024) effectively integrate BIM and CV for safety monitoring, the study’s
scope is limited to specific use cases, and it lacks a broader application framework that could
encompass diverse design and construction challenges [27]. The DIDO framework builds upon
these foundations by expanding the application of CV beyond site safety to include architectural
design analysis and optimization. Unlike the static safety dashboards presented in this study,
DIDO employs immersive technologies, such as Virtual Reality (VR), to create real-time, interac-
tive environments that enhance stakeholder engagement. Furthermore, DIDO introduces iterative
feedback mechanisms, enabling continuous refinement of design and safety parameters based on
user input, bridging the gap between computational precision and experiential insights [27]. By
integrating VR, CV, and DBD, DIDO provides a unified framework that extends the applicability
of advanced technologies across multiple facets of the AEC industry.

c. Hybrid Approaches: Integrating Data-Driven Design, VR, and Computer Vision in Energy
Optimization

The study by Zhang Hui [30], "Image Acquisition Based On Computer Vision Technology For Opti-
mizing Thermal Energy In Building Environments And Simulating VR Interior Design", tackles the
critical challenge of increasing energy consumption in urbanized environments, with a specific
focus on optimizing thermal energy management in buildings. This issue is addressed through
the integration of advanced technologies, including computer vision (CV), virtual reality (VR),
and deep learning algorithms. By employing these technologies, the study aims to enhance en-
ergy efficiency and occupant comfort while bridging the gap between traditional design practices
and modern data-driven approaches.

To achieve its objectives, the study utilizes CV for thermal energy monitoring, enabling the
identification of inefficiencies through heat map generation. VR is incorporated to simulate in-
terior designs, providing immersive environments where stakeholders can visualize the impacts
of energy optimization strategies. Deep learning algorithms are employed to process the data
acquired through CV, offering actionable insights for thermal energy management. These tech-
nologies are integrated into a cohesive workflow, wherein real-time data from CV directly in-
forms VR simulations, creating an iterative process for optimizing both energy use and design
outcomes [30].

The primary strength of this study lies in its innovative integration of CV, VR, and deep learn-
ing, resulting in a seamless workflow that enhances both the technical accuracy of energy man-
agement and the experiential quality of design visualization. By merging performance data with
immersive simulations, the study advances architectural research and demonstrates the poten-
tial for interdisciplinary applications in building design. It also makes a notable contribution to
sustainable practices by addressing the pressing challenge of energy consumption in urbanized
contexts [30].

However, several limitations are identified. The study’s focus on specific building types re-
stricts the generalizability of its findings across broader architectural contexts. The reliance on
high-cost CV equipment may pose barriers to adoption in practice. Additionally, while VR sup-
ports user-centered design, the study lacks a robust mechanism for iterative feedback, which could
further enhance the workflow through real-world user engagement [30].

In terms of integration challenges, the study establishes workflows to facilitate real-time data
sharing between CV and VR technologies. This interoperability streamlines the design process,
ensuring alignment between computational precision and user-centered goals. Results are pre-
sented through interactive VR environments, supplemented by heat maps that effectively commu-
nicate thermal energy dynamics. Although the presentation is accessible to a range of stakehold-
ers, a basic understanding of architectural and energy management principles may be required to
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fully interpret the insights [30].
The study contributes significantly to the broader field of architecture, engineering, and con-

struction by demonstrating the potential of integrating advanced technologies to optimize energy
efficiency and improve occupant comfort. While its framework is focused on specific applications,
it offers a foundation that could be adapted for use in other architectural contexts, showcasing the
potential for interdisciplinary methodologies in performance-driven design [30].

Despite its contributions, this study leaves gaps that the Data-Driven Immersive Design Op-
timization (DIDO) framework seeks to address. First, the study’s narrow focus on specific case
studies limits its scalability and generalizability, whereas DIDO provides a structured framework
adaptable to various building contexts. Second, while the study integrates CV and VR effectively,
it lacks an emphasis on iterative feedback mechanisms. DIDO addresses this by incorporating
user-centered iterative refinement, enabling continuous improvement of design solutions based
on stakeholder input. Additionally, DIDO extends the integration of technologies by incorporat-
ing multi-objective optimization frameworks, allowing for the evaluation of competing priorities
such as energy efficiency and spatial aesthetics. Finally, DIDO enhances stakeholder engagement
through immersive simulations that facilitate collaboration and ensure that design outcomes meet
both technical requirements and user expectations. By building upon the foundations established
by Zhang Hui [30], DIDO presents a comprehensive solution for integrating data-driven method-
ologies and immersive technologies in architectural design.
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2.5 Summary

This summary section combines the information derived from exploring the roles of Data-Driven
Building Design (DBD), Virtual Reality (VR), and Computer Vision (CV) in architectural design,
and the existing research on methods for integrating advanced technologies in the architectural
design process. We have traced the contributions, challenges, and transformational potential of
each technology, outlining how these innovations are reshaping architectural practice. The main
findings are reiterated in this section with a focus on their overall importance in addressing con-
temporary challenges facing the AEC industry. Additionally, we highlight critical deficiencies of
existing applications and show how the ‘Data-Driven Immersive Design Optimization’ (DIDO)
framework overcomes these deficiencies by combining these technologies in one, new workflow.

Summary of Keypoints

Data-Driven Building Design (DBD):

DBD is a huge advancement in the architecture field, moving from an intuition-based practice
to a data-based and performance-based approach. State-of-the-art technologies like VR, CV, and
the Internet of Things(IoT) give architects the possibility to make better decisions based on real-
time information. DBD uses Multi-Objective Optimization techniques to compare design options
against conflicting objectives, such as energy efficiency and cost-effectiveness. Effective collabo-
ration among architects, data analysts, and different experts is required in DBD for the interpre-
tation of complex data sets and the enhancement of design outcomes. Despite its transformation
potential, DBD faces challenges in data availability, model scalability, and industry-wide adop-
tion, meaning there is a need for flexible data-driven frameworks to enable innovation in archi-
tectural practices. Ultimately, DBD represents a shift towards more precise and adaptable design
processes that rely on quantitative data and performance metrics, marking a significant evolution
in architectural practice.

Virtual Reality (VR):

VR has transformed stakeholder engagement by offering immersive, interactive environments
that have revolutionized how architectural designs are visualized and understood. Allowing for
navigation of design models at a human scale, VR empowers architects and stakeholders with a
much better understanding of spatial relationships and design implications. Its dynamic visual-
ization capabilities make complex architectural data more accessible, fostering clear communica-
tion and informed decision-making among project participants. Compared to traditional forms
of architectural representation, VR offers dynamic interactivity that reduces misunderstanding
and improves feedback, supporting effective iterative design processes. Despite challenges such
as high costs, technical complexity, and resistance to change, advancements in hardware like VR
headsets and specialized architectural software continue to expand its potential. With the con-
stant development of hardware components, and software platforms developed specifically for
architectural applications, VR will definitely play a critical role in changing architectural practices
by revolutionizing spatial perception, design visualization, collaboration, and interactive design
evaluation.

Computer Vision (CV):

CV has become a substantial transformative force within the AEC industry by automating de-
sign analysis and enabling real-time insights to improve both accuracy and operational efficiency.
Contrary to traditional approaches, often based on subjective assessments and static models, CV



2.5. Summary 27

provides reliable data-driven evaluations of elements like patterns, proportions, and even ther-
mal performance when applied for energy calculations. Applications range from optimizing ma-
terial consumption to monitoring construction progress and improving safety and facility man-
agement, demonstrating its adaptability throughout a building’s entire life cycle. Furthermore,
CV combines with Virtual Reality and Augmented Reality (VR/AR) technologies to create im-
mersive simulations for improved client engagement and informed decision-making. However,
widespread CV adoption faces obstacles in the requirements for high-quality datasets, consider-
able computational needs, and challenges in aligning algorithmic outputs with broader design
narratives. In the context of Data-Driven Immersive Design Optimization (DIDO), CV helps to
complement VR by connecting technical analysis with intuitive user experiences, showing its piv-
otal role in innovative, responsive, and sustainable architectural practices.

Common Limitations in Existing Research

While considerable development has been achieved in DBD, VR, and CV, most are typically im-
plemented in isolation in the AEC industry. Although DBD is especially good at optimizing de-
signs according to quantitative metrics, it often lacks intuitive methods of engaging stakeholders.
Similarly, the immersive visualization abilities of VR have increased the understanding of stake-
holders, although most are based on static or heuristic-driven design models that do not make
full use of real-time data-driven insights. CV, while powerful in automating complex analysis like
facade evaluations or safety monitoring, is yet to be widely integrated into workflows that bal-
ance computational efficiency with user-centered decision-making, leaving its potential not fully
explored. This fragmented approach constrains the possible influence of these technologies, as
the lack of interoperability hinders seamless collaboration, real-time feedback, and alignment of
technical precision with design objectives.

The review of prior studies reveals recurring limitations that hinder the full potential of inte-
grating advanced technologies in the Architecture, Engineering, and Construction (AEC) industry.
These limitations include fragmentation of technologies, a lack of iterative processes, task-specific
frameworks, and accessibility gaps. By examining studies presented in Section 2.4 ([31], [27], and
[30]), these issues are contextualized to highlight their implications for innovation and implemen-
tation in the AEC industry.

A key limitation across existing research is the isolated application of technologies like Data-
Driven Design (DBD), Virtual Reality (VR), and Computer Vision (CV). For instance, while Kuli-
nan et al. (2024) [27] integrates Building Information Modeling (BIM) and CV to enhance safety
monitoring, it neglects the potential contributions of VR, missing opportunities for immersive vi-
sualization and enhanced stakeholder interaction. Similarly, Zhang Hui (2024) [30] demonstrates
the integration of CV and VR for energy optimization but does not extend this approach to include
DBD or broader project contexts. The fragmented application of these technologies restricts oppor-
tunities for comprehensive data integration, collaborative decision-making, and holistic project
management. This fragmentation limits the ability of studies to address the multifaceted chal-
lenges of AEC projects, reducing the potential for unified solutions that could streamline pro-
cesses, improve efficiency, and drive innovation.

A recurring issue in the reviewed studies is the insufficient incorporation of iterative feedback
mechanisms. While Zhang Hui (2024) [30] incorporates real-time monitoring for energy opti-
mization, it falls short of establishing interactive feedback loops for refining design workflows
dynamically. Similarly, Kulinan et al. (2024) [27] focuses on real-time hazard identification but
does not emphasize iterative stakeholder engagement for continuous improvement. This absence
of real-time, interactive workflows limits stakeholder involvement, reducing their ability to pro-
vide immediate feedback and collaborate effectively throughout project lifecycles. The rigidity of
these approaches hinders adaptability to changing conditions or user input, potentially compro-
mising project outcomes and reducing stakeholder satisfaction.
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Many studies focus narrowly on specific use cases, resulting in frameworks that lack versatil-
ity. For example, Kulinan et al. (2024) [27] centers on workforce safety monitoring, while Zhang
Hui (2024) [30] prioritizes energy management. This specialized focus, while effective within its
context, restricts the adaptability of these methodologies to a broader range of tasks. The lack
of generalizable frameworks prevents the transfer of successful strategies across diverse project
types or challenges, limiting the capacity for cross-disciplinary innovation. In turn, this narrow
scope diminishes the potential for holistic approaches that address the interconnected complexi-
ties of modern architectural and construction processes.

Accessibility of results remains a significant barrier in existing research. Studies such as Seyed
et al.(2022) [31] often present findings in technically dense formats, which may alienate non-
technical stakeholders. Similarly, Zhang Hui (2024) [30] relies on heat maps and VR visualizations
that, while intuitive, require a foundational understanding of architectural and energy concepts
to interpret effectively. These presentation formats hinder collaboration and limit the usability
of insights, as non-specialists may struggle to engage with the results or provide valuable feed-
back. The lack of clarity in conveying findings ultimately reduces the practical application of the
insights and inhibits effective implementation in real-world scenarios.

These limitations—fragmentation of technologies, lack of iterative workflows, task-specific
frameworks, and accessibility challenges—underscore the need for a more integrated, adaptable,
and accessible approach in the AEC industry.

The Contribution of DIDO

The Data-Driven Immersive Design Optimization (DIDO) framework addresses the critical gaps
identified in prior research by providing a comprehensive and integrated solution that combines
advanced technologies, iterative workflows, and stakeholder-centric design principles. Through
its innovative approach, DIDO enhances the usability, adaptability, and effectiveness of data-
driven architectural and construction processes.

Integration: A Unified Workflow for DBD, VR, and CV

The DIDO framework unites Data-Driven Design (DBD), Virtual Reality (VR), and Computer Vi-
sion (CV) into a cohesive, interactive workflow, effectively addressing the fragmented approaches
observed in prior studies [31, 27, 30]. Unlike frameworks that use these technologies in isola-
tion, DIDO ensures interoperability and dynamic data exchange between tools. For example,
CV-generated insights are directly integrated into VR environments, allowing for real-time visu-
alization of performance metrics. This unified approach bridges the gaps between computational
precision, immersive visualization, and actionable insights, enabling holistic project management
and decision-making across the Architecture, Engineering, and Construction (AEC) industry.

Iterative Feedback: Real-Time Refinement in Interactive Environments

One of DIDO’s core contributions is its emphasis on iterative feedback mechanisms. By leverag-
ing immersive VR environments, stakeholders can engage in real-time interactions with design
parameters, providing immediate feedback and refining outcomes collaboratively. This capabil-
ity addresses the rigidity of static workflows in previous studies, such as those by Kulinan et
al. (2024) [27] and Zhang Hui (2024) [30], by introducing dynamic feedback loops. The iterative
nature of DIDO enhances adaptability to evolving project requirements and user preferences, en-
suring that design solutions remain responsive and stakeholder-driven throughout the project
lifecycle.
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Generality: Versatility Across Diverse Applications

DIDO demonstrates adaptability across a broad range of architectural and construction tasks, ad-
dressing the limitations of task-specific frameworks identified in previous research. While earlier
studies focused narrowly on use cases like energy management or safety monitoring, DIDO ap-
plies its integrated approach to diverse challenges, including facade complexity analysis and site
layout planning. This generality allows DIDO to be deployed across various scales and project
types, fostering cross-disciplinary innovation and improving overall project performance in both
design and construction contexts.

Enhanced Usability: Intuitive VR Simulations for Stakeholder Collaboration

A significant strength of DIDO is its ability to translate complex data into intuitive VR simula-
tions, making insights accessible to both technical and non-technical stakeholders. By visualizing
performance metrics and design implications in immersive, interactive environments, DIDO fos-
ters effective collaboration and informed decision-making. This enhanced usability overcomes the
accessibility gaps noted in studies like Seyed et al.(2022) [31] and [30], where technical presenta-
tion formats limited stakeholder engagement. By bridging the gap between technical complexity
and stakeholder engagement, DIDO ensures that participants with varying levels of expertise can
actively engage in the design and optimization process. This inclusivity fosters enhanced commu-
nication, collaborative decision-making, and improved project outcomes.

By addressing the key limitations of prior research—fragmented technologies, static work-
flows, task-specific applications, and accessibility barriers—DIDO represents a significant ad-
vancement in the AEC field. Its integration of DBD, VR, and CV into a unified framework, em-
phasis on iterative feedback, adaptability across diverse tasks, and focus on usability position it
as a transformative solution for modern architectural and construction practices. DIDO not only
bridges the gaps identified in earlier studies but also sets a new standard for leveraging advanced
technologies to optimize design, enhance collaboration, and achieve sustainable, user-centered
outcomes.

Through the integration of real-time data analysis, intuitive visual representations, and user-
centered feedback mechanisms, DIDO effectively connects heuristic methodologies with data-
driven design approaches. Successive chapters will reveal core components and guiding prin-
ciples of DIDO, complemented by the practical examples showing its potential for transformative
effect in tasks such as site layout planning and facade complexity analysis; highlighting its capac-
ity to redefine workflows in the AEC industry.
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Chapter 3

Data-Driven Immersive Design
Optimization (DIDO) and Methodology

This chapter details the research design and methodology used to explore how data-driven op-
timization can be integrated with immersive technologies, particularly Virtual Reality (VR) and
Computer Vision (CV), in the process of architectural design. It introduces the ‘Data-Driven Im-
mersive Design Optimization’ (DIDO) framework, an innovative strategy developed to align
performance-based metrics with user-oriented visualization tools, facilitating better decision-making
throughout the design process. The chapter discusses the essential elements of the DIDO frame-
work, explaining the technologies and five core components of methodology. These include: ’3D
Modeling’, ‘Data-Driven Process’ (DBD, Multi-Objective Optimization (MOO), and CV integration),
‘VR Integration’, ‘Data Analysis’, and ‘Optimization and Refinement’. It also describes data collection
and analysis methods used in evaluating the effectiveness of DIDO. Finally, it provides a brief
overview of two practical applications of the DIDO framework—‘Site Layout Planning‘ (SLP) and
‘Facade Complexity Analysis‘—selected as case studies, detailed in subsequent chapters, to illus-
trate DIDO’s potential in real-world architectural settings.

3.1 Introduction to the DIDO Framework

The Data-Driven Immersive Design Optimization (DIDO) framework is a comprehensive ap-
proach designed to enhance architectural design through the integration of data-driven method-
ologies and immersive technologies. At its core, DIDO aims to unite the precision of computa-
tional optimization with the intuitive understanding fostered by immersive experiences. By bridg-
ing these two domains, DIDO enables architects and designers to make more informed, holistic
decisions that consider both performance metrics and user-centered goals. This approach is par-
ticularly suited to the Architecture, Engineering, and Construction (AEC) industry, where there is
increasing demand for sustainable, efficient, and adaptable design solutions that engage a diverse
array of stakeholders.

The DIDO framework is built on three foundational elements: Data-Driven Building Design
(DBD), Virtual Reality (VR), and Computer Vision (CV). Each component contributes distinct ca-
pabilities that collectively address the multifaceted challenges of architectural design:

1. Data-Driven Building Design (DBD): focuses on optimizing various performance criteria,
such as energy efficiency, material usage, and environmental impact, through quantitative
analysis. As described on the ‘Literature Review‘ (Section 2.1), DBD provides a structured,
objective foundation that allows architects to explore and balance competing objectives,
aligning the design process with measurable performance outcomes.

2. Virtual Reality (VR): was chosen for its unique ability to create immersive, experiential en-
vironments, allowing stakeholders to interact with design models at a human scale. Unlike
traditional 2D plans or static 3D models, VR enables users to ‘walk through‘ and explore
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spaces, bridging the gap between technical data and human perception. This immersive
quality enhances stakeholder engagement, especially for non-experts, by making complex
spatial and design concepts more accessible and understandable. In Site Layout Planning
(SLP), for example, VR allows users to visualize spatial configurations and circulation paths,
fostering a collaborative decision-making process that integrates user feedback, reduces mis-
understandings, and helps align design choices with stakeholder expectations early on. This
interaction with the design in a simulated environment fosters deeper engagement, bridg-
ing the gap between technical data and human perception. VR empowers users to visualize,
manipulate, and understand complex design decisions in real-time, enhancing collaboration
and decision-making.

3. Computer Vision (CV): was integrated into DIDO for its capacity to analyze visual data
and quantify aesthetic and functional aspects of design that are often subjective, such as
facade complexity, symmetry, and spatial organization. CV enables architects to turn these
traditionally qualitative elements into measurable data points, supporting more precise op-
timization aligned with sustainability goals and user preferences. For instance, in facade de-
sign, CV can quantify levels of visual complexity, balancing aesthetic appeal with functional
requirements like energy efficiency. By embedding CV in the DIDO framework, architects
can achieve a data-informed approach to design that captures both functional outcomes and
user-centered attributes, enhancing the quality and adaptability of architectural solutions.
By processing visual data, CV helps transform subjective aspects of design—such as aes-
thetics—into quantifiable metrics, enabling data-informed assessments of design elements
that would otherwise rely on personal judgment.

Guiding the integration of these technologies into the Architectural and Construction process
required elaborating a set of modules that combined to create the DIDO framework. This method-
ology, detailed in ‘Section 3.2’, encompasses five core components (Figure 3.2): ‘3D Modeling‘,
‘Data-Driven Processing for Multi-Objective Optimization (MOO) and CV Integration‘, ‘VR Inte-
gration‘, ‘Data Analysis‘, and ‘Optimization Refinement‘. Each element contributes a distinct func-
tion within the DIDO framework, collectively supporting a streamlined workflow that integrates
computational precision with immersive user interaction. These core components guide the struc-
tured implementation of DIDO, ensuring that optimized design solutions are both performance-
driven and aligned with stakeholder needs.

Together, these components support a data-driven, user-centered design process that enhances
both technical precision and experiential quality. The DIDO framework is structured to foster a co-
hesive architectural workflow, where optimized designs are functional, sustainable, and aligned
with stakeholder expectations. However, implementing this framework presented challenges,
such as ensuring compatibility across different software platforms and managing real-time data
processing. In order to resolve such issues, custom Python scripts and tools like Unity and Blender
were employed so that the data preparation process could be automated simply, making integra-
tion seamless between models. Additionally, the Multi-Objective Optimization (MOO) model was
linked directly with the VR platform in Unity, in order for optimization results to be updated in
real time within the immersive environment. These integration steps, along with the challenges
they addressed, will be discussed in detail in the following sections.

The DIDO framework demonstrates its adaptability by addressing a wide range of architec-
tural challenges, from large-scale logistical planning to intricate aesthetic considerations. This the-
sis highlights two key applications of DIDO—Site Layout Planning (SLP) (Chapter Chapter 4)
and ‘Facade Complexity Analysis’ (Chapter 5)—to showcase DIDO’s versatility. These case stud-
ies exemplify the framework’s capacity to optimize technical performance while integrating user
feedback, effectively bridging computational precision with experiential design. Section 3.6 in-
troduces these applications, while subsequent chapters provide a detailed exploration of their
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FIGURE 3.1: Flowchart illustrating the 5 Guiding principles of Data-Driven Immersive Design
Optimization (DIDO).

development, demonstrating how DIDO adapts to diverse challenges and delivers innovative,
context-specific solutions.

3.1.1 Guiding Principles of DIDO

The DIDO framework is guided by five core principles that drive its methodology and application
(see Figure 3.1):

1. Integration of Immersive Technology for Stakeholder Engagement: VR technology is central to
DIDO’s mission of translating complex, data-driven outcomes into intuitive, immersive ex-
periences. By allowing stakeholders to interact with designs directly, VR helps bridge the
gap between raw data and human intuition, offering a platform where non-experts can en-
gage meaningfully with the design process. This engagement is particularly beneficial for
visualizing complex spatial configurations and performance metrics, making data-driven
designs more accessible and comprehensible.
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2. Data-Driven Feedback Loops: DIDO employs multi-objective optimization (MOO) and CV
analysis to create real-time, iterative feedback loops. This approach enables continuous re-
finement of design elements based on user interactions and feedback, enhancing both the
aesthetic appeal and functionality of the final design. The feedback loops ensure that com-
putational models are not static but evolve in response to user engagement, a crucial factor
in fields like architecture where balancing aesthetic and functional criteria is essential.

3. Quantification of Aesthetic and Functional Design Elements: Traditionally, aspects such as visual
complexity have been evaluated subjectively. Through CV and other data-driven techniques,
DIDO allows for the quantification of these design elements, providing architects with ob-
jective metrics for assessing aesthetics and functionality. For instance, in facade complexity
analysis, CV can quantify visual patterns, allowing for a balanced approach that enhances
both the aesthetic appeal and the sustainability of designs. This principle aligns design de-
cisions with both user satisfaction and performance goals.

4. Interdisciplinary Decision-Making: The DIDO framework supports collaborative, interdisci-
plinary decision-making, facilitated by VR, which allows for real-time engagement from di-
verse stakeholders, including architects, clients, and engineers. This collaborative approach
ensures that the design process incorporates a range of perspectives and requirements, par-
ticularly relevant in areas such as Site Layout Planning (SLP), where functional, logistical,
and user-centered considerations intersect. By fostering an inclusive environment, DIDO
aligns design outcomes with practical, aesthetic, and environmental needs.

5. Balancing Optimization with User-Centric Design: DIDO emphasizes that achieving optimal
design is not solely about meeting computational objectives; user-centric validation is equally
crucial. By integrating VR-based user feedback into the optimization process, DIDO ensures
that final design solutions align with both data-driven insights and user expectations. This
approach advocates for a harmonious balance between quantitative targets and qualitative
user experiences, underscoring the importance of user-centered validation in achieving de-
signs that are both high-performing and intuitively satisfying.

In summary, the DIDO framework presents a structured methodology that combines the rigor
of data-driven optimization with the immersive potential of VR and the analytical power of CV.
Through these core principles, DIDO supports the creation of resilient, sustainable, and user-
aligned architectural solutions that address the complex demands of modern design.



3.2. Core Components of the DIDO Framework 35

3.2 Core Components of the DIDO Framework

The DIDO framework’s functionality relies on a series of core components that together create a
cohesive, data-driven approach to architectural design. Each component serves a distinct purpose
within the workflow, integrating computational precision with immersive, user-centered expe-
riences. These components—3D Modeling, Data Processing and Multi-Objective Optimization
(MOO), VR Integration, Data Analysis, and Optimization Refinement—work in tandem to enable
a seamless and adaptable design process (Figure 3.2).

FIGURE 3.2: Methodology Flowchart illustrating the sequential steps of theory behind the Data-
Driven Immersive Design Optimization (DIDO) approach.

3.2.1 3D Modeling

In the DIDO framework, 3D modeling serves as the foundation for VR immersion and data-driven
analysis, creating detailed and adaptable representations of architectural designs. These models
are essential for visualizing, manipulating, and optimizing architectural elements, providing the
baseline for both quantitative performance analysis and immersive stakeholder interaction (Fig-
ure 3.3).

The 3D modeling workflow begins with conceptual design creation, where initial drafts are
developed using tools like AutoCAD or Rhino to capture the project’s key architectural elements.
Next, detailed 3D modeling is undertaken using software like Blender or Revit, ensuring the in-
clusion of critical design details such as spatial configurations, material properties, and facade
intricacies.

A crucial aspect of this process is the refinement of the Level of Detail (LOD), which ensures
that models strike the right balance between visual accuracy and computational efficiency. For in-
stance, models with higher LOD are used for immersive VR interactions, while those with lower
LOD facilitate efficient performance analysis. Overly simplified models risk diminishing stake-
holder engagement, while excessive detail can strain computational resources.

Following the modeling stage, the process involves exporting and converting models into
compatible formats (e.g., .fbx or .obj) to enable seamless integration with VR platforms and data-
processing workflows. During this step, geometry, material properties, and spatial organization
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FIGURE 3.3: Workflow for Computer Vision (CV) Integration within the Data-Driven Immersive
Design Optimization (DIDO) framework. The flowchart outlines the sequential stages enabling

CV to enhance architectural design processes across various tasks.

must be optimized to maintain model fidelity across platforms. Finally, model validation and test-
ing ensure that exported models meet the requirements of the DIDO framework, identifying and
addressing any issues related to geometry, rendering, or usability.

By aligning model development with these structured stages, the DIDO framework ensures
a cohesive workflow where design choices are visually compelling, computationally robust, and
aligned with both stakeholder expectations and performance criteria.
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3.2.2 Data-Driven Processes in the DIDO Framework: Data Processing, Multi-Objective
Optimization (MOO) and CV Integration

This module serves as the analytical backbone, processing raw data and balancing multiple de-
sign objectives to inform optimal architectural solutions. This section covers the data processing
workflows, the application of the MOO method for handling competing objectives, and the use of
CV for quantifying aesthetic and functional attributes (Figure 3.4).

Together, these components create a dynamic, iterative system within DIDO that manages
complex, multidimensional design data. This data-driven process ensures that design outputs are
rigorously optimized and aligned with both quantitative performance goals and qualitative user
preferences.

FIGURE 3.4: Data-Driven processes flowchart: it illustrates the interplay between data processing,
multi-objective optimization (MOO), and computer vision (CV)integration, forming the core data-
driven processes of the DIDO framework. Each component contributes unique functionalities that

collectively enhance architectural design precision and user engagement.

3.2.2.1 ‘Data Processing’ for MOO and CV

‘Data Processing’ is an essential preparatory step that structures raw data for effective use in the
Multi-Objective Optimization (MOO) and Computer Vision (CV) processes. This subcomponent
refines and organizes incoming data to ensure accuracy and consistency, creating a robust founda-
tion for optimization and analysis. In architectural design, where diverse data sources—including
environmental, structural, aesthetic, regulamentory and economic metrics—must converge, effi-
cient data processing is critical for achieving meaningful and accurate optimization results.

The ‘Data Processing’ workflow includes several key stages (Figure 3.5):

1. Data Collection and Filtering: Relevant design data is collected from various sources, such as
3D models, energy analysis outputs, material specifications, local regulations, standards and
user preferences. This data often arrives in various formats, requiring a structured filtering
process to standardize entries, remove outliers, and verify accuracy. Filtering is crucial, as it
eliminates redundant or irrelevant data points, enhancing the quality of the dataset used for
MOO and CV applications.
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FIGURE 3.5: ‘Data Processing’ Workflow illustrating the key stages required to prepare and struc-
ture data for integration into the Data-Driven Immersive Design Optimization (DIDO) framework.
The process ensures compatibility and readiness for Multi-Objective Optimization (MOO) and

Computer Vision (CV) analysis.

2. Data Normalization: Once collected and filtered, data is normalized to ensure compatibility
across different measurement scales. For example, terrain metrics (e.g., topography, earth-
work analisys) may require different scaling from economic metrics (e.g., cost, ROI). Nor-
malization adjusts the scales of all metrics to fit within a common range, making it easier to
apply the scalarization method in MOO and enabling a balanced comparison of objectives.
Normalization also minimizes biases in the optimization process by preventing any single
metric from disproportionately influencing the results.

3. Parameter Selection and Categorization: Parameters that will be used in the MOO and CV
analysis are carefully selected based on their relevance to the architectural goals. In DIDO,
parameters are categorized into two main groups:

• Quantitative Parameters: These include measurable values such as spatial efficiency,
and cost. Quantitative parameters serve as the objective foundation of the optimization
process.

• Qualitative Parameters: These are often derived from visual or user-centered data, such
as facade aesthetics or spatial layout preferences. These may be interpreted via CV and
then converted into quantifiable metrics to be included in the optimization framework.

4. Data Structuring for MOO and CV Integration: The final step in the data processing workflow
involves structuring the data for direct integration into the MOO and CV models. Structured
data is organized into matrix or array formats, facilitating efficient computational process-
ing. This organization supports rapid iteration within the MOO model, particularly when
testing various design scenarios, and enables effective analysis in the CV component by en-
suring that visual data aligns with quantitative design objectives.

By completing these stages, the ‘Data Processing’ readies all inputs for the next stages of the
DIDO framework. This structured approach to data handling enhances the reliability and accuracy
of MOO and CV applications, ensuring that the optimization results reflect well-rounded design
solutions aligned with performance and user-centered goals.
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3.2.2.2 Multi-Objective Optimization (MOO) Method

In the Data-Driven Immersive Design Optimization (DIDO) framework, the Multi-Objective Opti-
mization (MOO) component serves as a pivotal element, responsible for balancing multiple, often
conflicting, design objectives such as cost, energy efficiency, and visual appeal. In the ‘Archi-
tectural Design Process’, achieving this equilibrium is essential for creating solutions that meet
stringent technical performance metrics while addressing stakeholder preferences. MOO offers a
systematic approach to evaluating trade-offs, enabling architects and designers to identify opti-
mized solutions that satisfy a diverse array of criteria. This ensures that the resulting designs are
not only functional and efficient but also aligned with aesthetic and experiential goals.

The application of MOO in the DIDO framework is driven by three primary objectives. First,
it prioritizes design criteria based on their relevance to project-specific goals, ensuring that critical
factors such as sustainability or user experience receive appropriate emphasis. Second, it bridges
computational precision with user-centered considerations by integrating quantitative optimiza-
tion with qualitative feedback. Lastly, MOO facilitates real-time evaluation of design scenarios
by linking its outputs directly to the immersive Virtual Reality (VR) environment. This allows
stakeholders to interactively engage with optimized designs and explore the impact of various
trade-offs. These objectives collectively ensure that MOO enhances technical performance while
fostering informed decision-making and active stakeholder engagement.

The implementation of MOO within the DIDO framework involves a robust technical method-
ology, as discussed in Chapter 2 ‘Literature Review’ (see Section 2.1.2). The approach begins with
the ‘Scalarization Method’ which consolidates multiple objectives into a single objective function,
and is complemented by the ‘Analytic Hierarchy Process’ (AHP) for assigning weights to objec-
tives. These methods ensure a seamless integration of performance-driven and user-centered goals
into the architectural design workflow.

The ‘Scalarization Method’ is selected as the primary MOO approach within DIDO due to
its simplicity and effectiveness in consolidating multiple objectives into a single, optimized solu-
tion. Unlike Pareto optimization, which generates a set of equally optimal solutions, scalarization
converts multiple objectives into a weighted sum, producing a single, prioritized solution. This
method is particularly well-suited to architectural design, where decision-makers often prefer
clear solutions that balance competing priorities effectively.

The scalarization method combines the multiple objective functions f1(x), f2(x), . . . , fn(x) into
a single objective function F(x) through a weighted sum of each objective [10]. The general for-
mula for scalarization can be expressed as follows:

F(x) = w1 f1(x) + w2 f2(x) + · · ·+ wn fn(x) (3.1)

=
n

∑
i=1

wi fi(x) (3.2)

Where (x) represents the vector of design variables, fi(x) represents the ith objective function,
wi denotes the weight assigned to fi(x), reflecting its relative importance. These weights are nor-
malized such that ∑ wi = 1. By adjusting the weights wi, scalarization enables the prioritization
of certain objectives based on project-specific needs, ensuring that the optimization process aligns
closely with the intended design outcomes [10].

Within the scalarization process, determining accurate weights for each objective is crucial,
as these weights directly influence the balance of outcomes in the final design. To establish these
weights, DIDO applies the Analytic Hierarchy Process (AHP), a robust Multi-Criteria Decision-
Making (MCDM) technique known for incorporating both expert input and quantitative data [21].
AHP operates by decomposing the decision-making problem into a hierarchical structure, en-
abling detailed evaluation of each objective’s importance relative to others.



40 Chapter 3. Data-Driven Immersive Design Optimization (DIDO) and Methodology

The MOO component of the DIDO framework is highly adaptable, addressing diverse archi-
tectural challenges by prioritizing objectives based on their significance to technical standards,
human perception, and aesthetic appeal. For example, in this study, MOO is applied to two pri-
mary contexts: ‘Site Layout Planning’ (SLP) and ‘Facade Complexity Analysis’, demonstrating its
ability to balance performance-driven metrics with user-centered considerations.

• In the context of SLP, as explored in Chapter 4 (Section 4.3.1), MOO is used to evaluate and
balance key criteria such as earthwork cost, earthwork efficiency, and deforestation value,
which reflect the environmental impact of site development. By structuring these objectives
within the MOO framework, the process ensures that the resulting spatial layout meets lo-
gistical requirements while addressing sustainability goals and user preferences. This struc-
tured approach allows for the optimization of site designs that are both functional and envi-
ronmentally considerate.

• Similarly, for Facade Complexity Analysis, discussed in Chapter 5 (Section 5.3.1), MOO
prioritizes metrics derived from Computer Vision (CV), such as edge density and contour
count, to quantify facade complexity. These metrics are weighted and normalized using
data from a database of 200 historical buildings, ensuring that the scores reflect both tech-
nical performance and human perception. By aligning the optimization process with user
preferences and aesthetic appeal, MOO facilitates the creation of a standarized criteria to
quantify complexity capable of guiding the design process along functional requirements.

Whether applied to spatial layouts or facade designs, MOO ensures that ensures that the fi-
nal solution reflects a realistic compromise between quantitative and qualitative goals and that
optimization outputs are robust, adaptable, and aligned with the specific demands of each archi-
tectural project.

MOO Woorkflow

The application of Multi-Objective Optimization (MOO) in the DIDO framework follows a
structured workflow to balance competing objectives and integrate optimization results into the
design process. This workflow ensures a comprehensive approach to achieving both performance-
driven and user-centered goals (Figure 3.6).

1. Objective Definition: The process begins with identifying and defining specific objective func-
tions for each criterion, such as cost minimization, environmental impact reduction, and
aesthetic optimization. These objectives are categorized into performance-driven goals (e.g.,
earthwork efficiency, cost, environmental impact) and user-centered goals (e.g., spatial pref-
erences, facade aesthetics). This step ensures clarity in the scope of the optimization process.

2. Weight Assignment Using AHP: AHP is used to decompose objectives into a structured hi-
erarchy for systematic evaluation. Weights are assigned to each objective based on their
significance, reflecting project-specific priorities. By incorporating expert input and empir-
ical data, AHP ensures that the prioritization of objectives aligns with both technical and
stakeholder goals [21].

3. Scalarization of Objectives: The scalarization method consolidates multiple objectives into a
single objective function. This is achieved by applying the ‘general scalarization formula’
(Equation 3.1) that enables the prioritization of specific objectives while producing a stream-
lined optimization solution.

4. Optimization Process: The scalarized objective function is input into an optimization algo-
rithm, where iterative calculations are performed to identify the optimal design solution.
This step balances competing objectives while adhering to constraints, ensuring that the final
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FIGURE 3.6: Multi-Objective Optimization (MOO) within the Data-Driven Immersive Design Op-
timization (DIDO) framework. The flowchart outlines the sequential stages for balancing multiple

design objectives and integrating results into the design process.

solution reflects a realistic compromise between technical performance and user-centered
considerations.

5. Output Analysis and Validation: After the optimization process, the results are thoroughly an-
alyzed to ensure they align with project goals and user expectations. This phase involves
evaluating the accuracy of the optimized solution, verifying that it satisfies both perfor-
mance metrics and user-centered objectives. Clear visualizations and metrics are provided
to stakeholders, fostering transparency and a comprehensive understanding of the optimiza-
tion outcomes. If the results do not meet stakeholder expectations, adjustments are made by
revising weights or refining objectives, ensuring that the optimization process continues to
align closely with project requirements.

6. Integration with VR for Interactive Visualization: The scalarized results are seamlessly incor-
porated into the VR environment within the DIDO framework, allowing stakeholders to
interactively engage with the optimized design. This integration enables users to visualize
how key objectives(e.g. energy efficiency, cost, environmental impact) have been balanced.
Stakeholders can explore the immediate impact of design changes on real-time metrics, fos-
tering an iterative and responsive evaluation process.

This approach to MOO in the DIDO framework demonstrates how scalarization, guided by
AHP-based weighting, creates a cohesive optimization process that integrates computational pre-
cision with stakeholder engagement.
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3.2.2.3 Computer Vision (CV) Integration

The Computer Vision (CV) Integration within the DIDO framework supports a data-driven analy-
sis of architectural elements by quantifying typically subjective factors, such as facade complexity,
symmetry, and other visual attributes. Through image recognition and feature extraction, CV en-
ables architects to evaluate design elements systematically, bridging subjective assessments with
quantifiable metrics that can be used in optimization and analysis.

As part of the DIDO framework, CV offers versatility and can be applied across various stages
of design and analysis. Its core strength lies in its ability to process visual inputs—such as fa-
cade images, drone-captured site visuals, or material textures—and transform them into action-
able data. This makes CV a cornerstone of DIDO’s mission to unite computational precision with
human-centered insights, enhancing design outcomes that are both optimized and intuitively sat-
isfying.

Computer Vision (CV) provides several critical functionalities that enhance architectural work-
flows, as previously discussed in the ‘Literature Review’ (Chapter 2, Section 2.3). These capabili-
ties allow architects to leverage advanced visual analysis techniques to improve both design and
decision-making processes.

One of its primary strengths is ‘visual feature detection‘, which allows architects to identify
patterns, edges, textures, and other visual attributes crucial for design analysis. For instance, CV
can evaluate the symmetry of a building facade or detect intricate textures, providing critical in-
sights into both aesthetic and functional design aspects. These capabilities are especially valuable
for quantifying visual features that influence design choices, enabling more informed evaluations.

Another significant capability of CV is the ‘Quantification of Subjective Attributes‘. Tradition-
ally, aspects such as aesthetic appeal or visual complexity were assessed subjectively, relying on
personal judgment or consensus. CV transforms these qualitative evaluations into measurable
metrics, such as edge density or contour count, making them accessible for data-driven optimiza-
tion. This ability to quantify the subjective bridges the gap between computational analysis and
intuitive design elements, creating opportunities for more balanced and well-informed decisions.

The ‘Flexibility in Data Sources‘ of CV further enhances its utility in architectural design. It
can handle a range of inputs, from high-resolution images and 3D renders to drone-captured site
visuals or thermal imagery. This adaptability ensures that CV remains relevant across various
architectural scenarios, whether evaluating urban facades, analyzing interior layouts, or assessing
construction sites for compliance and safety.

Finally, the seamless ‘Integration of CV with Data Analysis and MOO‘ workflows. The metrics
generated by CV serve as valuable inputs to optimization models, aligning visual analysis with
performance-based criteria. By feeding these insights into MOO processes, CV complements the
other components of the DIDO framework, such as VR and Data-Driven Building Design (DBD).
This integration fosters a comprehensive approach to design optimization, ensuring that aesthetic,
functional, and user-centered considerations are addressed simultaneously.

CV Integration Workflow

The integration of CV into architectural design workflows involves several key steps (Fig-
ure 3.7):

1. Input Data Preparation: Relevant visual data is acquired and pre-processed for analysis. This
step may include capturing high-resolution facade images, generating 3D renders, or col-
lecting drone footage of a site. Pre-processing techniques, such as noise reduction or image
segmentation, ensure the data is optimized for subsequent analysis.

2. Feature Extraction Using image processing algorithms, CV identifies critical features such as
edges, textures, or patterns. For example, in facade analysis, edge detection algorithms can
highlight structural elements, while contour mapping reveals complexity levels.
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FIGURE 3.7: Workflow for Computer Vision (CV) Integration within the Data-Driven Immersive
Design Optimization (DIDO) framework. The flowchart outlines the sequential stages enabling

CV to enhance architectural design processes across various tasks.

3. Quantitative Analysis The extracted features are modeled into quantitative metrics relevant
to the architectural task. These metrics, such as edge density or visual symmetry scores,
provide measurable insights that inform design decisions.

4. Application-Specific Adaptation The CV analysis is tailored to the specific requirements of the
application. For instance, in facade complexity analysis, the focus may be on symmetry and
texture, while in sustainability assessments, shading patterns or material reflectivity could
be prioritized.

5. Feedback Integration The output metrics are integrated into broader data analysis and opti-
mization workflows, such as MOO. This iterative process ensures that CV insights are dy-
namically applied to refine designs based on evolving requirements and stakeholder feed-
back.

The integration process applies the Analytic Hierarchy Process (AHP) to assign weights to
the extracted features based on both expert input and empirical data, as outlined in Taherdoost
(2023) [21]. AHP provides a robust framework for prioritizing visual and functional attributes
according to their significance in the design context. By ensuring alignment with human percep-
tion and project objectives, this weighting process refines the contribution of CV-generated met-
rics to the overall optimization model. These weighted metrics are seamlessly incorporated into
the scalarization method, supporting balanced optimization across aesthetic, functional, and sus-
tainability objectives. This approach enhances the DIDO framework’s ability to adapt to diverse
applications while maintaining a user-centered focus.
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3.2.3 Virtual Reality (VR) Integration Module

The Virtual Reality (VR) Integration Module is a cornerstone of the DIDO framework, designed
to bridge the gap between data-driven architectural optimization and human-centric decision-
making. As explored in the ‘Literature Review’ (Chapter 2, Section 2.2), by leveraging VR’s im-
mersive and interactive capabilities, this module is capable of transforming complex data outputs
into accessible, experiential environments where stakeholders can directly engage with design
elements.

VR plays a dual role within the DIDO framework. On one hand, it visualizes optimized de-
signs at a human scale, enabling stakeholders to explore and assess spatial layouts and facade
aesthetics intuitively. On the other hand, it serves as an interactive feedback platform, facilitat-
ing real-time design adjustments and fostering collaboration between architects, engineers, and
clients. This combination of immersive visualization and interactivity makes VR an indispensable
tool in aligning quantitative performance metrics with qualitative user experiences.

Drawing on the insights of Lao et al. [32], we developed the ‘VR integration’ component us-
ing Unity to address the complexities of data-driven optimization outputs. Unity was chosen
for its comprehensive VR support, including pre-built templates and seamless integration with
Python and C#, enhancing our simulation’s interactivity and data handling capabilities coopera-
tivily merging 3D architectural models with sophisticated optimization outcomes (see Figure 3.9).

The core objectives of the VR Integration Module emphasize its potential to improve architec-
tural workflows and enhance stakeholder participation (Figure 3.8). These include immersive vi-
sualization, interactive feedback mechanisms, and real-time data connectivity, which collectively
ensure that design solutions are both technically sound and aligned with stakeholder expectations.

• Immersive Visualization: VR provides a unique opportunity to visualize designs in an envi-
ronment that mimics real-world conditions. Unlike static 3D models or 2D blueprints, VR
allows stakeholders to experience architectural spaces at a human scale. For example, users
can walk through a proposed site layout or evaluate facade designs in their intended spatial
and environmental contexts. This immersive perspective enhances the clarity of design con-
cepts, particularly for non-technical stakeholders, making complex architectural elements
more understandable.

• Interface and Feedback Mechanism: Interactivity is a defining feature of the VR Integration
Module. Stakeholders can dynamically engage with design components, such as adjusting
the placement of structures in a site layout or modifying facade materials and patterns in
real time. Additionally, annotation tools enable users to document feedback directly within
the VR environment, fostering a collaborative decision-making process. This mechanism
not only streamlines communication between stakeholders but also ensures that user pref-
erences are seamlessly integrated into the design process.

• Real-Time Data Connectivity: A key strength of the VR module lies in its ability to connect
with the data-driven components of the DIDO framework, including MOO and CV. Opti-
mized outputs from these modules are dynamically reflected in the VR environment, allow-
ing stakeholders to see the immediate impact of design changes on performance metrics,
such as energy efficiency or aesthetic complexity. This real-time connectivity ensures that
the VR module supports both experiential engagement and data-informed decision-making,
creating a holistic design evaluation platform.
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FIGURE 3.8: Core Objectives of the Virtual Reality (VR) module within the Data-Driven Immersive
Design Optimization (DIDO) framework.
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FIGURE 3.9: Virtual Reality (VR) within the Data-Driven Immersive Design Optimization (DIDO)
framework. The flowchart outlines the sequential steps for generating the immersive experience

into the design process.

Workflow for VR Integration

The VR Integration Module operates through a structured workflow that ensures seamless
integration of 3D models, immersive environments, and real-time data (Figure 3.9). This work-
flow is designed to enable intuitive user interaction, dynamic updates, and robust performance
optimization. The following key stages outline the VR integration process:

1. Model Preparation for VR: This initial step focuses on optimizing 3D models to ensure compat-
ibility with VR environments. Key actions include reducing polygon counts and balancing
texture resolution to maintain computational efficiency while preserving critical design fea-
tures. Models are then converted into VR-compatible formats, such as .fbx, and their level of
detail (LOD) is carefully adjusted to align with the specific requirements of the design phase.
These preparations ensure that the models render seamlessly within the VR environment.

2. VR Environment Development: Using Unity as the development platform, this stage involves
constructing immersive environments tailored to the project’s architectural goals. Scene ele-
ments such as lighting, materials, and textures are configured to achieve realistic and contex-
tually accurate representations. Additional spatial components, such as natural landscapes
or urban settings, are integrated to provide meaningful context for the designs. Navigation
tools, including teleportation and free movement, are implemented to enable stakeholders
to explore the environment effortlessly.

3. Interactive Features and Scenario Testing: This phase enhances the VR environment with in-
teractive tools that allow stakeholders to engage with and manipulate designs in real time.
These capabilities include modifying spatial configurations or material properties to explore
alternative solutions. Scenario-based evaluations are supported, enabling users to assess
design impacts under various conditions, such as facade design alternatives or site layout
adjustments. Annotation tools facilitate collaborative feedback and record design iterations,
while real-time interactivity ensures that stakeholders can immediately observe the effects
of their modifications. This immersive approach significantly enhances decision-making.
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4. Real-Time Data Integration: This critical stage dynamically connects outputs from the MOO
and CV modules to the immersive VR environment. Optimized designs generated through
MOO are visualized in VR, providing users with insights into how these solutions align with
project priorities. Quantitative metrics derived from CV, such as facade complexity scores,
are displayed interactively to enhance stakeholder understanding. Real-time updates of
key metrics, such as cost, environmental impact, and user comfort, allow stakeholders to
iteratively evaluate design changes and their implications.

5. Validation and Testing: The final phase ensures the VR module delivers optimal performance
and usability. Performance optimization techniques, such as minimizing lag and balancing
computational loads, are employed to maintain smooth interactions. Stakeholder usability
testing gathers feedback on navigation, interface design, and interactive features, leading to
iterative improvements of the VR environment. These refinements ensure the VR module
meets user needs while providing an intuitive and impactful design evaluation experience.
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FIGURE 3.10: Key considerations for Virtual Reality (VR) module within the Data-Driven Immer-
sive Design Optimization (DIDO) framework.

Key Considerations for VR Integration

Successful implementation of the VR module within the DIDO framework requires careful at-
tention to several critical factors to ensure usability, accessibility, and performance. They include
’Hardware Compatibility’, ’Accessibility for Non-Technical Stakeholders’, ’Performance Optimization’, and
‘Real-Time Data Connectivity‘. These considerations (Figure 3.10) are essential for creating an effec-
tive and collaborative platform for architectural design optimization.

’Hardware Compatibility’ is a vital factor, and the VR environment in this framework was specif-
ically developed using Unity and optimized for the Oculus Quest headset. The Oculus Quest pro-
vides an accessible, standalone VR solution with sufficient performance capabilities for architec-
tural applications. Its wireless setup enhances mobility and reduces the complexity of deployment
during stakeholder interactions. By focusing on this hardware, the system ensures compatibility
with widely used devices, leveraging Unity’s robust development tools to create seamless and
tailored VR experiences.

Equally important is ’Accessibility for Non-Technical Stakeholders’, as the interface must be intu-
itive and user-friendly to engage participants with limited technical expertise. Features such as
guided navigation, interactive tutorials, and simplified controls are incorporated to enhance the
usability of the VR environment. Clear visual cues and straightforward interaction tools ensure
that a wide range of participants can effectively engage with the platform, fostering meaningful
collaboration.

’Performance Optimization’ plays a crucial role in maintaining smooth interactions, particularly
when rendering complex architectural models. This involves optimizing 3D models for the Oculus
Quest by reducing polygon counts and balancing texture resolutions to meet hardware limitations.
Additionally, ensuring low-latency connectivity between data updates and the VR environment
allows for seamless scenario manipulation and real-time feedback. Unity’s rendering settings are
fine-tuned to ensure efficient resource use while preserving visual fidelity and interactive respon-
siveness, ensuring that stakeholders experience a smooth and immersive design process.
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‘Real-Time Data Connectivity‘ further enhances the VR module by dynamically integrating out-
puts from the MOO and CV modules. This ensures that stakeholders can visualize updated met-
rics, such as energy efficiency or visual complexity, as they interact with the design. By aligning
the VR environment with the most current optimization results, the system bridges computational
precision with immersive stakeholder engagement, fostering a holistic approach to design valida-
tion.

By addressing these considerations, the VR module ensures a cohesive integration into the
DIDO framework, enhancing its role as a bridge between computational precision and experien-
tial design validation.

In conclusion, the VR integration module plays a pivotal role in enhancing collaboration and
decision-making within the DIDO framework. By transforming complex, data-driven designs into
accessible, immersive experiences, VR enables stakeholders to engage directly with and evaluate
architectural solutions. This fosters a deeper understanding of design trade-offs and allows for
more informed decisions that align with both technical metrics and user preferences.

Moreover, VR excels at uniting quantitative metrics with experiential understanding. Stake-
holders can simultaneously evaluate technical aspects, such as energy efficiency and structural
performance, alongside aesthetic or spatial considerations, such as visual appeal and layout orga-
nization. This dual engagement ensures that designs are optimized for performance while remain-
ing aligned with user needs and expectations, reinforcing the DIDO framework’s commitment to
holistic, user-centered design innovation.

By combining advanced visualization capabilities, real-time feedback, and scenario manipu-
lation, VR integration ensures that stakeholder input is seamlessly incorporated into the design
process. This reinforces the framework’s goal of fostering collaboration and aligning architectural
solutions with both computational rigor and human intuition.
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3.2.4 Data Analysis and Evaluation

The ‘Data Analysis‘ module, in the Data-Driven Immersive Design Optimization (DIDO) frame-
work, serves as the bridge between computational precision and stakeholder intuition. By merg-
ing qualitative feedback from users with quantitative outputs from Computer Vision (CV) and
Multi-Objective Optimization (MOO), the analysis process ensures that architectural designs are
both technically robust and aligned with user preferences.

This module involves assessing the accuracy of computational models, evaluating user en-
gagement within the immersive Virtual Reality (VR) environment, and verifying the system’s
overall applicability to architectural workflows. This integrated approach allows for a compre-
hensive validation of design solutions, ensuring that they meet both performance metrics and
perceptual expectations.

This phase is adaptable to a wide range of architectural applications, as it will be demonstrated
in Chapter 4 for Site Layout Planning (SLP) and Chapter 5 for Facade Complexity Analysis.

• In the context of SLP (Chapter 4, Section 4.3.3), ‘Data Analysis‘ evaluates how VR enhances
spatial planning by comparing system-generated optimal solutions with user decisions, sup-
ported by participant feedback on usability and decision-making precision.

• For Facade Complexity Analysis (Chapter 5, Section 5.3.3), the focus shifts to validating CV
metrics, such as CICA scores, against user perceptions of complexity, providing a structured
approach to quantify aesthetic preferences and predict emerging trends in facade design.

Through a combination of quantitative assessments and qualitative surveys, the ‘Data Anal-
ysis‘ phase synthesizes computational results with stakeholder insights. This approach confirms
the effectiveness of the DIDO framework in addressing diverse architectural scenarios while en-
suring that optimization outputs reflect well-rounded design considerations.

Additionally, the iterative nature of ‘Data Analysis‘ supports continuous refinement of the
DIDO system. By evaluating technical outputs and user feedback, the framework identifies action-
able insights to enhance design outcomes, making it an essential step in achieving well-rounded,
sustainable, and user-centered architectural solutions.

Workflow of Data Analysis and Evaluation

The ‘Data Analysis‘ module in the DIDO framework is a structured process that consists of
five critical steps (Figure 3.11): ‘Data Collection‘, ‘Data integration‘, ‘Analysis and Validation‘,
‘Iterative Refinement, Reporting and Recommendations‘.

1. Data Collection: Information is gathered from computational outputs, such as complexity
scores and optimization results, as well as qualitative data from user interactions within
the VR environment. This phase relies on robust logging tools to capture user navigation
patterns, scenario adjustments, and survey responses. The goal is to create a comprehensive
dataset that includes both measurable performance metrics and subjective user feedback.

2. Data Integration: It merges these diverse data types into a unified, standardized dataset.
Computational metrics from CV and MOO are normalized to align with user feedback data,
ensuring consistency and comparability. Organizing the integrated data into structured for-
mats, such as matrices or relational databases, enables efficient analysis and ensures com-
patibility across the DIDO framework’s analytical processes.

3. Analysis and Validation: The integrated dataset is examined to assess both system accuracy
and user engagement. Quantitative accuracy analysis compares system-generated solutions
to user decisions, using statistical methods to evaluate alignment. Meanwhile, qualitative
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FIGURE 3.11: Workflow of the ‘Data Analysis’ component within the Data-Driven Immersive De-
sign Optimization (DIDO) framework.

evaluations focus on user feedback, assessing the usability and intuitive nature of the VR en-
vironment. This dual analysis ensures that both technical precision and experiential aspects
of the system are thoroughly validated.

4. Iterative Refinement: The insights gained from analysis inform this stage, where adjustments
are made to enhance the system’s performance and usability. This includes updating com-
putational models, refining CV algorithms, and modifying VR interaction features to better
align with user needs. Feedback from stakeholders plays a critical role in shaping these
refinements, ensuring that the system evolves in response to real-world challenges and pref-
erences.

5. Reporting and Recommendations: This step synthesizes the findings into actionable insights. It
provides a clear summary of results, highlighting areas of success and identifying opportu-
nities for improvement. Recommendations are formulated to guide future iterations of the
system, ensuring that the DIDO framework continues to deliver optimized, user-centered
architectural solutions. Additionally, these findings contribute to the broader discourse on
integrating computational precision and immersive design in architectural workflows.

The ‘Data Analysis‘ component serves as a cornerstone of the DIDO framework, bridging the
gap between qualitative user insights and quantitative computational outputs. By merging these
perspectives, the module ensures that design solutions are not only technically optimized but
also aligned with stakeholder preferences and expectations. Through its structured workflow (see
Figure 3.11) the ‘Data Analysis‘ module validates the effectiveness of the DIDO framework in
achieving user-centered and data-driven design.

This iterative process strengthens the DIDO framework’s capacity to adapt to diverse archi-
tectural challenges, ensuring that the solutions it generates are both functional and user-centered,
reinforcing its commitment to advancing sustainable, innovative, and inclusive architectural prac-
tices.
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3.2.5 Optimization and Refinement

The ’Optimization and Refinement’ module within the DIDO framework symbolizes the final
stage where computational accuracy is coupled with real-world application. This stage builds on
the results from previous components, by using the outputs from Multi-Objective Optimization
(MOO), Data Analysis, and insights gained from stakeholder engagements through Virtual Reality
(VR), to achieve an optimal balance between algorithmic findings and human intuition.

In contrast to the preceding phases, which are concerned with generating and testing initial
solutions, the ’Optimization and Refinement’ phase is dedicated to resolving disparities, refining
designs to fit contextual requirements, and ensuring actionable solutions that have been approved
by stakeholders. This phase is very important in transforming theoretical optimization into work-
able, applicable designs that align with both technical requirements and user preferences.

Its role is different from the previous components of the DIDO model. The ‘Data Processing’
and ‘Multi-Objective Optimization (MOO)’ stage (Component 2, Section 3.2.2) generates mathe-
matically optimal solutions based on pre-defined metrics and weights, therefore producing tech-
nically robust but abstract outputs. Meanwhile, the ’Data Analysis’ phase (Component 4, Sec-
tion 3.2.4) focuses on the combination of qualitative and quantitative data to identify convergence
or divergence between computational results and stakeholder perspectives. Building on these re-
sults, the Optimization and Refinement component addresses remaining problems, adapts de-
signs based on contextual and experiential factors, and optimizes solutions for a balance between
computational accuracy and stakeholder-driven priorities. This distinction brings out its unique
role as the final gatekeeper in the DIDO framework, in which the focus shifts from validation and
evaluation to concrete decision-making and implementation. This step ensures a refined, contex-
tually adaptable, and stakeholder-approved architectural design.

The DIDO framework’s ‘Optimization and Refinement‘ component offers great flexibility to
tackle a range of architectural difficulties in a variety of settings and scales. For example:

• In the context of Site Layout Planning (SLP) (Chapter 4), it may be essential to modify an al-
gorithmically optimal layout in response to unexpected logistical limitations or preferences
revealed during stakeholder discussions. For instance, alterations to circulation pathways
or spatial arrangements could be required to achieve a better balance between functional
efficiency and stakeholder satisfaction.

• In the context of ‘Facade Complexity Analysis‘ (Chapter 5), if MOO results recommend a
facade design with high edge density to increase aesthetic appeal, VR feedback from stake-
holders might identify perceptions of overwhelming complexity. The optimization process,
in this case, tunes the complexity metric algorithm based on subjective user view to reach a
balance between aesthetic appeal and comfortableness, hence streamlining the design based
on both user preferences and performance goals.

The core objectives of the ’Optimization and Refinement’ clearly put forward this role, which
helps switch from computational results to real-life, feasible solutions (Figure 3.12). They include
the following:

• Reconciling Conflicts Between Computational and Experiential Insights: Resolve existing conflicts
between mathematically optimized solutions and stakeholder preferences to ensure the final
design incorporates both technical performance criteria and heuristic insights.

• Adapting to Contextual and Real-World Constraints: The ‘Optimization and refinement‘ com-
ponent incorporates considerations that are unique to specific sites or projects, including
environmental influences, financial constraints, and user interactions, which may not have
been thoroughly examined in earlier phases.
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FIGURE 3.12: Core Objectives of the ‘Optimization and Refinement’ module within the Data-
Driven Immersive Design Optimization (DIDO) framework.

• Enhancing Practicality and Feasibility: Convert theoretical design solutions into implementable
results by ensuring alignment with technical specifications, logistical limitations, and input
from stakeholders.

• Fine-Tuning for Functional and Aesthetic Balance: Reconsider design parameters in order to
ensure that the final outcome reaches an optimal balance between performance criteria, such
as spatial efficiency or cost-effectiveness, and qualitative characteristics like visual appeal
and user-comfort.

• Preparing Solutions for Final Implementation: The polished outputs are organized to facilitate
smooth execution, guaranteeing their feasibility within the parameters of construction, lo-
gistics, and usability, all while maintaining peak performance. Additionally, these solutions
have received approval from stakeholders and are prepared for incorporation into architec-
tural workflows or construction operations.

These objectives establish the ’Optimization and Refinement’ module as the final phase of the
DIDO framework, effectively connecting computational accuracy with practical application, while
simultaneously emphasizing a design approach that prioritizes user needs.
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FIGURE 3.13: Workflow of the ‘Optimization and Refinement’ component within the Data-Driven
Immersive Design Optimization (DIDO) framework.

Workflow of Optimization and Refinement

The ‘Optimization and Refinement’ workflow describes the last step in the DIDO framework,
in which computational outputs, stakeholder insights, and contextual considerations are com-
bined in order to create actionable high-quality designs. In contrast with previous components
focused on solution generation or solution analysis, this process is actually all about adaptation,
validation, and finalization of designs for their implementation in reality. The workflow’s main
steps are as follows (Figure 3.13):

1. Insights Consolidation: Integrate the processed insights obtained in the Data Analysis phase
into a single dataset, which includes computational outputs, input from stakeholders, and
data on virtual reality interactions. This process lays the foundation for recalibrating design
objectives.

2. Revised Optimization: Conduct Multi-Objective Optimization (MOO) again with revised pa-
rameters or weights based on the combined data set. This step adapts solutions developed
previously to new constraints or knowledge gained from the feedback.

3. Dynamic Solution Adjustment: Iteratively adjust the design variables with regard to real-time
feedback mechanisms and validation results. This ensures that improved solutions align
with the project objectives and also address relevant real-world contextual considerations.

4. Solution Validation: Validate the improved solutions to ensure they meet both the technical
performance objectives and the stakeholder requirements by using a combination of quan-
titative and qualitative validation methods. Quantitative validation involves checking im-
portant parameters relevant to the project goal (e.g cost, energy efficiency, environmental
impact) to ensure that the proposed solutions conform to set performance standards. On the
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other hand, qualitative validation emphasizes the need for alignment of designs with user-
centric preferences through inputs from immersive virtual reality sessions and interviews to
ensure that solutions would indeed address stakeholder needs and experiential factors.

5. Preparation for Implementation: Finalize actionable design outputs by synthesizing validated
solutions into deployment-ready formats. This may include preparing the documentation,
ensuring the compatibility of the construction processes, and presenting stakeholders with
an implementable design.

In conclusion, the ’Optimization and Refinement’ element represents the last stage in the five
core components of the DIDO framework. This is where all the collected data converges to cre-
ate the final solution ready for implementation. This component will ensure that computational
accuracy is in line with stakeholder perceptions and contextual needs, resolving any remaining
inconsistencies and further iterating designs for technical and experiential coherence. It trans-
forms theoretical optimization into real-world, stakeholder-approved outcomes through iterative
validation and improvement. The final stage of the DIDO framework, ’Optimization and Refine-
ment,’ has been developed to express the versatility of the framework by integrating data-driven
techniques with immersive technologies in an effort to provide holistic architectural solutions that
are both practical and innovative.
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3.3 Data Collection and Processing

Having presented the main components of the DIDO framework in previous sections (Section 3.2),
it becomes necessary to explain how ’Data Collection and Processing’ supports these components
and enables their seamless integration. ’Data Collection and Processing’ happens actively within
the DIDO framework, linking its different components, and is key to laying a foundation for a
robust and integrated data-driven architectural workflow. By collecting various datasets and or-
ganizing them for use by the different components, this step ensures that the system strikes a bal-
ance between technical precision and the viewpoints of stakeholders, thus guaranteeing informed
and improved design decisions.

This methodological approach is clearly distinct from architectural practices that largely de-
pend on heuristic techniques and manual data handling. In contrast to those previous methods
focused on experiential knowledge and linear workflows, the DIDO framework shifts attention
toward the structured collection of data and their integration; hence, providing mechanisms for
feedback and dynamic analysis that adapt to user interaction and contextual needs. This kind of
transformation helps bridge the divide between intuition-based practices and quantitative, data-
informed methodologies by enhancing accuracy and adaptability in design outcomes.

This phase entails the systematic processing and structuring of raw data from a variety of
sources. It can be from stakeholder feedback, or insights from VR observations, or outputs from
CV and MOO. Structuring may include cleaning, normalization, and feature extraction in such
a way that the data becomes applicable to the different requirements of the DIDO components.
More important is that the processed data will support optimization, but also cross-component
compatibility and iterative improvement.

This section details methods for data acquisition and preprocessing under good data manage-
ment practices to enable the combination of different datasets within the same workflow in the
DIDO framework, leading to consistent design solutions that meet the given technical objectives
and user preferences.

3.3.1 Data Collection Methods

Effective data collection is a core aspect of the DIDO framework, ensuring that the diverse in-
puts required for optimization and stakeholder engagement are well captured and systematically
organized. In this section, we go over methods used in gathering data needed to inform the differ-
ent components of the framework. These methods represent a combination of both quantitative
and qualitative approaches, all specially designed to accommodate Multi-Objective Optimization
(MOO), Computer Vision (CV) analysis, and immersive interactions in Virtual Reality (VR) (see
Figure 3.14).

• Surveys and Stakeholder Feedback: Surveys and structured feedback mechanisms are employed
to gather user preferences and perceptions (examples in Appendix A.1). These inputs are
particularly valuable in understanding aesthetic preferences, usability concerns, and subjec-
tive evaluations of design scenarios. By including stakeholders from diverse backgrounds,
this method ensures that the collected data reflects a comprehensive range of user needs
and priorities. Survey data is later quantified and normalized for integration into the opti-
mization framework, aligning subjective preferences with measurable metrics through the
Analytical Hierarchy Process (AHP) (see Section 3.2.2).

• Observational Data from VR Sessions: VR interactions provide a unique opportunity to ob-
serve how stakeholders engage with design scenarios in real time. Data such as interaction
frequencies, and scenario-specific feedback are captured during VR sessions. This observa-
tional data offers rich insights into stakeholder preferences, highlighting potential adjust-
ments or refinements to align with user needs. Additionally, real-time inputs collected via



3.3. Data Collection and Processing 57

FIGURE 3.14: Flowchart of Data Collection Methods used on the ‘Data Collection and Processing’
phase for the Data-Driven Immersive Design Optimization (DIDO) framework.

VR interfaces help enrich the iterative feedback loops, enabling a more dynamic design pro-
cess.

• Computer Vision (CV) Metrics: CV methods are utilized to extract quantitative metrics re-
lated to visual and aesthetic characteristics. For instance, facade complexity (detailed in
Chapter 5) is assessed through edge density and contour count derived from image process-
ing algorithms. These metrics provide a structured approach to analyzing visual elements,
transforming subjective design qualities into actionable data points for optimization and
refinement.

• Performance and Environmental Data: Building performance and environmental metrics are
collected to evaluate aspects such as material usage, costs and environmental impact. These
datasets are sourced from energy analysis simulations, regulatory guidelines, and material
databases. For instance for Site Layout Planning (detailed in Chapter 5), layout optimization
was measured from databases of earthwork costs and aerial imagery reporting topography
for earthwork calculations and tree density for forestation value. This information forms the
technical backbone of the optimization process, ensuring that the solutions meet sustainabil-
ity and efficiency goals.

• Regulatory and Contextual Inputs: Data related to local regulations, zoning requirements, and
contextual factors such as topography and site-specific constraints is gathered to ensure com-
pliance and feasibility. These inputs are particularly critical in SLP (detailed in Chapter 5),
where logistical and environmental considerations play a significant role in shaping the final
design.
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FIGURE 3.15: Flowchart of Data Preprocessing Techniques used on the ‘Data Collection and Pro-
cessing’ phase for the Data-Driven Immersive Design Optimization (DIDO) framework.

3.3.2 Preprocessing Techniques

Preprocessing ensures raw data is organized, accurate, and ready for integration into optimization
and analysis components. The techniques employed include cleaning, transforming, and person-
alizing data to meet the specific requirements of Multi-Objective Optimization (MOO), Computer
Vision (CV), and Virtual Reality (VR) within the DIDO framework. These processes are essential
for aligning diverse datasets into a cohesive and actionable structure (see Figure 3.15).

1. Data Cleaning: This step ensures that the datasets are accurate and consistent, allowing the
removal of incomplete or contradictory data points. It removes any redundancy issues and
addresses mismatches—such as conflicts in user preferences or overlapping metrics—in a
structured manner to create a coherent and dependable dataset. For instance, in facade com-
plexity analysis (Chapter 5), the database of building images collected to optimize the com-
plexity analysis algorithm was filtered to remove any image which did not depict a well-
documented or well-known building from architectural literature.

2. Data Transformation: This step makes the raw data compatible with the DIDO framework.
Metric normalization helps to transform different scales, like cost and energy consumption,
into a unified scale, and format conversion ensures that the data is compatible with MOO
and CV algorithms for accurate analysis. For example, for the SLP application in Chapter 4,
the earthwork costs and deforestation metrics were normalized on a 0–1 scale to incorporate
seamlessly into the scalarization equation (Equation 3.1).
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3. Feature Extraction: Identifies and orders the important design parameters, including energy
efficiency and material costs, but also aesthetic complexity measures such as edge density.
Stakeholder preferences from VR sessions become summarized in metrics that are measur-
able and easy to integrate into the design process. For instance, in facade complexity analysis
(Chapter 5), where CV algorithms operated on the database of building images to get values
for edge detection and contour count, which were quantified and used by the complexity
analysis algorithm.

4. Contextual Adjustments: Tailors data to better fit the project’s needs by incorporating local
rules, environmental constraints, as well as stakeholder feedback. This ensures compliance
with codes, improvement specific to site conditions, and consistency with unique project
demands. For example, in the SLP application (Chapter 4), zoning laws defined the allowed
site extent, thus ensuring that the optimization algorithm only worked within compliant
areas.

Data preprocessing in the DIDO framework is done considering specificity and adaptabil-
ity. On the one hand, ‘Data Cleaning‘ and ‘Data Transformation‘ are techniques that have high
adaptability because they assure accuracy and standardization among a large class of datasets
and project types. In contrast, ‘Feature Extraction‘ and ‘Contextual Adjustments‘ were centered
on the project-specific needs and targeted the key design parameters or constraints to align data
with unique architectural or optimization goals (see Figure 3.15).

When adapting DIDO to different applications—like when applied in this study to SLP or
facade complexity analysis—it is important to understand this balance. Consistency across com-
ponents is ensured by adaptable methods, while specific techniques tailor data to meet the precise
project requirements. This interplay supports building robust yet flexible data strategies that will
allow DIDO to handle effectively very diverse design challenges.

The ’Data Collection and Processing’ are, therefore, the basic modules in the DIDO framework
for supplying accurate, consistent, and relevant information to every component of the system.
Combining technical accuracy with human interpretation, DIDO maintains a coherent methodol-
ogy of design optimization through aligning numerous and diverse data sources—from computa-
tional metrics to stakeholder views. This mixture of agile and specific methodologies underscores
the adaptability of this framework to applications, such as SLP, ranging to the investigation of
facade complexity. The transition from conventional workflows to a data-centric model brings
out the transformative capabilities of DIDO. In this way, the framework supports data-informed
decision-making and solution-driven approaches through performance metrics, answering the
changing demands in architectural design.
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3.4 Tools and Technologies Used

The ’Data-Driven Immersive Design Optimization’ framework is supported by a host of advanced
software and hardware tools, which enable data-driven approaches, immersive technologies, and
optimization techniques to be incorporated in a seamless manner into the DIDO framework. These
tools combine to support the the framework’s core components, aiding in tasks that range from
data preprocessing to real-time visualization and stakeholder engagement.

As discussed in Chapter 2 (Section 2.1), traditionally, architectural education and practice
have placed a strong emphasis on creative and heuristic problem-solving, often with an empha-
sis on artistic expression and technical drawing abilities. However, data-driven methodologies
like DIDO redefine the design process in architecture, and demand new skills in collaboration and
technical competencies. Architects are increasingly required to collaborate with data scientists and
engineers within even more interdisciplinary frameworks and leave their isolated workflows be-
hind. This shift brings into play tools and technologies that often lie beyond the scope of conven-
tional architectural training, including programming languages and virtual reality platforms.

This section gives an overview of software and hardware technologies that fill in these gaps in
the DIDO framework, underlying their importance in migrating traditional workflows into data-
driven processes, ensuring interoperability between components, and paving the way to reach
integrated and optimized design solutions.

Software Tools

Software solutions form the backbone of the DIDO framework, facilitating seamless integration
across its core components. These tools enable tasks such as data preprocessing, optimization,
immersive visualization, and stakeholder interaction. By leveraging advanced capabilities in 3D
modeling, VR development, and data analysis, the software ecosystem supports the iterative and
interdisciplinary demands of modern architectural design workflows.

Each tool was carefully selected for its compatibility with the framework’s objectives, ability
to integrate with other technologies, and its adaptability to diverse architectural applications (see
Figure 3.16). The following software platforms played critical roles in realizing the functionality
of the DIDO framework:

Unity:

The primary application for building VR environments within the DIDO framework was Unity
(v. 2022.2.21f1). It was chosen for its robust support for VR platforms, because it has pre-built tem-
plates that are easy to use, and, most importantly, it its seamless integration with Python and C#.
These features offered dynamic interaction with data from both the Multi-Objective Optimiza-
tion (MOO) and Computer Vision (CV) modules. While most 3D modeling was done in Blender
and Revit, Unity was very instrumental in preparing the immersive environments and interaction
interfaces for the VR experiences.

Advanced real-time rendering abilities of Unity enabled the creation of communicative, high-
fidelity visualizations tailored to the architectural project. In addition, integration with VR equip-
ment, such as the Oculus Quest 2, guaranteed seamless implementation and usability by the stake-
holders. Unity thus, in combination with the ability to give instantaneous feedback mechanisms
and interactive modeling, served to bridge the computational results and user-centric design ex-
ploration.

Blender:

Blender (v. 3.6) was another of the critical tools used to build and refine the detailed archi-
tectural models within the DIDO framework. Its choice was informed by its advanced rendering
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FIGURE 3.16: Software tools employed within the ‘Data-Driven Immersive Design Optimization‘
(DIDO) framework to support the interoperability across its core components.

capabilities, support for parametric and generative design principles, and easy integration with
Python. This made Blender a pivotal tool in connecting three-dimensional modeling with CV li-
braries and virtual reality aspects developed in Unity. This open-source software was primarily
used to render and detail architectural elements, ensuring models met aesthetic and technical
requirements for immersive simulations. While Revit was employed for processing construction
blueprints and building layouts, Blender was used to detail and optimize 3D models for VR com-
patibility. Its ability to export models in formats such as .fbx, ensured ease of integration with
DIDO framework’s VR and optimization components. Blender’s flexibility and powerful render-
ing features made it indispensable for creating visually compelling and data-rich models tailored
to architectural workflows.

Python:

Python (v. 3.11) forms the backbone of the DIDO framework, which is used for optimization
algorithms, data preprocessing, and CV analysis. The vast number of libraries available in Python
ensure seamless integration with other tools and technologies that are incorporated into the frame-
work.

• Optimization Algorithms for MOO: Python scripts were developed for ‘multi-objective opti-
mization‘ (MOO) scripts balancing earthwork volume, cost, and environmental impact in
SLP (Chapter 4). Numerical computation libraries like NumPy and Pandas simplified the
handling of data and computation; while the scalarization method translated as a python
script ensured efficient and precise optimization.

• Integration with VR: Using Python, MOO outputs could be integrated into the VR environ-
ment developed in Unity in real time, so that stakeholders could see and interact with design
solutions that were updated dynamically throughout a VR session.
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• Computer Vision with OpenCV: The ‘Computational Image Complexity Analysis‘ system, CICA
(5), was aided with Python’s OpenCV library that allowed assessing facade complexity via
several metrics including edge density and contour count.

The popularity of Python ensures extensive resources and support, but in addition, its flexibil-
ity and integration capabilities make it indispensable in unifying the DIDO framework’s diverse
components. This keeps the framework efficient and responsive by leveraging Python’s computa-
tional strengths to balance technical precision with user-centered design workflows.

Revit:
Revit (v. 2023) plays a supporting, background role in the DIDO framework, mainly preparing

construction documentation and providing support for final implementation after the validation
process of the framework has been completed. Chosen based on wide adoption in the AEC indus-
try, Revit provides strong interoperability with Blender, ensuring seamless import and export of
models and fluent transitions between design and construction phases.

While most of the data processing, optimization, and immersive experience design are done
in Blender, Python, and Unity, two of the most critical workflow steps are performed with Revit.
First, it is applied in processing the construction models and layouts of buildings; therefore, it
forms a basic framework for further detailing and optimization in Blender. Second, following
completion of the iterative analysis and refinement stages, the DIDO framework utilizes Revit to
re-import the optimized model or layout solution and develop construction-ready documentation.
This supportive yet essential role guarantees that the innovative outputs of the DIDO framework
are grounded in practical, industry-standard BIM practices that facilitate their translation into
real-world architectural implementations.

Supportive Libraries and APIs:

The integration, visualization, and analysis steps of the DIDO framework were considerably
aided by ‘Supportive libraries and APIs‘. These helped in managing the data and communication
more effectively, bridging the gaps between computational methods and stakeholder involve-
ment. Libraries such as Matplotlib, along with a number of APIs, played an important role in
enhancing clarity and precision.

• Matplotlib for Visualization: The use of Matplotlib was essential in the creation of graphs and
visualization that led to actionable insights during the framework implementation. For ex-
ample, under the Facade Complexity Analysis chapter (Chapter 5), Matplotlib was used to
visualize patterns of complexity across different architectural styles from a historical build-
ing database. It was also employed to compare the accuracy of the CICA system (Chapter 5)
with user-selected preferences, and the SLP optimization algorithm (Chapter 4) demonstrat-
ing the model’s ability to predict stakeholder choices effectively.

• Blender’s Python API: The Blender Python API aided in retrieving the geolocation informa-
tion and automation in 3D modeling processes, supporting the preparation of precise site
and design models. It made integration with Blender, Python, and the VR components de-
veloped in Unity easier.

• Unity’s Scripting API: It made it possible for Python-based optimization algorithms and VR
simulations to interact easily. This ensured that real-time changes in VR reflected optimized
outputs, making the immersive environment even more interactive and responsive.

• Data Analysis Libraries: It helped to preprocess the data, standardize and modify the datasets
used in both the MOO and the CV part with libraries like NumPy and Pandas. Through
the OpenCV API, research regarding the complexity of facade was improved by advanced



3.4. Tools and Technologies Used 63

image analyses, especially through the extraction and quantification of visual metrics such
as edge density and contour count.

Together, these supportive libraries and APIs ensured effective integration, accurate analysis,
and clear visualization across the framework, instilling confidence and understanding among the
design team and stakeholders. They bridged the gap between technical processes with accessible
outputs, making the DIDO framework adaptable and more accessible in nature for a wide range
of architectural applications.

Hardware Tools

The DIDO framework relies on specialized hardware to execute the computationally intensive
tasks and to provide immersive experiences for the stakeholders. This combination of VR devices,
high-performance computing system, and input tools ensure seamless operation through all the
core components of the DIDO framework.

• VR Devices: The Oculus Quest 2, 3, and Pro headsets provided an immersive experience for
the different stakeholders. These devices show the flexibility and scalability of the DIDO
framework on all types of virtual reality platforms. Their independent functionality, added
with intuitive controllers and high rendering quality, eases users to move through virtual
environments with simplicity to provide interactive feedback. Moreover, the wireless setup
increases accessibility and mobility, making them even more suitable for collaborative de-
sign sessions.

• High-Performance Computing Systems: The framework’s success relies on workstations with
dedicated GPUs. These systems enable the rendering of complex VR environments in real
time, ensuring smooth visualization and interaction. They also provide support for compu-
tationally intensive tasks, such as running optimization algorithms and processing visual
data for Computer Vision applications. By using advanced hardware, the DIDO framework
reaches the computational efficiency needed for iterative design workflows.

• Input Devices: Interactive tools, whether in the form of VR controllers, motion sensors, key-
boards, or headsets, are important to solicit user responses and improve design solutions.
These tools allow navigation through VR environments and CAD applications, aiding in
the manipulation of design elements and providing experiential feedback. Such tools ensure
that a very interactive and user-centered approach is followed for design verification and
improvement.

The DIDO framework achieves a harmonious balance between computational power and
user experience by using advance hardware. Furthermore, It shows how immersive technolo-
gies, specifically VR headsets, are fast becoming indispensable tools in the architecture design
workflow. This emphasis on immersion not only adds to but also gives collaborative meaning to
data-driven optimization and experiential intuition by showing that VR is playing an increasingly
important role in defining the architectural workflow of the future.

Role of Technology in the DIDO Framework

The DIDO framework is based on the seamless integration of state-of-the-art software and hard-
ware technologies to align computational accuracy with experiential insight. Combined, these
tools increase the flexibility, effectiveness, and immersion the framework provides across all stages
of the design process (see Figure 3.17).



64 Chapter 3. Data-Driven Immersive Design Optimization (DIDO) and Methodology

FIGURE 3.17: Roles of Software and Hardware tools employed within the ‘Data-Driven Immersive
Design Optimization‘ (DIDO) framework.

• Interconnectivity: Unity (v2022.2.21f1) provides the primary interface that integrates results
from Python-based Multi-Objective Optimization (MOO) algorithms and Computer Vision
(CV) analyses within the immersive virtual reality environment. This setup allows stake-
holders to interact with real-time changes and to test design scenarios in a dynamic way.

• Adaptability: Blender (v3.6) is instrumental in the development of scalable and intricate 3D
models, which can be exported in file formats compatible with virtual reality. It ensures VR
platform compliance so that design elements can easily be integrated into DIDO components
for optimization and improvement.

• Data Processing Power: Python (v3.11) leverages high-performance computing hardware to
easily process large datasets. It has supportive libraries and APIs, including NumPy, Pan-
das, and OpenCV, which provide accurate optimization and feature extraction for actionable
insights to refine architecture.

• Immersive Visualization: Unity is integrated with Oculus Quest headsets, to give the most
immersive experience possible. Users may use intuitive controls to move around in virtual
environments in real-time interaction with design elements, closing the gap between abstract
data and tangible knowledge.

• Enhanced Collaboration: With facilitative tools like Matplotlib, which serves to create data
visualization, and Revit, used for final documentation, the framework practically allows
members of any discipline to communicate effectively. This allows for a truly collaborative
environment where both technical and experiential input is valued.

Taken together, these technologies form a cohesive ecosystem that allows the DIDO frame-
work to offer innovative architectural solutions in performance-driven approaches. Combining
computational accuracy with immersive tools, the framework not only increases efficiency but
also shows how state-of-the-art technology is changing the design process to keep stakeholders
engaged and well-informed at each step.
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3.5 Evaluation Metrics and Validation Techniques

The effectiveness of the Data-Driven Immersive Design Optimization (DIDO) framework hinges
on its ability to deliver accurate, efficient, and actionable design solutions. This requires not
only robust computational methodologies but also reliable evaluation metrics and validation tech-
niques to ensure that outputs align with both technical standards and stakeholder expectations.

In architectural workflows, where diverse parameters such as cost, energy efficiency, and user
satisfaction intersect, defining appropriate metrics and implementing rigorous validation pro-
cesses are critical. Evaluation metrics provide quantifiable benchmarks for assessing the perfor-
mance of design solutions, while validation techniques incorporate qualitative insights to refine
these solutions. Together, these elements bridge the gap between computational precision and
real-world applicability, ensuring that DIDO outputs are technically optimized and practically
relevant.

This section delves into the key aspects of evaluation and validation within the DIDO frame-
work, exploring the metrics used to assess technical performance, the methods employed to in-
tegrate stakeholder feedback, and the comparative analyses that reconcile computational outputs
with user perceptions. By establishing a cohesive system of measurement and review, the DIDO
framework ensures that its solutions are both innovative and responsive to the dynamic demands
of architectural design.

Performance Metrics
The DIDO framework employs a comprehensive set of performance metrics to evaluate and

optimize architectural design solutions. These metrics ensure that design outputs are measurable,
comparable, and aligned with project objectives, bridging the gap between computational opti-
mization and real-world needs. By addressing both quantitative and qualitative dimensions, the
metrics establish benchmarks for efficiency, sustainability, aesthetics, and user satisfaction.

1. Technical Performance Metrics: These metrics focus on the functional and structural aspects
of design, emphasizing measurable outcomes.

2. Aesthetic Metrics: Metrics in this category assess the visual and experiential qualities of
architectural designs.

3. User-Centered Metrics: To align with stakeholder preferences, DIDO integrates metrics that
reflect user experience and satisfaction

The flexibility of DIDO’s performance metrics enables their application to a wide range of
architectural challenges across various settings and scales. For example:

• In Site Layout Planning (SLP): Technical Performance Metrics evaluate logistical efficiency
(e.g., cost and environmental impact of earthwork), while User-Centered Metrics incorpo-
rate stakeholder feedback to refine layouts for usability and contextual alignment (Chap-
ter 4).

• In Facade Complexity Analysis: Aesthetic Metrics (e.g., facade complexity scores) quantify
visual intricacy, while User-Centered Metrics integrate user perceptions gathered through
VR experiments to balance complexity with stakeholder preferences (Chapter 5).

Performance metrics guide the optimization and refinement stages by providing clear bench-
marks for success. They also inform iterative validation processes, ensuring that outputs meet
predefined standards while incorporating real-time feedback. By quantifying diverse aspects of
design, these metrics enable DIDO to address both technical objectives and user expectations co-
hesively.
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Stakeholder Validation
Stakeholder validation is a cornerstone of the DIDO framework, ensuring that computation-

ally optimized designs resonate with real-world requirements and user expectations. While the
core components of DIDO focus on technical performance and aesthetic precision, stakeholder
validation bridges the gap between algorithmic outputs and human perspectives. By incorporat-
ing feedback from those who will ultimately use or interact with the designs, this process enhances
both the practicality and acceptability of proposed solutions.

Through immersive VR environments, structured surveys, and iterative feedback loops, stake-
holder validation transforms abstract metrics into actionable insights. This approach ensures that
DIDO not only meets predefined benchmarks but also adapts to the nuanced preferences and pri-
orities of diverse stakeholders, from design professionals to end-users. By fostering a dynamic
exchange between computational precision and experiential input, stakeholder validation plays a
pivotal role in achieving cohesive, context-sensitive architectural solutions.

The stakeholder validation process in the DIDO framework comprises several structured com-
ponents, each designed to align computational outputs with human feedback:

1. Immersive VR Interactions: Immersive VR environments are a key tool for enabling stake-
holders to engage with design solutions dynamically. By visualizing and interacting with
proposed designs, users can experience the spatial, functional, and aesthetic aspects of a
project in a simulated real-world context.

• For instance, during Site Layout Planning (SLP) (Chapter 4), stakeholders used VR in-
terfaces to evaluate the usability and efficiency of optimized layouts, providing feed-
back on earthwork and site accessibility.

2. Structured Surveys and Interviews: Surveys and interviews complement VR interactions by
gathering quantitative and qualitative feedback on user preferences and priorities. These
tools help translate subjective responses into actionable insights for refining designs.

• For example, on the implementation of DIDO for Facade Complexity Analysis (Chap-
ter 5), surveys measured user perceptions of facade complexity and aesthetics, balanc-
ing computational metrics with stakeholder satisfaction.

3. Iterative Feedback Loops: Iterative feedback loops ensure that validation is not a one-time
process but a continuous dialogue between stakeholders and the design team. Feedback
from VR sessions and surveys is integrated into the optimization workflow to refine design
outputs iteratively.

• For context, Adjustments made to facade complexity metrics based on user preferences
during the validation process resulted in designs that aligned better with stakeholder
expectations while maintaining aesthetic and functional standards (Chapter 5).

4. Cross-Disciplinary Collaboration: Stakeholder validation facilitates collaboration between
architects, engineers, and data scientists, ensuring that feedback addresses both technical
and experiential dimensions.

• For instance, in the implementation of DIDO in SLP (Chapter 4), collaboration between
experiment participants and the design team helped prioritize objectives like balancing
earthwork costs with view optimization maximizing operational efficiency and com-
fort.
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This multi-faceted approach ensures that stakeholder input is comprehensively captured and
effectively integrated, bridging the gap between computational precision and real-world applica-
bility.

Comparative Analysis
Comparative analysis within the DIDO framework evaluates the effectiveness of its outputs

by benchmarking them against established standards, traditional methodologies, and stakeholder
expectations. This process highlights the advantages of DIDO’s data-driven and immersive tech-
niques while identifying areas for refinement, fostering continuous improvement.

The primary goal of comparative analysis is to ensure alignment between computational out-
puts and stakeholder feedback, demonstrating how DIDO adds value over traditional heuristic
approaches. By systematically evaluating quantitative metrics, qualitative feedback, and devia-
tions, this component reinforces the framework’s adaptability and practical relevance.

1. Quantitative Comparisons: Quantitative outputs such as cost reductions, efficiency scores,
and aesthetic metrics are plotted and statistically analyzed to measure improvements. Out-
puts from Multi-Objective Optimization (MOO) and Computer Vision (CV) systems are
compared directly with stakeholder selections to validate computational results.

• For example, on the implementation of DIDO for Facade Complexity Analysis (Chap-
ter 5), differences between CICA complexity scores and participant preferences were
evaluated to validate the accuracy of the Computational Image Complexity Analysis
(CICA) system.

2. Qualitative Comparisons from User Feedback: Stakeholder feedback from VR sessions is
compared to feedback gathered through traditional methods and surveys, assessing how
immersive interactions enhance engagement and decision-making.

• For instance, for SLP (Chapter 4), user preferences for site layouts obtained during VR
sessions were compared to non-immersive feedback, highlighting how VR influenced
decision-making and improved stakeholder satisfaction.

3. Identifying Deviations and Reconciling Them: Deviations between computational outputs
and stakeholder feedback are systematically analyzed to identify gaps or patterns. These in-
sights are integrated into the Optimization and Refinement process (Section 3.2.5), ensuring
improved alignment with project goals through adjustments to metrics, weights, or param-
eters of the optimization algorithm.

• For instance, for SLP (Chapter 4), feedback on the relative importance of metrics (e.g.,
cost and environmental impact of earthwork), obtained during post-experiment sur-
veys, led to recalibration of weights in the optimization algorithm, enhancing its re-
sponsiveness to user priorities.

4. Case Study Analysis: Context-specific evaluations are performed to highlight the frame-
work’s flexibility and scalability across different architectural challenges.

• For context, SLP optimizations (Chapter 4) were assessed across varied site conditions
(e.g., mountainous vs. flat terrain), demonstrating DIDO’s ability to adapt to diverse
environmental constraints.

Addressing deviations between computational results and stakeholder input enhances trans-
parency, trust, and reliability, encouraging stakeholder adoption of DIDO-generated solutions.
By aligning technical precision with real-world considerations, comparative analysis ensures that
outputs are not only optimized but also actionable and relevant.
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Furthermore, insights from comparative analysis drive iterative improvements, enabling DIDO
to refine its methodologies and expand its applicability to evolving design contexts. By bench-
marking its outputs across diverse metrics and case studies, the framework establishes itself as
a robust, adaptable, and forward-thinking tool for architectural design. It not only validates its
strengths but also positions itself for continuous evolution, meeting the dynamic needs of modern
architectural practice.

Role of Evaluation Metrics and Validation Techniques
The DIDO framework has incorporated ‘Evaluation Metrics and Validation Techniques‘ that

would serve to bridge computational accuracy with user engagement. Only through the strict ap-
plication of performance metrics, qualitative feedback mechanism, and comparative analyses is it
ensured that the design results are not only technically sound but also aligned with the expecta-
tions of stakeholders.

This section establishes a proper basis for evaluating and optimizing DIDO applications re-
garding diverse architectural problems. The framework ensures reliable, feasible, and context-
concrete design solutions by including measurable criteria and iterative validation steps. These
approaches increase not only the confidence in the results from the framework but also raise its
flexibility to guarantee it remains very much relevant to answering modern architectural work-
flows’ dynamic needs.
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FIGURE 3.18: Flowchart illustrating the two practical application of the DIDO framework in archi-
tectural design: VR-Based Site Layout Planing and VR and CV-based ‘Facade Complexity Analy-

sis’.

3.6 DIDO-Based Applications in Architectural Design

The Data-Driven Immersive Design Optimization (DIDO) framework is developed to address
various architectural issues by combining computational accuracy with experiential insights. Its
adaptability can be seen in its ability to respond to a wide range of design contexts, from large-
scale logistical planning to intricate aesthetic considerations. The future applications of DIDO span
across all fields of sustainable site planning, optimization of interior layouts, analysis of urban
streetscapes, and performance-based façade designs, hence it is a comprehensive framework that
fits well within modern architectural practices. This section highlights the practical application of
the DIDO framework in two distinct areas of architectural design : Site Layout Planning (SLP)
(Chapter 4) and ‘Facade Complexity Analysis’ (Chapter 5), illustrating its scalability and adapt-
ability (see Figure 3.18). This applications are explored in detail in the following chapters of this
thesis.

The choice to concentrate on SLP and ‘Facade Complexity Analysis’ arises from their interre-
lated characteristics and their capacity to illustrate various aspects of DIDO’s competencies. SLP
serves as a fundamental component within construction processes, highlighting the importance
of logistical efficiency and environmental sustainability while balancing stakeholder priorities. On
the other hand, facade complexity analysis addresses aesthetic intricacy, user perception, and sus-
tainability at the micro-scale, offering a distinct yet equally critical perspective on architectural
design. Collectively, these applications encompass a broad range of design challenges, facilitating
a comprehensive assessment of DIDO’s potential.

SLP and ‘Facade Complexity Analysis’ also represent very significant areas in which the use of
innovative technologies like Virtual Reality (VR) and Computer Vision (CV) have a great potential
to enhance traditional workflows./ SLP uses immersive environments to optimize spatial config-
urations based on active stakeholder involvement, while ‘Facade Complexity Analysis’ studies
visual intricacy and relates it to user preferences. These case studies prove DIDO’s ability to show
interdisciplinary adaptability and incorporation of technology and thus set a strong base for its
broader applicability within contemporary architectural practice.

We hypothesize that by demonstrating DIDO’s capacity to address both macro-level planning
and micro-level aesthetic considerations, this applications will illustrate how the framework can
seamlessly adapt to evolving design challenges. In that respect, by such applications, DIDO not
only has the potential of improving decision processes but also to redefine the link between com-
putational optimization and human experience in architecture workflows.
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FIGURE 3.19: Methodology Flowchart illustrating the sequential steps of the implementation of
the VR-Based Site Layout Planing (SLP) for Building Design based on the ‘Data-Driven Immersive

Design Optimization’ (DIDO) framework. (See detailed methodology in Figure 4.2).

3.6.1 DIDO for Site Layout Planning (SLP)

Site Layout Planning (SLP) is a critical process in the Architecture, Engineering, and Construction
(AEC) industry, encompassing the organization of resources, site accessibility, and operational
efficiency. The DIDO framework leverages the power of Multi-Objective Optimization (MOO)
and Virtual Reality (VR) to bridge traditional heuristic methods with data-driven approaches.
This integration allows stakeholders to evaluate, refine, and optimize site layouts dynamically,
creating solutions that balance technical precision with user-centered considerations. A detailed
exploration of this application is provided in Implementation of Virtual Reality-Based Site Layout
Planning for Building Design (Chapter 4).

The methodology for implementing DIDO in SLP revolves around three key components: VR
System Development, Experiment Execution, and Data Analysis and Validation (see Figure 3.19).
VR scenarios enable stakeholders to interact with proposed site layouts in real-time, fostering a
deeper understanding of spatial relationships and design trade-offs. MOO ensures a systematic
evaluation of competing priorities, such as cost efficiency, environmental impact, and operational
functionality, while iterative feedback loops refine solutions based on stakeholder preferences.

By applying DIDO to SLP, this case study demonstrates the framework’s capability to stream-
line site planning workflows, enhance stakeholder engagement, and deliver actionable design
solutions. The findings, including a 48.3% reduction in deviations between computational pre-
dictions and stakeholder decisions, validate DIDO’s effectiveness in addressing complex, multi-
faceted challenges in architectural design. This application underscores the framework’s scalabil-
ity and flexibility, setting the stage for further exploration in Facade Complexity Analysis (Chap-
ter 5).
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FIGURE 3.20: Methodology Flowchart illustrating the sequential steps of the implementation of
the VR and Computer Vision-Based Facade Complexity Analysis for Building Design based on the
‘Data-Driven Immersive Design Optimization’ (DIDO) framework. (see Detailed version of this

process in Figure 5.5).

3.6.2 DIDO for ‘Facade Complexity Analysis’

Building upon the conclusions drawn from the literature, the methodology of this study is struc-
tured around three core components: the development of the ‘Complexity Analysis System’ us-
ing Virtual Reality (VR) and the Computational Image Complexity Analysis (CICA) system, sup-
ported by Computer Vision (CV) algorithms, both specifically designed for this research; the ‘Ex-
periment Execution,’ aimed at assessing user perceptions of facade complexity; and a rigorous
‘Data Analysis’ phase to validate the system’s effectiveness (see Figure 3.20).

The DIDO framework’s application to facade complexity analysis demonstrates its adaptabil-
ity in addressing challenges at the intersection of aesthetics, sustainability, and user engagement.
Facades, as the most visible element of a building, play a critical role in defining architectural
character and urban identity. However, the balance between aesthetic complexity and sustainabil-
ity poses a significant challenge, especially in modern contexts where intricate designs must also
align with user preferences and environmental considerations. A detailed exploration of this ap-
plication is provided in Implementation of VR and Computer Vision-Based Facade Complexity Analysis
(Chapter 5).

The methodology for implementing DIDO in facade complexity analysis focuses on three key
components: the development of the ‘Complexity Analysis System’ using VR and the ‘Computa-
tional Image Complexity Analysis’ (CICA) system, created for this study, ‘Experiment Execution’
to assess user responses to varying complexity levels, and ‘Data Analysis’ to validate the system’s
effectiveness (see Figure 3.20). By integrating VR and Computer Vision (CV), this application
enables stakeholders to interact with and evaluate facade designs dynamically, providing both
quantitative complexity metrics and qualitative feedback on aesthetic preferences.

Through this case study, the DIDO framework demonstrates its ability to quantify facade
complexity, identify trends across architectural styles, and align modern user preferences with
historical patterns. The findings not only validate the framework’s scalability but also highlight
its potential to inform sustainable design practices, balancing complexity with long-term adapt-
ability. This application further underscores DIDO’s versatility, transitioning seamlessly from site
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planning to facade analysis while maintaining its core principles of computational precision and
stakeholder-centered design.

Conclusion
The applications of the DIDO framework in Site Layout Planning (SLP) and Facade Com-

plexity Analysis highlight its versatility in addressing architectural challenges across scales and
contexts. By integrating computational optimization, immersive visualization, and stakeholder
engagement, DIDO bridges the gap between technical precision and user-centered design. In sub-
sequent chapters, these application will validate DIDO’s potential as a transformative tool for
modern architectural workflows, advancing decision-making processes and fostering a dynamic
interplay between technology, creativity, and human experience.



3.7. Summary 73

FIGURE 3.21: Summary of the ‘Five Core Components‘ in the ‘Data-Driven Immersive Design
Optimization‘ (DIDO) Framework.

3.7 Summary

Chapter 3 introduces the Data-Driven Immersive Design Optimization (DIDO) framework, an
innovative solution designed to address the intricate demands of modern architectural design.
By integrating Data-Driven Building Design (DBD), Virtual Reality (VR), and Computer Vision
(CV), DIDO bridges the gap between computational precision and human-centric experiential in-
sights. Its overarching goal is to empower architects and designers to create sustainable, efficient,
and adaptable solutions that balance technical performance metrics with stakeholder engagement,
addressing the evolving challenges of the Architecture, Engineering, and Construction (AEC) in-
dustry.

The DIDO framework integrates a structured methodology encompassing five core compo-
nents —3D Modeling, Data-Driven Processes (including Data Processing, Multi-Objective Optimization
(MOO), and Computer Vision (CV) Integration), Virtual Reality (VR) Integration, Data Analysis, and
Optimization and Refinement (see Section 3.2). 3D Modeling forms the foundation, creating adapt-
able representations for immersive interaction and performance analysis. Data-Driven Processes,
including ‘Multi-Objective Optimization‘ (MOO) and ‘CV integration‘, allow for the systematic
evaluation and quantification of design elements, balancing competing objectives. VR Integration
transforms complex outputs into interactive, human-scaled environments, enabling real-time col-
laboration and feedback. The Data Analysis and Evaluation module merges computational outputs
with stakeholder insights, ensuring alignment between technical accuracy and user preferences.
Finally, the Optimization and Refinement phase adapts and validates designs for real-world appli-
cation, achieving a balance between computational rigor and experiential considerations. Each
of these components plays a critical role in ensuring that the framework balances computational
precision with human-centric design, delivering solutions that are functional, sustainable, and
aligned with stakeholder expectations (see Figure 3.21).

The comprehensive workflows for these components are visually summarized in Figure 3.2,
which highlights the sequential processes, decision points, and feedback loops within the DIDO
framework. This figure provides a clear depiction of how each component contributes to an in-
tegrated system, enabling the alignment of technical performance metrics with immersive user
engagement. This figure underscores how each component contributes to an integrated and adapt-
able system capable of addressing diverse architectural challenges.
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FIGURE 3.22: Flowchart of complete workflow of the ‘Five Core Components‘ in the ‘Data-Driven
Immersive Design Optimization‘ (DIDO) Framework.
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The ‘Data Collection and Processing‘ phase (Section 3.3) serves as the foundational link con-
necting the framework’s components by transforming raw inputs from diverse sources into struc-
tured, actionable datasets. Through systematic techniques like data cleaning, normalization, fea-
ture extraction, and contextual adjustments, this phase ensures cross-component compatibility
and accuracy. Data sources include stakeholder feedback, VR observational insights, CV metrics,
and building performance datasets. By blending adaptable methodologies with project-specific
adjustments—such as regulatory compliance or facade complexity quantification—this phase sup-
ports DIDO’s ability to balance technical precision with human-centered design insights.

The ‘Tools and Technologies Used‘ (Section 3.4) form an integrated ecosystem of advanced
software and hardware, enabling the seamless operation of the DIDO framework. Software tools
like Unity, Blender, and Python power tasks ranging from detailed 3D modeling to immersive
VR simulations and optimization algorithms. Python’s libraries, including NumPy, Pandas, and
OpenCV, facilitate data preprocessing, MOO, and facade complexity analysis. Unity provides
a robust platform for interactive VR experiences, while Blender ensures precision in 3D model
preparation. Complementing these software tools, VR headsets like the Oculus Quest and high-
performance computing systems enable real-time visualization and stakeholder engagement. To-
gether, these technologies streamline DIDO’s workflows, enhancing adaptability, collaboration,
and innovation in architectural design.

The ‘Evaluation Metrics and Validation Techniques‘ in the DIDO framework ensure that its
outputs meet both technical standards and stakeholder expectations through a balanced com-
bination of ‘Performance metrics‘, ‘Stakeholder Validation‘, and ‘Comparative Analysis‘ (Sec-
tion 3.5). ‘Performance metrics‘ address quantitative aspects such as energy efficiency, cost, and
facade complexity while integrating qualitative user feedback to align technical precision with
aesthetic and experiential qualities. ‘Stakeholder Validation‘ leverages immersive VR interactions,
structured surveys, and iterative feedback loops, enabling dynamic collaboration between de-
signers and users to refine design solutions. ‘Comparative Analysis‘ benchmarks DIDO’s outputs
against traditional methodologies and stakeholder priorities, identifying deviations and integrat-
ing improvements into the optimization process. Together, these evaluation mechanisms create a
robust framework for refining architectural solutions, ensuring that outputs are both innovative
and practically relevant.

The chapter also introduces two key applications of DIDO: ‘Site Layout Planning‘ (SLP) and
‘Facade Complexity Analysis‘ (Section 3.6). These case studies, explored in detailed in subsequent
chapters, highlight DIDO’s scalability, with SLP addressing large-scale logistical challenges and
‘Facade Complexity Analysis‘ exploring intricate aesthetic considerations. Together, they exem-
plify how DIDO adapts to diverse architectural contexts, seamlessly transitioning between macro-
level planning and micro-level design.

In conclusion, Chapter 3 lays the foundation for understanding the DIDO framework as a
holistic, adaptable, and innovative approach to architectural design. It emphasizes the frame-
work’s ability to unite data-driven methodologies with immersive technologies, offering solutions
that are both technically optimized and aligned with user needs. This chapter sets the stage for de-
tailed explorations of DIDO’s applications in subsequent chapters, showcasing its transformative
potential in modern architectural practices.
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Chapter 4

Implementation of Virtual Reality-Based
Site Layout Planning for Building
Design

The implementation of Virtual Reality (VR) into Site Layout Planning (SLP) builds on the foun-
dation of the Data-Driven Immersive Design Optimization (DIDO) framework, which integrates
data-driven methodologies, Multi-Objective Optimization (MOO), and immersive technologies to
enhance decision-making in architectural workflows (Chapter 3). This chapter investigates a criti-
cal question: can immersive technologies influence stakeholder decision-making and facilitate the
adoption of optimized design solutions?

By leveraging VR’s ability to combine computational precision with stakeholder intuition, the
DIDO framework adapts to the specific challenges of SLP, offering a dynamic platform for real-
time interaction with data-driven insights. Through VR simulations, participants evaluate key site
planning factors such as earthwork volume, cost, and environmental impact, bridging the gap
between technical outputs and experiential understanding. Unlike other applications of the DIDO
framework that integrate advanced tools such as Computer Vision (CV), this study excludes CV
to focus solely on validating the effects of VR on stakeholder decision-making.

Results, as highlighted in this chapter, show a significant 48.3% increase in decision-making
accuracy among participants using VR, underscoring its transformative potential. This improve-
ment highlights VR’s role in aligning heuristic approaches with modern optimization strategies,
enhancing site efficiency, and fostering stakeholder collaboration. These findings provide a com-
pelling case for the broader applicability of the DIDO framework, demonstrating its potential to
revolutionize decision-making processes and improve design outcomes across diverse architec-
tural challenges.

4.1 Introduction

In the rapidly evolving field of Architecture, Engineering, and Construction (AEC), Site Layout
Planning (SLP) represents a critical juncture where the heuristic approaches to problem-solving
traditionally employed,encounter the Data-driven Building Design (DBD) methodologies of mod-
ern construction. This intersection poses a significant challenge: how can the experiential wisdom
embedded in heuristic approaches be harmoniously integrated with the precision and efficiency
of DBD strategies? This paper seeks to address this question, proposing that Virtual Reality (VR)
simulations can serve as a bridge between these paradigms, enhancing stakeholder assimilation
of performance-based design solutions in SLP.

SLP is foundational to the AEC industry, dictating the efficient allocation of resources and
optimizing site operations. Despite its importance, the field has been slow to adopt advancements
that seamlessly integrate technology with more traditional methodologies.
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Historically, the AEC field has lagged in fully leveraging science and technology. Naboni
(2015) [33] identifies this gap and discusses efforts to integrate digital fabrication and Building
Performance Simulation (BPS) into mainstream practices. Knippers et al. (2021) [34] further em-
phasize the benefits of combining digital tools with traditional construction methods, advocating
for a holistic and integrative computational approach.

Central to our discussion is the role of DBD and Multi-Objective Optimization (MOO) in nav-
igating the complex trade-offs inherent in building design. DBD, a branch of data-driven design,
as highlighted by Cantamessa et al.(2020) [4], focuses on generating a range of design alternatives
from established variables, underscoring the critical role of data visualization in the decision-
making process. Yet, as Seyed et al.(2022) [31] point out, the effectiveness of these visualizations
is often hampered by the limitations of traditional 2D screens, suggesting a potential avenue for
VR to improve data-driven design analysis and communication.

The implementation of VR in this study builds on the foundation of the ‘Data-Driven Im-
mersive Design Optimization’ (DIDO) framework. DIDO integrates immersive technologies like
VR with data-driven methodologies and MOO to address complex architectural challenges. In
the context of SLP, DIDO enables a dynamic interaction between computational precision and
stakeholder intuition, bridging the gap between heuristic knowledge and optimization strategies.
While the DIDO framework can incorporate advanced tools like Computer Vision (CV) for en-
hanced data analysis, CV was not applied in this study to maintain a focused evaluation of VR’s
effects. This integration aligns with the study’s broader objective to modernize design and con-
struction processes through advanced visualization and interaction tools.

Literature on SLP underlines the necessity for performance-oriented methodologies and the
critical role of algorithmic design processes in achieving stable solutions [35, 36, 37, 38]. While
DBD and BPS are recognized for their decision-making efficacy, their success is predicated on
the adaptability of models to incorporate varied stakeholder inputs [33]. This interdisciplinary
engagement, though essential, risks deviations from the optimal design paths, emphasizing the
need for dynamic data review processes to ensure decision-making precision [39].

Despite the recognized potential of immersive VR simulations and real-time feedback in bridg-
ing the gap between heuristic and data-driven processes, limited attention has been paid to their
impact within the context of SLP. This study aims to bridge this research gap by examining how
VR immersion and instantaneous feedback from a MOO model via a Heads-Up Display (HUD)
can align stakeholder decisions more closely with data-driven optimized outcomes.

To achieve our research objectives, we employ a mixed-methods approach that combines quan-
titative analysis with qualitative insights. The methodology is structured around three primary
components (see Figure 4.1):

1. VR System Development: Crafting immersive SLP scenarios to facilitate real-time stake-
holder interaction and decision-making.

2. Experiment execution: Deploying the VR system to engage a diverse stakeholder group in
VR-based decision-making, complemented by comprehensive data collection through sur-
veys and interviews.

3. Data Analysis and Validation: Assessing the data collected during the experiment to evalu-
ate the effectiveness of the VR system in improving the decision-making and SLP outcomes.

We hypothesized that, regardless of their professional background and prior knowledge of
SLP design, participants in a VR experiment would be more likely to favor a DBD recommen-
dation, thereby fostering a stronger connection between their experiential knowledge and the
design model, and minimizing the deviation between MOO-predicted outcomes and stakeholder-
selected designs.

Therefore, the aims of this study will be as follows:
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FIGURE 4.1: Methodology Flowchart illustrating the sequential steps of the implementation of the
VR-Based Site Layout Planing (SLP) for Building Design. (See detailed methodology in Figure 4.2).

• To investigate the potential of VR simulations in enhancing stakeholder engagement and
decision-making in SLP.

• To assess the effectiveness of VR in bridging the gap between heuristic approaches and data-
driven optimization methodologies.

• To explore the impact of real-time feedback on reducing deviation errors in SLP design de-
cisions.

By focusing on these aims, our research aspires to contribute to a more cohesive, efficient, and
enlightened SLP process within the AEC industry. The integration of VR into SLP workflows
demonstrates the applicability of the DIDO framework, showcasing how immersive visualization
technologies can revolutionize decision-making, enhance stakeholder collaboration, and modern-
ize design and construction practices.
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4.2 Literature Review

The process of constructing our environment is deeply rooted in our aspiration to mimic the nat-
ural world. As Baker [40] eloquently articulates, architecture is the manifestation of a human-
crafted universe, tailored to human needs and aspirations. While buildings may draw inspiration
from nature and strive to harmonize with their surroundings, they exist as distinct entities within
the dynamic fabric of the environment, serving as dedicated spaces for human habitation.

Amidst growing environmental concerns, the challenges identified by Knippers et al. [34]
bring to the forefront the urgent need for building construction practices that not only address
human requirements but also prioritize environmental sustainability. This dual objective calls for
innovative solutions that reduce pollutants, conserve resources, and enhance the quality of living
spaces.

In the specific context of Site Layout Planning (SLP), DBD Optimization has proven to be
a powerful tool. SLP is a critical phase in the construction process that involves the strategic
arrangement of elements on a construction site to maximize efficiency, safety, and environmental
performance. Traditionally, SLP was dominated by heuristic approaches, which, while practical,
often lacked the precision needed for optimizing complex projects.

Central to addressing these challenges is our research focus, which investigates the intersection
of three pivotal concepts:

• SLP Design

• DBD Optimization

• Transformative potential of VR technology in the AEC industry

Through an in-depth analysis of each of these facets, we aim to uncover their individual contri-
butions as well as their synergistic effects in revolutionizing the landscape of construction method-
ologies and decision-making processes.

SLP Design
Amidst the challenges outlined by Knippers et al. [34] regarding the future of construction,

SLP design emerges as a pivotal and universally recognized stage in the construction process
across the AEC field. As described by Ning [41], SLP involves a decision-making process encom-
passing problem identification, recognizing opportunities, developing solutions, selecting the best
alternatives, and executing them. This critical phase sets the foundation for successful building
construction and plays a pivotal role in achieving optimized outcomes that balance various design
objectives, economic factors, and environmental considerations.

The importance of SLP extends beyond mere planning; it is a collaborative effort involving
a diverse group of stakeholders at various stages of the construction process. These stakehold-
ers include project managers, architects, engineers, contractors, and clients, each bringing unique
perspectives and expertise to ensure the project’s success [42]. For instance, architects and en-
gineers contribute to the initial design and layout considerations, while contractors and project
managers focus on the practical aspects of site utilization and logistics. Clients, on the other hand,
are integral in defining the project’s objectives and constraints.

Kulabi et al. [43] highlight that SLP problems have traditionally been addressed through heuris-
tic methods and mathematical optimization. Heuristic methods, relying on knowledge-based sys-
tems, offer practical albeit not always optimal solutions. These methods have been the backbone
of the construction industry, guided by established rules and the experience of planners, despite
variations in accuracy and reliability across projects [44]. On the other hand, mathematical opti-
mization aims to enhance reliability and achieve stable outcomes by striving for optimal results.
However, the complexity and computational demands of large projects often limit the application
of mathematical optimization, making heuristic methods more prevalent in such contexts [43].
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Understanding the roles and contributions of each stakeholder in SLP is crucial. Their col-
laboration ensures that SLP can effectively address the multifaceted challenges of construction
projects, from ensuring safety and maximizing space utilization to optimizing resource allocation
and minimizing environmental impact. By integrating the insights and expertise of all stakehold-
ers, SLP becomes instrumental in navigating the complexities of construction projects, leading to
more sustainable, efficient, and successful outcomes.

In summary, SLP is a cornerstone of construction project planning, requiring the active par-
ticipation of all stakeholders to leverage both heuristic and mathematical optimization methods
effectively. This comprehensive approach enables the construction industry to meet today’s chal-
lenges and lay the groundwork for future advancements.

DBD Optimization
The continuous research towards mathematical optimization methods proves the allure of the

promise for optimal design [44]. The recurrent venture into this method has created a trend in
DBD optimization where a solution to a building project is no longer a single static result instead
it is seen as a process from which an assort of solutions can be presented with various degrees of
optimization, while still given the final choice to the stakeholders [39].

It is understood that traditionally design solutions were driven by prescriptive terms, rather
than the expected performance of the solution, with building codes and regulations being the
main contributors to prescriptive specifications [42] and as Hemsath argues, data-driven design,
such as Performance-based Design, requires a deliberate approach with a focus on front-loading
information and reducing the time between critical feedback [39]. Aside from the data which sits
at the core of the DBD, an accurate BPS is needed to support the design evolution, not only for
reviewing purposes but on the role of a virtual experiment [42].

Yi et al. [44] advance the application of data-driven strategies in SLP by introducing a math-
ematical model aimed at optimizing the allocation of temporary facilities on construction sites.
Their approach, grounded in multi-objective optimization, concurrently addresses safety, health,
environmental concerns, and transportation costs—factors critical to the efficiency and sustain-
ability of construction projects. Unlike traditional heuristic methods, their model demonstrates
a significant improvement in optimizing SLP, achieving up to 19% enhancement in real-world
scenarios. This finding underscores the superiority of data-driven design optimization in man-
aging complex criteria, highlighting its potential to revolutionize SLP by offering more effective,
efficient, and environmentally responsible solutions.

The practical advantages of data-driven optimization in SLP are profound, particularly in
forecasting and analyzing building behavior. As Hemsath [39] notes, the efficiency and cost-
effectiveness of addressing potential issues through predictive analysis rather than post-construction
interventions are undeniable. This preemptive approach not only applies to the construction
phase but also significantly benefits SLP by facilitating more informed and strategic decisions
from the outset.

In exploring solutions for SLP, it becomes crucial to consider the building in its environmental
context, a concept Baker [40] encapsulates as the interaction between site forces—such as orienta-
tion, views, and access—and the internal organizational forces of the building. This holistic view
underscores the necessity of integrating performance-based design and simulations with tradi-
tional heuristic methods, fostering a dynamic interplay that enhances both the design process and
its outcomes.

Incorporating VR technology represents a pioneering step in this integration, offering a vivid,
immersive platform for stakeholders to visualize and evaluate the implications of different SLP
options. This innovative approach not only enriches the design experience but also serves as a
powerful catalyst for the broader acceptance and implementation of DBD principles.

Research has shown that integrating DBD Optimization into SLP can significantly enhance the
decision-making process. For instance, multi-objective optimization models enable the simultane-
ous consideration of multiple criteria, providing stakeholders with a range of optimized solutions
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to choose from. This approach not only improves the efficiency of SLP but also aligns the final
layout with broader project goals, such as minimizing environmental impact and maximizing re-
source utilization.

4.2.1 VR and its impact on the AEC field

VR has emerged as a transformative technology in the AEC industry. Initially used for visualiza-
tion purposes, VR has evolved to play a crucial role in design exploration, stakeholder engage-
ment, and decision-making processes.

In the context of architectural design, VR provides an immersive environment where stake-
holders can interact with design models at a human scale. This capability is particularly valuable
in complex projects, where understanding spatial relationships and the potential impacts of de-
sign decisions is critical. VR enhances the ability to present complex data interactively, making it
more accessible and understandable to non-experts.

• Hardware and Software: Overview of the key VR hardware (such as headsets and motion
sensors) and software platforms (such as Unity, Unreal Engine, and specialized architectural
VR tools) used in the industry.

• Adaptation for Architecture: How VR technology has been adapted specifically for architec-
tural applications, including the development of tools that allow for real-time design adjust-
ments and collaboration in a virtual environment.

The Architecture, Engineering, and Construction (AEC) industry is grappling with the dual
challenge of rapid technological advancements and persistent issues such as safety hazards, in-
efficiencies, and labor shortages [45]. Despite efforts to integrate innovations like prefabrication,
automation, and robotics, the industry encounters substantial barriers, including a lack of under-
standing and training. In the UK, for example, the construction sector is currently facing a record
high skill shortage [46].

Within the AEC industry, the adoption of Extended Reality (XR) technologies — encompassing
Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR) — is reshaping traditional
practices. Alizadehsalehi et al.(2020) [47] underscore the relationship between Building Infor-
mation Modeling (BIM) and XR technologies, revealing their potential to revolutionize design
management, safety protocols, and decision-making processes. Similarly, Seichter’s exploration
of AR’s impact on architectural visualization emphasizes XR’s role in enhancing communication
with clients and stakeholders [48].

Advancements in XR are not without challenges, as the industry grapples with issues of tech-
nology adoption and user acclimatization driven by advancements in XR, AI, and 5G technolo-
gies, emphasizing the need for updated infrastructure and greater stakeholder acceptance to fully
leverage XR’s capabilities in enhancing AEC workflows and remote collaboration [47]. However,
XR is poised to become a cornerstone in the AEC sector, fundamentally altering how projects are
conceived, planned, and executed [49].

To remain competitive and address these challenges, AEC firms are increasingly turning to
modern technologies, with VR standing out as a key area of investment [47].

VR is recognized as a transformative technology within the AEC industry, offering novel so-
lutions to longstanding issues of safety, labor, and efficiency. A 2016 survey by ARC Document
Solutions found that 65.7% of industry professionals identified VR as the most impactful techno-
logical advancement [50].

VR’s capacity to blend the real with the virtual revolutionizes our spatial perception, as Schn-
abel [51] noted, creating immersive experiences that enhance visualization, streamline project
completion, reduce labor and material needs, and facilitate interactive design evaluation at a hu-
man scale.
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4.2.2 VR in Site Layout Planning (SLP)

One of the most promising applications of VR in architecture is site layout planning. In traditional
design processes, site planning can be challenging due to the difficulty of visualizing how different
elements will interact in a real-world environment. VR addresses this by enabling designers to:

• Simulate Different Configurations: Architects can create multiple site layouts and explore
them in VR, gaining insights into how different configurations will affect factors like light,
airflow, and spatial relationships.

• Assess Environmental Impact: VR can be used to simulate environmental conditions such
as sunlight, wind, and noise, helping architects design layouts that optimize environmental
performance.

• Enhance Stakeholder Engagement: Stakeholders can explore proposed site layouts in an im-
mersive environment, providing feedback that can be incorporated into the design process.

VR’s application in Site Layout Planning (SLP) offers significant advantages. By allowing
stakeholders to experience proposed layouts in a fully immersive environment, VR facilitates a
deeper understanding of spatial configurations and their implications. This immersive experi-
ence leads to more informed decision-making, as stakeholders can better visualize and assess the
potential outcomes of different design options.

The transformative potential of VR in SLP is well-documented. Studies have shown that VR
can enhance decision-making accuracy by providing real-time feedback and enabling a more in-
teractive design process. For example, VR can simulate the flow of people and vehicles through a
site, helping to optimize layouts for safety, accessibility, and efficiency. Additionally, VR has been
shown to improve stakeholder engagement by making it easier for participants to understand and
contribute to the design process.

The ‘VR smart’ tool is a prime example of VR’s practical application in engineering design
review. This VR-based tool demonstrated its effectiveness by enabling users to identify design
errors more readily compared to traditional 2D documentation methods, thereby streamlining the
entry into design reviews [5]. Similarly, Muhammad et al.’s research into VR’s role in SLP revealed
its potential to enhance job site organization understanding, collision detection, and assessment
of layout arrangements [52]. While VR accelerated comprehension and improved identification of
collision points, it also highlighted the ease of understanding and time efficiency of traditional 2D
methods for tasks requiring an overview of the entire site. However, this preference may reflect
the participants’ unfamiliarity with VR technology.

These studies [5, 52] confirm VR’s emerging significance in the AEC field, offering a new lens
through which projects are approached. As the industry continues to embrace VR, it moves closer
to realizing the full potential of data-driven design optimization, facilitated by VR’s ability to
present complex data as interactive and responsive environments. This shift not only enhances
project comprehension and decision-making but also heralds a new era of innovation in construc-
tion methodologies.
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FIGURE 4.2: Methodology Flowchart illustrating the sequential steps of this study’s approach to
assess the impact of VR simulations on SLP decision-making. Higlighting the transition from ‘VR
System Development’ (4.3.1), ‘Experiment Execution’ (4.3.2) and ‘Data Analysis and Validation’

phase.

4.3 Methodology

The methodology of this study, comprises three primary components: ‘VR System Development’,
‘Experiment Execution’, and ‘Data Analysis and Validation’, each designed to build upon the
previous, ensuring a cohesive progression from theoretical foundation to practical application
(see Elements 3.1 to 3.3 in Figure 4.2 for a visual illustration).

The first component, ‘VR System Development’, focuses on the technical development of the
VR system, which is crucial for simulating realistic SLP scenarios.

The second component, ‘Experiment Execution’ component, detailed in Section 4.3.2, involves
the deployment of the VR system in a controlled experimental setup to evaluate its impact on
participant decision-making processes.

The final component, ‘Data Analysis and Validation’, focuses on analyzing the data collected
during the experiments to validate the effectiveness of the VR system in improving SLP outcomes.

With the methodology outlined, we now move forward to a comprehensive breakdown of
each component.
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4.3.1 VR system development

The advent of VR in the AEC industry marks a shift from traditional methods like physical mock-
ups and computer-aided design (CAD) to a more immersive, interactive environment [53]. VR’s
ability to enhance information and user interaction requires a system surpassing traditional meth-
ods in efficiency and effectiveness. To achieve this, the ‘VR System Development’ component is
structured around four key elements (as shown in Figure 4.2, elements labeled 1 to 4):

1. 3D Modeling and Environment Setup: Using Blender, detailed models of terrain, buildings,
and vegetation are created. This setup is foundational for realistic simulations necessary for
effective SLP (See Element 1 in Figure 4.2 and detailed description in Section 4.3.1).

2. Data Management and Retopology Scripts: Using Python scripts within Blender, to manage
data and refine 3D terrain meshes, ensuring precise site representation and simulation accu-
racy (See Element 2 in Figure 4.2 and detailed description in Section 4.3.1).

3. MOO algorithm Implementation: Incorporation of MOO algorithms to assess various SLP met-
rics, such as cost, environmental impact, and spatial efficiency—to determine optimal site
layouts (See Element 3 in Figure 4.2 and detailed description in Section 4.3.1).

4. VR Integration and Simulation Tools: using Unity, to create an immersive virtual environment
where users can interact with and explore the SLP design in real-time (see Element 4 in
Figure 4.2 and detailed description in Section 4.3.1).

The following sections will delve into each of these components in detail to provide insights
into the system’s innovative approach to SLP.

3D Modeling and Environment Setup

Using Blender (version 3.5), we developed 3D models critical for simulating the SLP process.
Blender was selected for its advanced rendering capabilities, support for complex geometries,
and seamless Python integration, making it ideal for visualizing architectural and environmental
elements accurately. Our focus was on three main components: building structures, terrain topog-
raphy, and surrounding vegetation (see Figure 4.3). These models were not intended to achieve
photo-realism but to clearly represent key features essential for participant understanding and
evaluation.

We created three fictional yet realistic site simulations each featuring unique geographical
characteristics like varying slopes and natural features to address diverse SLP challenges and in-
spired by Fukuoka, Japan, due to it being the site of where this research was conducted (detailed
in Table 4.2). The central building model was designed for photo-realistic interaction, enhancing
user engagement with various positioning strategies within the VR environment (see Figure 4.3).
Its parameters (Table 4.1) such as the building’s dimensions—specifically, its boundaries— are a
critical input to delineate the building footprint that coupled with the MOO algorithms (see El-
ement 3 in Figure 4.2 and detailed description in Section 4.3.1), helped assess the environmental
and spatial impacts effectively, underlining the importance of clear visualization for participant
comprehension and interaction, thereby improving decision-making in SLP.

By prioritizing readability and user engagement through these modeling choices, our research
aims to facilitate a more intuitive and effective exploration of SLP solutions.
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TABLE 4.1: Proposed Educational Building Parameters. Information used for evaluating building
impact in the optimization process for SLP

Parameters Values

Height 42 m
Width 16 m
Length 16 m
Footprint Area 256 m2

Number of floors 8
Gross Floor Area 2560 m2

Program Educational building

FIGURE 4.3: 3D Model of the Proposed Building and Site in Blender. Preliminary simulation for
SLP analysis and optimizing building placement.
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FIGURE 4.4: ‘Retopology Script’ Workflow, showing site topography from the original mesh (a),
through XY grid overlay (b), to the final retopologized mesh (c).

FIGURE 4.5: Earthwork Operation Process, showcasing the transition from initial cut and fill ac-
tivities (left) to achieving a level building platform (right).

Data Management and Retopology Script

Efficient data management is essential in handling the complexities of terrain meshes for DBD
optimization. The ‘Retopology Script’ developed in Python within the Blender environment, cap-
italizes on Python’s strengths in handling large datasets and its seamless integration with Blender
to enhance environmental simulation accuracy. This script is integral for detailed terrain model-
ing in our ‘VR System Development’, contributing to the overall simulation process (illustrated in
Element 2 of Figure 4.2).

Retopology, as Barsanti et al.(2017) articulate, is the operation that restructures a 3D model’s
topology by applying a simpler, low-polygon mesh that retains essential geometrical features,
favoring quads for their efficiency [54]. This process is implemented on the ‘Retopology script’
and is essential for transforming complex terrain meshes into organized, manageable 3D models,
facilitating their integration into standardized databases critical for efficient data management.
The ‘Retopology Script’ simplifies the terrain mesh by overlaying a grid and using ray intersec-
tions to mark terrain points, forming a retopologized mesh (see Figure 4.4). This mesh supports
crucial calculations like area and volume estimations and environmental impact assessment by
marking tree positions within the grid, aiding in the assessment of deforestation, enhancing the
efficiency of SLP optimization. It’s pivotal to note that the retopologized mesh, while fundamen-
tal to calculations, operates behind the scenes, preserving the original mesh as the primary visual
representation of the terrain.

This systematic approach creates an efficient framework for handling and optimizing terrain
data. As Hemsath (2012) [39] notes, such computational strategies enhance traditional methods,
improving team performance and decision-making in architectural projects.
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TABLE 4.2: Site Parameters and simulation preview in Blender and Unity VR

Description Site 1 Site 2 Site 3

Terrain type Plains Canyon Mountainous region
Width 200m 200m 200
Length 200m 200m 200
Grid area selection 150x100m 150x100m 150x100m
Platform level from 0 1m 2m 2m
Max Height 14m 14m 28.3
Top Rec. Location (x,y,z) (35, -35, 2) (-3.0, 20.0, 4) (-26.0, 40.0, 0.0)

Blender Simulation

VR Simulation

MOO Algorithm Implementation

The optimization of SLP harnesses a MOO algorithm, integral to the development of the VR sys-
tem as ilustrated in Element 3 in Figure 4.2, which showcases the alignment with sophisticated
optimization strategies for adaptive system design [55]. The MOO framework is built around two
essential components:

a) Fitness ( f1(x), f2(x), f3(x)) and Sigmoid Functions: These tools are employed to assess and
normalize scores from performance indicators, ensuring a consistent basis for comparison
across varied criteria.

b) Sorting f4(x) and Multi-objective f5(x) Functions: These functions are pivotal in categoriz-
ing performance indicators and amalgamating them into a cohesive evaluation framework,
thereby facilitating the prioritization of optimization objectives.

Drawing upon the insights of Tian et al.(2021) on the critical role of comprehensive build-
ing performance data [9], our method utilizes a well-structured database created by the ‘Data
Management and Retopology Script’ (Section 4.3.1). This database serves as the repository for
the ‘performance data’ crucial to MOO, emphasizing key metrics such as ‘Earthwork volumes’,
‘Earthwork - cost analysis’, and ‘Deforestation Value’ (refer to Table 4.3).

The quantitative assessment of these indicators via ‘Fitness Functions’ contributes to a scoring
mechanism. When integrated with a Multi-criterion Decision Analysis (MCDA) approach [42],
this system underpins the ranking of potential construction sites. Such a process is vital for pin-
pointing the most suitable site layouts, facilitated by the ‘Sorting Position’ function (refer to Equa-
tion 4.12). This function adeptly manages the inherent trade-offs of MOO, guiding towards the
most balanced site selection.

In optimizing SLP, our approach employs a specific Multi-Criteria Decision-Making (MCDM)
technique known as the Analytic Hierarchy Process (AHP), integral to the development of our
VR system as depicted in our methodology flowchart (Figure 4.2, element 3). AHP was chosen
for its robust framework when dealing with complex decision-making processes where multiple,
often conflicting criteria must be evaluated. AHP is particularly suited to our MOO algorithm



4.3. Methodology 89

TABLE 4.3: Performance Indicators (PI) and Weights for MOO in SLP. This table outlines the key
criteria used in MOO, detailing each PI’s significance and assigned weight in the decision-making

process.

Performance criteria PI PI name/description Quantitative method Weights

Earthwork calcula-
tions

1 Cut/fill operations to flatten
the ground for the building.

Measured the volume m3 of
soil for cut/fill operations.

5

Earthwork costs 2 Cost of the earthworks neces-
sary to flatten the ground for
the building.

Measure in JPY based on the
volume of soil to be displaced
and the unit price 630JPY de-
termined by the RIBC [56]

3

Deforestation value 3 Trees being removed to im-
plant the new building

Measured the number of trees
that fall under the projection of
the new building.

2

TOTAL 10

because it allows for a hierarchical structuring of decision criteria, enabling a detailed analysis
and prioritization based on expert input and quantitative data [21].

As we transition to a detailed examination of the MOO’s key components, we focus on: a)
the application and normalization of performance indicators through the ‘Fitness’ and ‘Sigmoid’
Functions, and b) the strategic organization and synthesis of these indicators using the ‘Sorting’
f4(x) and ‘Multi-objective’ f5(x) Functions. Delving into the specifics of these components will
shed light on their indispensable roles within the MOO algorithm, ensuring that our optimization
strategy is both comprehensive and meticulously attuned to the complex requirements of SLP.

a) Fitness and Sigmoid Functions

In our optimization framework, we employ ‘fitness functions’ to quantitatively assess three
key performance indicators: Earthwork Volumes, Earthwork Cost, and Deforestation Value. These
functions are intricately designed to produce normalized scores within a [0, 1] range, facilitating
a unified evaluation of the site’s performance against the defined criteria, as follows:

• Earthwork Volumes f1(x): This function calculates the total volume of earthwork required,
providing insight into the extent of site manipulation needed (refer to Equation 4.3).

• Earthwork Cost Analysis f2(x): It estimates the cost associated with the earthwork volumes,
offering a financial perspective to the earth manipulation efforts (see Equation 4.5).

• Deforestation Value f3(x): This function evaluates the environmental impact, specifically fo-
cusing on deforestation, to ensure sustainability is factored into the planning (Equation 4.7).

Each indicator is meticulously measured using tailored methods, as outlined in Table 4.3. The
‘fitness functions’ incorporate the relevant variables and objectives, enabling a comprehensive
integration of scores across all indicators.

To further refine our analysis, we apply a ‘Sigmoid Function’ to the outputs of these ‘fitness
functions’. The ‘Sigmoid Function’ represented mathematically as:

f (x) =
1

1 + e−(k(x−t0))
, (4.1)

where x is the initially normalized result from the fitness function, k = 10 represents the sever-
ity of the penalization, and t0 = 0.5 is the inflection point, serving as the threshold for penalization
versus reward.

Afterward, we re-normalize the sigmoid outputs to ensure comparability and aggregation into
a cohesive overall score. The normalized scores are calculated as follows:
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g(x) =
f (x)− min( f (x))

max( f (x))− min( f (x))
, (4.2)

This structured approach underscores our commitment to a balanced evaluation of the SLP
process, prioritizing efficiency, cost-effectiveness, and environmental sustainability.

Having established the foundational role of ‘fitness functions’ in our optimization framework
and the strategic application of the ‘Sigmoid Function’ to refine our evaluation, we will now delve
into the specifics of each function.

• Earthwork Volumes f1(x)

The Earthwork Volumes component is essential for quantifying the ground leveling required
for construction, involving both ‘cut’ and ‘fill’ operations. These operations adjust soil levels to
achieve a desired terrain profile, crucial for the construction’s foundation(see Figure 4.5).

The primary goal of the ‘Earthwork Volumes fitness function’, f1(x)(refer to Equation 4.3),
is to identify site locations where the balance between cut and fill activities minimizes the need
for external soil transport. This balance is vital for reducing both environmental and financial
impacts. The function is represented mathematically as:

f1(x) =

∣∣∣∣∣ n

∑
i=1

Vi

∣∣∣∣∣ (4.3)

f1(x) calculates the absolute sum of earth volumes where Vi represents the volume of soil
moved at each position x on the site.

The ideal result is to have a net volume change of zero m3, indicating no unnecessary earth-
work and optimal resource utilization.

To compare results uniformly across different sites, the outcomes of f1(x) are normalized to a
[0, 1] range:

g1(x) =
f1(x)− max( f1(x))

0 − max( f1(x))
, (4.4)

with a score of 1 indicating no additional soil modification needed and 0 representing the
maximum deviation from this ideal.

We further apply the ‘Sigmoid Function’ (Equation4.1) to the normalized scores from g1(x)
to enhance the differentiation of performance near the critical threshold, and improve decision-
making clarity.

This strategic application ensures that the ‘fitness scores’ not only reflect the quantitative bal-
ance of earthwork but also emphasize scenarios that approach an optimal environmental and
logistical efficiency.

• Earthwork Cost Analysis f2(x)

The Earthwork Cost Analysis aims to quantify the financial implications of site leveling ac-
tivities required for building construction. This analysis is integral to the optimization process,
ensuring economic feasibility alongside environmental and logistical considerations.

The fitness function f2(x) (see Equation 4.5) assesses the economic cost of ‘cut’ and ‘fill’ oper-
ations needed to prepare the building’s site. The function is represented mathematically as:

f2(x) =
n

∑
i=1

|Vi| · M, (4.5)

where |Vi| is the absolute volume of soil moved (either cut or filled) at each position x on the
site, and M represents the unit cost for earthwork, set for excavation work up to 2.5m priced at
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630JPY/m3 based on 2023 rates from the Research Institute on Building Cost (RIBC) for Fukuoka,
Japan [56].

f2(x) aims to minimize the financial cost of earthwork operations. The optimal scenario, rep-
resented by a cost of 0JPY, indicates no additional earthwork is required beyond the original site
conditions.

Results from f2(x) are normalized within a [0, 1] range to standardize comparison across var-
ious scenarios:

g2(x) =
f2(x)− max( f2(x))

0 − max( f2(x))
, (4.6)

where a score of 1 indicates no incurred cost (optimal), and a score of 0 corresponds to the
maximum financial impact observed.

To refine our evaluation, we apply the ‘Sigmoid Function’ to the normalized scores from g2(x),
enhancing the differentiation between scores, particularly near the critical threshold. This method-
ological approach emphasizes cost-effective configurations, aiding in the identification and prior-
itization of the most economically viable scenarios.

• Deforestation Value f3(x)

The ‘Deforestation Value fitness function’, f3(x) (referenced in Equation 4.7), quantifies the
environmental impact by evaluating the number of trees affected by construction activities within
the building’s footprint at each site location (x). The function is represented mathematically as:

f3(x) =
n

∑
i=1

Ti, (4.7)

where Ti represents the number of trees affected per area under consideration at position x on
the site.

The primary goal of f3(x) is to minimize the environmental footprint, ideally finding a location
that requires no tree removal. This focus helps in maintaining ecological balance and adhering to
sustainability goals.

The results are normalized within a [0, 1] range to ensure effective comparison:

g3(x) =
f3(x)− max( f3(x))

0 − max( f3(x))
, (4.8)

where a score of 1 indicates no trees are affected (optimal), and a score of 0 indicates the max-
imum deforestation impact observed. Crucially, the normalization process excludes the total tree
count across the entire site to prevent skewed assessments. This approach ensures that the evalua-
tion focuses solely on the direct impact within the building’s footprint area, rather than comparing
it to the site’s total vegetation. By adopting this method, we accurately reflect the relative defor-
estation impact of each potential building location.

To further refine the analysis, a ‘Sigmoid Function’ (refer to Equation 4.1) is applied to the nor-
malized scores from g3(x). This adjustment emphasizes configurations that exceed environmental
conservation thresholds, aiding in the identification of site locations that best meet our criteria for
minimal environmental impact.

These measures ensure that the ‘Deforestation Value function’ not only assesses but also aids
in significantly reducing the environmental impacts of construction projects by prioritizing sites
with minimal ecological disruption that fulfill or exceed our environmental conservation criteria.

b) Sorting f4(x) and ‘Multi-objective’ f5(x) functions
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A structured approach is employed to sift through and pinpoint the most suitable solutions
across the site, leveraging the insights derived from the three performance indicators. The cumu-
lative data from the ‘fitness functions’ for each potential site location are collected into a compre-
hensive database for subsequent analysis.

• Sorting Position ( f4(j)):

Initially, the optimization process incorporates a ‘Sorting Position function’, f4(j) (see Equa-
tion 4.12). This function is designed to identify permissible building locations on a site by evaluat-
ing terrain constraints. It operates by considering the dimensions of both the site and the building
footprint. Specifically, the function examines the length (dx) and width (dy) of the site alongside
the length (bx) and width (by) of the building footprint.

The function systematically processes each row on the grid of the site to ensure all potential
building positions fall within the allowable bounds. For each row i, ranging from 0 to (dy − by + 1),
the function calculates the permissible range for the column index j. This range is determined by
the formula:

j ∈ [jmin, jmax + 1] (4.9)

where,

jmin =

(
by ·

dx

2

)
+ bx +

(
dx +

bx

2

)
· i, (4.10)

jmax = jmin + dx − bx. (4.11)

The valid positions are then extracted from the grid vertex list (vtxlist), checking each index j
within the specified range. If the grid position meets the criteria, it is marked as valid:

f4(j) = vtxlist[j] = x, (4.12)

where x represents a ‘valid position’ within the site boundaries that accommodates the build-
ing footprint without violating any site constraints. This meticulous approach ensures that only
feasible locations are considered in the subsequent phases of SLP.

• Multi-objective Evaluation function ( f5(x)):

This function, f5(x)(Equation 4.13), plays a crucial role in the final ranking and selection of
optimal SLP for construction projects by integrating various performance indicators.

It operates by calculating an overall score for each valid position on the site, identified by
the ‘Sorting Position function’, f4(j)(Equation 4.12). It does so by summing the weighted scores of
each performance indicator, which are normalized to ensure comparability and reflect the strategic
priorities of the project. The mathematical representation of this process is as follows:

f5(x) =

[
round

(
n

∑
i=1

wi · ai, 3

)]
= overall_score (4.13)

where n represents the number of performance indicators included in the assessment. Each in-
dicator, denoted by wi, is assigned a weight reflecting its importance relative to other factors in the
project. The normalized score for each indicator ai, ensures that contributions to the overall score
are balanced, allowing each indicator to influence the outcome proportionately to its assigned
weight.

The overall score generated by f5(x) serves as the basis for ranking the potential site loca-
tions. Locations are sorted in descending order of their scores, with higher scores indicating better
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alignment with the project’s objectives. This sorting facilitates an efficient decision-making pro-
cess by highlighting the locations that best meet the comprehensive criteria set out in the project’s
planning phase.

By applying f5(x) to the list of ‘valid positions’, the optimization framework effectively pri-
oritizes the most suitable locations for construction, taking into account a balanced consideration
of the trade-offs and the weights attributed to earthwork cost, volume and environmental impact.
This ensures that the selected site offers the most advantageous combination of attributes, aligning
with the project’s strategic goals and sustainability considerations.
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FIGURE 4.6: VR interface for DBD optimization in SLP. Viewpoint Navigation(1), Location
Slider(2), Performance Indicator (PI) Visualization(3), CComparative Analysis Charts(4), Utility

Functions(5)

VR Integration and Simulation Tools

Drawing on the insights of Lao et al. [32], we developed the ‘VR integration and simulation tools’
component using Unity to address the complexities of data-driven optimization outputs. Unity
was chosen for its comprehensive VR support, including pre-built templates and seamless integra-
tion with Python and C#, enhancing our simulation’s interactivity and data handling capabilities
cooperativily merging 3D terrain and architectural models with sophisticated optimization out-
comes (see Figure 4.2, element 4).

The ‘VR data visualization interface’, detailed in Figure 4.6, comprises five modules designed
to enhance the accessibility and interpretability of optimization data:

1. Viewpoint Navigation: Facilitates site exploration from various perspectives, improving spa-
tial understanding (labeled 1 in Figure 4.6).

2. Location Slider: Allows easy navigation through top building locations, simplifying design
adjustments (labeled 2 in Figure 4.6).

3. Performance Indicator Visualization: Displays crucial metrics through cluster bar charts, pro-
viding instant insights into performance impacts (labeled 3 in Figure 4.6).

4. Comparative Analysis Charts: Offers column charts for comparative performance analysis,
aiding in informed decision -making (labeled 4 in Figure 4.6).

5. Utility Functions: Includes essential tools for resetting the analysis and saving design choices,
supporting iterative design processes (labeled 5 in Figure 4.6).

These tools transform complex optimization results into an intuitive format, significantly en-
hancing the design process and decision-making in SLP.
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FIGURE 4.7: Experiment Execution Evaluation Flowchart, depicting the three stages—screen-
based interaction, VR interaction, and post-interaction survey.

4.3.2 Experiment Execution

The experiment evaluated the impact of VR immersion on decision-making in SLP, using a HUD
in a controlled VR simulation (see Figure 4.7).

Participants engaged with VR environments to explore and assess SLP against three key per-
formance indicators: ‘Earthwork Volume’, ‘Earthwork Cost’, and ‘Deforestation Value’, as listed
in Table 4.3. This evaluation was conducted across three different sites presented in random order
to ensure an unbiased assessment (illustrated in Table 4.2).

The experiment consisted of three main stages:

1. ‘Screen-based Interaction’ stage: Participants used a multi-monitor setup with Blender to re-
view terrain and building models, guided by visual cues indicating optimal locations (see
Figure 4.8).

2. ‘VR Interaction’ stage: Using an Oculus Quest 2 headset, participants experienced a deeper
immersion, interacting directly with the site and receiving real-time feedback on perfor-
mance indicators (Figure 4.9).

3. Post-interaction Survey: After interactions, participants completed a detailed survey to col-
lect feedback on their experience and the VR impact on their decision-making. This survey
included questions about their background (see Figure 4.10 4.11), the usability of the VR
interface (see Figure 4.17), and their perceptions of VR influence on their choices (see Fig-
ure 4.18). Both the ‘usability’ and ‘perception’ sections of the survey are posed on a 7-point
Likert scale, which ranges from ‘Strongly Disagree’ (1) to ‘Strongly Agree’ (7). This scale is
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chosen for its ability to capture nuanced responses regarding intuitiveness, ease of use, and
overall satisfaction.

This structured approach aims to systematically evaluate how VR technology influences SLP
decision-making by combining quantitative accuracy analysis with qualitative participant feed-
back. The goal is to ascertain whether VR can enhance decision-making precision and user en-
gagement compared to traditional methods, addressing both empirical and perceptual dimen-
sions of technology adoption in SLP.

FIGURE 4.8: ‘Screen-Based interaction’ stage. Detail of Monitor setup (left) and Blender simulation
(right).

FIGURE 4.9: ‘VR Interaction’ stage. Detail of HUD Oculus Quest 2 (left) and Unity simulation
(right).
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4.3.3 Data Analysis and validation

The final phase of our methodology involves a detailed analysis of the data collected during the
experiments, crucial for validating the effectiveness of the VR system in enhancing SLP outcomes.
It is structured as follows:

1. Data Processing and Analysis: Advanced statistical tools are used to analyze user feedback
and interaction data, helping to identify patterns and insights that elucidate user interactions
with the VR system and their responses to the simulated SLP scenarios.

2. Performance Evaluation: We assess the VR system’s impact on user decision-making by exam-
ining:

• Accuracy Analysis: Evaluates how participant choices align with system-generated opti-
mal solutions, quantifying the improvement in decision-making precision through VR
(See Figure 4.12).

• Participant Perception Survey: Gathers subjective assessments on the VR system’s us-
ability and its influence on decision-making, providing qualitative insights into its ef-
fectiveness (see Figure 4.17 4.18).

These metrics are critical for comparing empirical and perceptual decision-making improve-
ments provided by VR against traditional methods.

3. Results Interpretation and Reporting: Data synthesis draws conclusions on the VR system’s
performance and identifies improvement areas. This analysis confirms the system’s role in
enhancing heuristic and data-driven SLP approaches and explores the broader implications
of VR technologies in architectural and urban planning.

This streamlined analysis approach ensures a comprehensive evaluation of the VR system’s
impact, setting the stage for the Results section to discuss detailed outcomes. The methodology
thus ensures a thorough exploration of VR’s potential to revolutionize decision-making processes
in architectural design and planning, directly addressing our research objectives.
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4.4 Results

This study was carried out at Kyushu University, Fukuoka, Japan. Over 15 days, from June 10 to
25, 2023, 17 participants, including university students and faculty members with diverse profes-
sional backgrounds, engaged in the study. The distribution of participants’ backgrounds and their
experience in SLP is graphically represented in Figures 4.10 and 4.11, respectively. With over 50%
being students from various faculties, approximately 20% having a construction background, and
23.5% reporting previous experience in SLP.

The study’s quantitative findings on the effectiveness of VR in SLP are complemented by in-
sights drawn from participant feedback in the areas of usability and perception, gathered through
a detailed survey and the post-survey interviews and presented as follows.

FIGURE 4.10: Professional Background of participants in the experiment for VR in SLP

FIGURE 4.11: Years of experience in SLP of participants in the experiment for VR in SLP
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a) Accuracy Analysis and Participant Decisions:
Participants were tasked with selecting optimal locations for a new educational building across

three different sites, resulting in 39 distinct sessions. Their selections were compared in two stages:
‘screen-based interaction’ and ‘VR interaction,’ with the accuracy of their choices visualized in
‘accuracy analysis graphs’ (Figure 4.12). These graphs plot participants’ decisions relative to the
system’s top recommendations, providing a spatial and directional analysis of each choice.

In the ‘accuracy analysis graphs’ (Figure 4.12), the center serves as a reference point, represent-
ing the top recommendation provided by the optimization system for each specific site. The co-
ordinates of this center point vary for each site, reflecting the distinct optimal locations suggested
by the system. On the other hand, the participants’ chosen locations are plotted on the graph, pre-
cisely indicating the positions they deemed most suitable for the new educational building within
the boundaries of the site.

By analyzing the ‘accuracy analysis graphs’ (Figure 4.12), the contribution of the VR system
was determined by examining the vector resultant from the center point (top recommendation)
to the participant’s chosen location. A reduction in the vector magnitude in the ‘VR answer’
compared to the ‘screen-based answer’ indicated an improvement percentage in alignment with
the suggested answer given by the system, while an increase represented a decline. This analysis
allowed us to quantify the impact of VR immersion on participants’ decision-making accuracy in
SLP design.

This comparison, that aimed to measure deviation errors between the MOO model’s recom-
mendations and participants’ selections in both interaction stages, illustrated in the ‘Accuracy
improvement’ bar chart (Figure 4.13), revealed an average improvement of 48.3% in accuracy
through VR, despite a broad variability among participants, as highlighted by the standard devia-
tion of 44.1% and depicted in the probability bell graph (Figure 4.14), with evidence of only 4, out
of 39 cases, showing a decline as seen in the ‘Accuracy improvement’ bar chart in Figure 4.13.

b) Complexity and Topographical Impact:
An examination of accuracy improvements across different sites (Figure 4.15) show an im-

provement of 42.1% for site 1, 57.2% for site 2 and 49% for site 3, hinting a correlation between the
topographical complexity of a site and the level of improvement observe.
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FIGURE 4.12: Accuracy scatter graph per site. Illustration of the deviation and improvement of
accuracy between the screen-based stage and the VR stage.
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FIGURE 4.13: Improvement in accuracy among participants with the use of VR simulation com-
pared to the screen-based simulation (Mean = 48.3%, SD =44.1%)

FIGURE 4.14: Probability of accuracy improvement with the use of VR simulation (Mean = 48.3%,
SD =44.1%)
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FIGURE 4.15: Average of Improvement in accuracy per Site with the use of VR simulation com-
pared to the screen-based simulation, with detail of the overall average of the experiment (Mean

= 48.3%, SD =44.1%)

FIGURE 4.16: Average of weight distribution when ranking the importance of the performance
indicators, defined by the participants, per site.
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c) Survey Insights on Usability of VR Simulation:
Survey responses pertaining to the usability of the VR simulation for SLP design yielded an

average score of 5.1, indicating a positive user experience (Questions 6–10 in Figure 4.17). Partici-
pants found the VR simulation relatively easy to use, with a mean score of 5.4 (Q8 in Figure 4.17),
and they felt it allowed for a satisfactory exploration of different design options, scoring 4.7(Q7 in
Figure 4.17). However, the scores suggest that the VR simulation’s ability to enhance visualization
of the SLP (4.9, in Q7 in Figure 4.17) and aid in identifying potential design flaws (5.1, in Q10 in
Figure 4.17) fell short of participant expectations. These insights (Figure 4.17) point to specific
areas within the VR interface that may benefit from targeted improvements to meet user needs
more effectively.

FIGURE 4.17: "User Satisfaction section questions from User Survey of SLP System. (n = 17), 1 -
strongly disagree, 7 - strongly agree
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d) Survey Insights on Perception of VR’s Influence:
The survey also delved into participants’ perceptions of how the VR simulation influenced

their decision-making process in SLP (Questions 11–15 in Figure 4.18). The suggested solutions
presented through VR were deemed valuable, with an average score of 5.6(Q11 in Figure 4.18),
indicating that the system’s recommendations had a meaningful impact on participants’ decisions
(5.6, Q11 in Figure 4.18. The likelihood of participants implementing these VR-suggested solutions
in their final SLP also received a strong positive response, with an average score of 5.6(Q13 in
Figure 4.18). Equally, the propensity to use VR for future SLP tasks was affirmed, scoring 5.6(Q14
in Figure 4.18). Overall, participants rated the effectiveness of the VR simulation in SLP at 5.4(Q15
in Figure 4.18), reinforcing the technology’s potential as a decision-making aid while also signaling
areas for enhancement in conveying data-driven recommendations more effectively.

e) Post-survey insights on Optimization Model:
Post-experiment feedback focused on the optimization model’s weight distribution among

the three performance indicators, initially set at 50%, 30%, and 20% (out of 100%). Despite general
agreement on the importance ranking of these indicators, participants suggested slight adjust-
ments to the weight distribution, as visualized in Figure 4.16.

FIGURE 4.18: User-System Influence Perception section” questions. (n = 17), 1 - strongly disagree,
7 - strongly agree
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4.5 Discussion

In the ensuing discussion, we meticulously examine our findings in light of the initial aims de-
lineated in the introduction, providing a structured exploration of the transformative potential of
VR in SLP.

Enhancing Stakeholder Engagement and Decision - Making through VR
Our investigation into VR’s application in SLP underscores its pivotal role in fostering stake-

holder engagement and enhancing decision-making efficacy. The transition to VR from tradi-
tional screen-based methods has demonstrably narrowed the gap between proposed solutions
and stakeholder selections, affirming VR’s capacity to intuitively convey complex data-driven in-
sights.

The survey data ( Figure 4.17, 4.18) and accuracy analysis ( Figure 4.12) from our study reveal
that stakeholders showed a pronounced inclination towards adopting VR-recommended solu-
tions, reflecting VR’s effectiveness in engaging users and guiding them towards optimal decisions.

This evidence highlights VR’s capacity to integrate user input with data analytics, facilitating
a more inclusive and informed decision-making framework in SLP. Moreover, similar studies,
such as Astaneh et al.(2022)[24], which compared screen-based approaches with VR in resolving
building system conflicts, also reported a greater comprehension of technical issues in immersive
VR compared to screen-based approaches. And while previous research has focused on small
details[35], these results demonstrate that an overview of the whole scale of the project can also
be impacted by the integration of VR techniques in a positive matter and perhaps show a larger
impact that may tilt the preferential adoption of VR when solving SLP.

Bridging Heuristic and Data-Driven Optimization with VR
Our findings illuminate VR’s capacity to render complex datasets into intuitive, spatial expe-

riences, thereby enabling stakeholders to make informed decisions grounded in empirical data
without relinquishing the intuitive insights gained from heuristic approaches. This merger not
only enhances the decision-making process but also democratizes access to sophisticated data an-
alytics, making them accessible and actionable for all project participants.

Evidence from our study suggests that VR’s immersive environment fosters a more collabo-
rative and interactive review process(refer to Figure 4.14). Stakeholders can virtually navigate
through site layouts, assess potential impacts, and make adjustments in real-time, significantly re-
ducing the gap between theoretical data models and practical, on-the-ground decision-making(see
Figure 4.15). Moreover, this approach has been instrumental in facilitating a more holistic under-
standing of project complexities, thereby streamlining the integration of multifaceted design and
planning considerations.

By leveraging VR, the AEC industry can transcend traditional barriers to data interpretation,
empowering professionals to harness the full spectrum of insights available from both heuristic
experiences and quantitative analysis.

Impact of Real-Time Feedback on SLP Design Decisions
The introduction of real-time feedback through VR has significantly impacted SLP design de-

cisions. Our results illustrate that this immediate feedback mechanism enhances the accuracy of
stakeholder decisions by providing a dynamic and responsive environment for testing and modi-
fying design choices (refer to Figure 4.13). This is quantitatively supported by an observed average
improvement of 48.3% in decision-making accuracy when employing VR, despite the presence of
variability among participants (as indicated by a standard deviation of 44.1%, Figure 4.14). Such
improvement underscores the dynamic nature of VR in providing stakeholders with an interac-
tive platform to evaluate and refine their design choices in real-time, directly impacting the virtual
site’s layout.

Stakeholders could instantly see the implications of their decisions on the virtual site layout,
leading to more informed and confident choices. This process not only reduces the likelihood
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of errors but also accelerates the decision-making cycle, underpinning the vital role of real-time
feedback in optimizing SLP outcomes.

The notable correlation between terrain complexity and the level of decision-making improve-
ment (42.1% for site 1, 57.2% for site 2, and 49% for site 3, Figure 4.15) further highlights the sub-
stantial impact of real-time feedback in navigating and assessing complex site conditions. This
effectiveness of VR in conveying intricate spatial information rapidly and intuitively presents a
compelling case for its broader adoption in SLP practices.

Addressing Variability in User Experience
Notably, our analysis revealed considerable variability in VR interaction outcomes across dif-

ferent users, as indicated by the standard deviation in system improvement metrics (SD = 44.1%,
Figure 4.13). This variability underscores the importance of designing VR interfaces that can be
customized to meet diverse user preferences and proficiency levels, a need further evidenced by
user satisfaction levels (Mean = 4.6, SD = 1.7, Q6 in Figure 4.17). The findings suggest that tailor-
ing VR experiences could significantly mitigate instances of suboptimal interaction, ensuring that
VR’s full potential in enhancing SLP decisions is accessible to all users, regardless of their prior
experience with VR technology.

These individual variations highlight the potential and current limitations of the selected VR
system, emphasizing the need for further refinement of the data visualization interface to enhance
the understanding of system recommendations.

The Role of Terrain Complexity
Our findings underscored terrain complexity as a critical factor influencing the efficacy of VR

in SLP decisions. The accuracy graphs and improvement measurements revealed that users could
more easily identify optimal site layouts in complex terrains, suggesting VR’s visual and inter-
active features are particularly beneficial in navigating and assessing diverse topographical chal-
lenges (see Figure 4.15). The survey responses corroborate this, with participants noting a height-
ened ability to navigate and assess varied topographical features within the VR environment.
This underlines the necessity for VR systems to be adeptly designed to manage such complexity,
thereby improving decision-making accuracy and enhancing the user experience in intricate SLP
scenarios. The integration of advanced data visualization techniques, informed by visual cues
from VR simulations, could further optimize decision-making processes, even in less complex
terrains, by accentuating key differences between potential site layouts.
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4.6 Conclusions, Limitations and Future Work

This paper set out to explore the impact of VR simulations on enhancing the adoption of data-
driven design solutions in SLP. Our focused investigation, grounded in both quantitative and
qualitative analyses with 17 participants, yielded insights into the integration of VR and data
visualization techniques within the SLP design process. The empirical evidence points to a 48.3%
improvement in decision-making accuracy when employing VR simulations, underscoring the
technology’s potential to facilitate a deeper engagement with DBD recommendations.

The research substantiates the hypothesis that VR simulations can significantly reduce de-
viation errors between the optimal SLP design suggested by data-driven models and the choices
made by participants. This finding not only highlights the efficacy of VR in promoting data assim-
ilation but also underscores the critical role of intuitive data visualization in guiding stakeholders
towards informed decisions.

Our study reveals that the effectiveness of VR in SLP extends beyond immersive experience; it
lies in its ability to present data in formats that intuitively align with human cognitive processes.
By doing so, VR serves as a pivotal tool in enhancing the comprehensibility and applicability of
complex data sets, marking a significant step forward in the realm of DBD and beyond.

This work builds on the foundational principles of the Data-Driven Immersive Design Opti-
mization (DIDO) framework, which integrates data-driven methodologies, Multi-Objective Opti-
mization (MOO), and immersive technologies to enhance decision-making in architectural work-
flows. The findings presented here exemplify DIDO’s adaptability, demonstrating how it bridges
the gap between computational precision and stakeholder engagement in the context of SLP. By
leveraging VR as a dynamic platform for interaction with data-driven insights, this research vali-
dates DIDO’s potential to address diverse architectural challenges, reinforcing its value as a trans-
formative tool for modern design practices.

Limitations
While this research offers valuable insights into VR’s role in SLP, caution is needed due to

limitations. The study’s generalizability is constrained by its small, university-affiliated sample
size. Additionally, the experimental design’s focus on contrasting ‘screen-based’ and ‘VR-based’
interactions, without integrating similar data visualization techniques in both stages, might have
influenced the accuracy improvement outcomes.

Variances in VR technology familiarity among participants, coupled with the current techno-
logical limitations in simulating complex environments and the economic feasibility of broad VR
adoption, present challenges. Furthermore, the potential psychological impacts of prolonged VR
use, such as motion sickness or cognitive overload, were not explored.

Future Work
This study’s findings and identified limitations present valuable opportunities for further in-

vestigation. Notably, the insights into user satisfaction and the efficacy of visualization techniques
provide a solid foundation for future inquiries and development.

Future studies can delve into an in-depth examination of user interface enhancements within
VR systems that explore alternative design paradigms that prioritize usability and intuitive nav-
igation, potentially leveraging advancements in user experience (UX) research to inform these
developments. Given the observed variability in user responses, subsequent research could sys-
tematically assess how various presentation styles influence user comprehension and decision
accuracy.

Future works can expand on the specific impact of VR immersion on data visualization tech-
niques, aiming to understand how VR influences the adoption of data-driven design methods by
providing the same interface for both screen-based and VR interactions, facilitating a comprehen-
sive analysis of the effects of VR on data visualization.
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Expanding the scope of VR applications in SLP to include more diverse and complex site con-
ditions could also bring additional insights. Investigating sites with varying levels of topographi-
cal heterogeneity might offer a richer understanding of how VR can be optimized to accommodate
a broader range of design challenges.

Alternatively broadening participant demographics beyond university-affiliated individuals
to include seasoned professionals in the field of urban planning and architecture could enhance
the generalizability of the findings. Such studies could also benefit from incorporating real-world
SLP projects, enhance realism in VR simulations, and evaluate the economic and psychological
aspects of VR implementation in SLP to assess the practical applicability of VR-enhanced method-
ologies.

Lastly, exploring the integration of other forms of Extended reality (ER) like mixed reality (MR)
and augmented reality (AR) technologies in the context of SLP could offer novel insights into the
future of immersive design practices. These technologies could further bridge the gap between
heuristic approaches and data-driven optimization methodologies, offering new dimensions of
interaction and visualization.

Conclusion
The integration of VR into SLP represents a promising avenue for advancing data-driven de-

sign methodologies. VR’s unique ability to transform abstract data into accessible and actionable
insights offers new perspectives on design optimization, bridging computational precision with
human intuition. By building on the principles of the DIDO framework, this research underscores
the potential for immersive visualization technologies to revolutionize the DBD process and en-
hance human-machine collaboration. Future research will continue to refine these techniques, un-
locking VR’s transformative power in architecture and urban planning.
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Chapter 5

Implementation of VR and Computer
Vision-Based Facade Complexity
Analysis

To demonstrate the flexibility and adaptability of the ‘Data-Driven Immersive Design Optimiza-
tion‘ (DIDO) framework, this chapter transitions its application from Site Layout Planning (SLP)
to facade design, specifically through facade complexity analysis. By addressing a distinct yet
complementary aspect of architectural workflows, this shift underscores the DIDO framework’s
ability to tackle diverse challenges in design optimization. This chapter introduces the develop-
ment of a Computational Image Complexity Analysis (CICA) system, which integrates Virtual
Reality (VR) and Computer Vision (CV) technologies to quantify facade complexity, by imple-
menting the DIDO framework process. The goal is to create a robust scoring system that guides
facade design while aligning with user perceptions. Central to this investigation is the question
of whether a VR and CV-based approach can effectively measure facade complexity in a manner
that resonates with stakeholder preferences. In controlled experiments, the CICA system revealed
an average standard deviation of 9% between its complexity scores and participant preferences,
demonstrating both accuracy and reliability in predicting user responses. The findings indicate
a notable preference for moderate complexity in facade designs. Expanding this analysis to ur-
ban streetscapes across five cities further highlighted patterns of facade complexity influenced
by cultural and architectural diversity. These results validate the versatility of the DIDO frame-
work, illustrating how computational precision and immersive visualization tools can bridge the
gap between data-driven insights and stakeholder engagement. Moreover, this chapter advances
architectural design theory by integrating quantitative CV-based metrics with qualitative user
feedback. It highlights how facade complexity, shaped by historical and cultural contexts, can be
assessed to inform sustainable and user-centered urban design. Participants’ preferences for mod-
erate complexity (mean CICA score of 4.05) suggest emerging trends that favor designs balancing
intricacy and simplicity. Contextual factors, such as views and privacy, also play a significant role
in shaping perceptions. By synthesizing these insights, the CICA system acts as a case study
demonstrating the DIDO framework’s validity as an architectural design process. It highlights
DIDO’s potential as a transformative method, capable of enhancing both the aesthetic and func-
tional dimensions of modern architectural workflows.

5.1 Introduction

Recent advancements in Building Information Modeling (BIM) and digital fabrication are trans-
forming architectural practice. These technologies enable architects to design intricate and com-
plex forms, moving beyond the uniformity of barren walls and fully glazed facades that often
dominate contemporary streetscapes. By leveraging these advancements, architects can intro-
duce complexity and detail into their designs, enhancing both the visual and functional aspects
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of buildings, and creating more engaging and dynamic environments that potentially redefine the
relationship between form and function [57].

Understanding facade complexity is crucial, as facades are the most visible part of a building
and significantly impact urban aesthetics and user perception. Designs that balance simplicity and
complexity can create environments that are visually stimulating, functional, and comfortable for
occupants [58]. Additionally, facades contribute to energy efficiency and material optimization,
particularly when combined with advanced technologies like digital fabrication and parametric
design.

However, the pursuit of complexity in architectural design must be balanced with sustainabil-
ity and user satisfaction. Overly complex designs, when not thoughtfully integrated, can quickly
become obsolete, leading to construction waste, a significant contributor to carbon emissions [59].
By optimizing and controlling facade complexity, architects can create visually engaging designs
that are adaptable, long-lasting, and reduce the need for frequent renovations and replacements.

Previous research has explored the mathematical relationships between complexity and aes-
thetic value [60, 61, 62]. Despite these insights, the architectural field has yet to develop frame-
works that leverage these principles for practical design applications, especially considering mod-
ern technological advancements such as digital fabrication and parametric design. These tech-
nologies not only enable the creation of complex forms but, when paired with Data-driven Build-
ing Design (DBD) optimization, support energy efficiency, material reduction, and sustainability.

This study aims to bridge the gap between theory and practice by developing a methodology
to measure facade complexity. The goal is to generate data that enhances DBD through a complex-
ity scoring function, helping to find the optimal balance between simplicity and complexity based
on historical analysis and user preferences. By integrating these insights with modern technolo-
gies, we seek to provide actionable, data-driven recommendations for sustainable architectural
practices.

We hypothesize that by analyzing facade complexity across time, architectural styles, and real-
world urban contexts through a computational model, discernible patterns could emerge. These
trends, derived from the analysis of historical data, can then be compared with real-time user
perceptions collected via a VR experiment and further validated through an urban streetscape
analysis. By aligning modern user preferences, historical patterns, and urban diversity, we aim
to validate the model’s effectiveness in predicting and assessing facade complexity, offering a
comprehensive framework for informed design decisions.

To support this, a comprehensive literature review was conducted, focusing on foundational
theories of complexity and the historical evolution of architectural styles. By identifying key trends
in complexity over time, we can connect these findings with user perception studies to explore
how people today interact with complex facades. Comparing these trends with modern percep-
tions helps determine whether current preferences align with or diverge from historical patterns.
This review established the theoretical basis for developing our methodology, focusing on the
relationship between complexity, aesthetic value, and user satisfaction.

Building upon the conclusions drawn from the literature, the methodology of this study is
structured around three core components: the development of the ‘Complexity Analysis System’
using Virtual Reality (VR) and the Computational Image Complexity Analysis (CICA) system,
supported by Computer Vision (CV) algorithms, both specifically designed for this research; the
‘Experiment Execution,’ aimed at assessing user perceptions of facade complexity; and a rigor-
ous ‘Data Analysis’ phase to validate the system’s effectiveness (see Figure 5.1). Together, these
components create a comprehensive framework for understanding the influence of complexity
on architectural design and user satisfaction, through historical analysis of an image database,
real-time evaluations in virtual environments, and comparative analysis of urban streetscapes.

This study proposes a system to measure and adjust facade complexity, which could be inte-
grated with tools for energy efficiency, material optimization, and environmental comfort. Such an



5.2. Literature review 111

FIGURE 5.1: Methodology Process Flowchart: It highlights the three main components: ‘Com-
plexity Analysis System Development’ (Section 5.3.1), ‘Experiment Execution’ (Section 5.3.2), and
‘Data Analysis and Validation’ (Section 5.3.3). (see Detailed version of this process in Figure 5.5).

approach addresses sustainability challenges while minimizing environmental impact, emphasiz-
ing the importance of balancing complexity with long-term adaptability and user satisfaction in
modern architectural practices. This comprehensive approach aims to enrich our understanding of
facade complexity and its role in the contemporary Architectural, Engineering, and Construction
(AEC) industry.

The development of the CICA system and its integration into these analyses are underpinned
by the Data-Driven Immersive Design Optimization (DIDO) framework. DIDO’s adaptability is
demonstrated through its transition from Site Layout Planning (SLP) to facade complexity analy-
sis, showcasing its ability to address distinct architectural challenges while maintaining computa-
tional precision and stakeholder engagement.

5.2 Literature review

This section delves into the multifaceted nature of architectural complexity, examining its histori-
cal evolution and the theoretical foundations that underpin contemporary architectural practices.
It aims to provide a comprehensive understanding of how complexity influences both design
practices and user experiences. The literature review is organized into two key themes:

• Evolution of Architectural Styles: focusing on the historical transitions between simplicity and
complexity in architecture, highlighting significant shifts across different periods.

• Theoretical Foundations of Architectural Complexity: exploring foundational theories and pre-
vious research surrounding complexity in architecture, offering insights into how these the-
ories inform current design practices.

By linking historical analysis, and complexity theories with user perception studies, this re-
view provides a framework for understanding how past architectural trends in complexity influ-
ence modern user preferences, allowing us to explore whether contemporary design trends align
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FIGURE 5.2: Early timeline. Sequential representation of architectural styles illustrating the shift
between complexity and simplicity. From left to right: Romanesque[a] with its solid and massive
structure; Gothic[b] featuring verticality and lightness; Classicism[c] characterized by geomet-
rical clarity and order; Baroque[d] with dynamic shapes and rich decorations; followed by the

restrained and symmetrical formality of Neo-classicism[e]. (Images edited from source)

with these historical patterns. These insights are crucial for validating the CICA findings by com-
paring empirical data with theoretical perspectives on architectural evolution, thereby confirming
observed patterns of simplicity and complexity.

5.2.1 Evolution of Architectural Styles: Oscillations Between Simplicity and Com-
plexity

Architecture stands as a unique art form, transforming the ordinary into the extraordinary while
fulfilling functional purposes [63]. Its evolution is characterized by the integration of technologies
and information flows, which shape the complexity and functionality of urban environments,
reflecting contemporary societal values and technological advancements [64] From early architec-
tural styles like Romanesque, characterized by robust and simplistic forms, to the Gothic period
with its intricate, skyward designs, shifts in architectural complexity have often mirrored tech-
nological and cultural advancements(see Figure 5.2). Gothic architecture, for example, was made
possible by structural innovations like the pointed arch and flying buttress, allowing for taller,
more ornate buildings that resonated with the spiritual aspirations of the era [65].

The Renaissance heralded a revival of Greek and Roman ideals, driven by humanism and the
desire to return to perceived cultural greatness, with a focus on symmetry and proportion. The
Baroque period of the 16th century introduced lavish ornamentation and dynamic designs, reflect-
ing the opulence and power of the ruling classes [66]. This move toward complexity was largely
influenced by societal shifts towards theatricality and grandeur in both religious and political ar-
chitecture.

The Neoclassical style, dominant in the 18th and 19th centuries, emphasized symmetry and
classical principles, while integrating new technologies like reinforced concrete, which allowed for
larger and more functional designs without sacrificing aesthetic form [67]. This balance between
the old and the new was a response to Enlightenment ideals of order and rationality.

At the turn of the 20th century, Art Nouveau and Art Deco embraced nature and new ma-
terials, with Art Nouveau focusing on organic forms and Art Deco celebrating the technological
advancements of the machine age [68] (see Figure 5.3). These movements marked a departure
from Neoclassical restraint, as societies began to celebrate the possibilities of industrialization and
mass production.

The 20th century saw the rise of Modern Architecture, which advocated for ‘form follows func-
tion’ and minimal ornamentation [57], reflecting the need for functional, cost-effective buildings
during the industrial age. Figures like Adolf Loos and Le Corbusier championed minimalism,
rejecting excessive ornamentation in favor of efficiency, influencing a generation of architects to
prioritize structural honesty and simplicity [69]. However, this movement often led to uniform
urban landscapes that lacked the cultural richness and diversity of their predecessors. In response
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FIGURE 5.3: Transitional timeline. Sequential representation of architectural styles illustrating the
shift between complexity and simplicity. From left to right: Art Nouveau[a] with its fluid lines
and natural forms; Art Deco[b], marked by bold geometry and opulence; Modernism’s[c] pursuit
of stripped-back functionality; culminating in Postmodernism’s[d] revival of historical styles and

complexity (Images edited from source)

FIGURE 5.4: Contemporary timeline. Sequential representation of architectural styles illustrating
the shift between complexity and simplicity. Era of exploration and innovation. From left to right:
Deconstructivism[a], characterized by fragmentation and non-linear design; Neofuturism[b], cap-
turing movement and technology-infused aesthetics; High-tech modernism[c], focusing on visi-
ble structural elements and technological expression; Parametricism[d], with its algorithm-based
complex forms; and Pragmatic utopianism[e], blending idealistic designs with practical applica-

tions (Images edited from source)

to Modernism’s perceived limitations, the late 1960s saw the emergence of Postmodernism, spear-
headed by thinkers like Robert Venturi. Postmodernism critiqued the stark uniformity of Mod-
ernism and reintroduced complexity, ornament, and historical references, advocating for build-
ings that engage more deeply with their cultural and historical contexts [70]. This shift was driven
by a desire to create architecture that was not only functional but also meaningful and contextually
rich.

The late 20th and early 21st centuries have seen a resurgence in creativity and expression,
with architects utilizing digital technologies to explore new realms of complexity and ornamen-
tation [71] (see Figure 5.4). The fusion of digital and physical design processes signals a shift
towards the democratization of complex, parametric designs, indicative of a contemporary pe-
riod that values ornamentation, functionality, and human comfort [72]. This evolving trajectory of
architecture suggests a future where design is deeply intertwined with societal values and tech-
nological possibilities.

Facades and ornamentation, in this context, become critical in conveying these narratives,
bridging the gap between the aesthetic and the symbolic, and establishing the interface between
buildings and their environments, influencing both aesthetic perception and functionality. As
buildings became more energy-conscious, facade design also shifted to balance aesthetic appeal
with environmental performance, such as optimizing natural light and improving energy effi-
ciency while reflecting the building’s identity [73]. The evolution of facade design and ornamen-
tation not only reflect societal transformations, technological progress, and shifts in artistic sen-
sibilities, but also highlight the changing cultural values toward sustainability and user comfort,
each impacting how communities relate to their built environment.
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In conclusion, the historical context of architectural complexity reveals a rich tapestry of styles
and philosophies, from ancient grandiosity to modern minimalism and contemporary innova-
tion. These shifts reflect the ongoing dialogue between simplicity and complexity, tradition and
innovation, and functionality and aesthetics, shaping the built environment in ways that are both
imaginative and responsive to societal needs.

5.2.2 Theoretical Foundations of Architectural Complexity

Previous research has extensively explored the impact of complexity in architectural design, show-
ing that elements such as chaotic patterns and fractal geometry significantly influence user per-
ceptions and aesthetic preferences [60]. Contemporary studies suggest that balanced complexity
can create environments that are both stimulating and comfortable [62]. However, the architec-
tural field has yet to fully develop frameworks that leverage these principles for practical design
applications, particularly with modern technological advancements.

A foundational theoretical contribution to understanding architectural complexity is George
David Birkhoff’s theory of aesthetic measure, introduced in 1933. Birkhoff proposed that aesthetic
value could be quantified through a ratio of order to complexity, expressed as M = O/C (where M
is the aesthetic measure, O is order, and C is complexity)[61].

This balance is central to contemporary efforts to integrate complexity into architectural de-
sign, enhancing both user satisfaction and sustainability. This theory offered architects a novel
way to think about design as a balance between simplicity and ornamentation, reflecting the need
for structure in increasingly complex designs. Although this framework has limitations in its ap-
plicability to modern technological contexts, it remains a cornerstone for evaluating the aesthetic
appeal of architectural forms and guiding the integration of complexity into functional design[74].

Alexander et al. ’s concept of ‘pattern language,’ introduced in the 1970s, emphasizes the im-
portance of recurring design patterns that resonate fundamentally with human users [75]. This
theory emerged in response to the chaotic urban developments of the mid-20th century, seeking to
find a harmonious balance in the built environment. By focusing on universal patterns that align
with human perception, Alexander laid the groundwork for biophilic design principles, which
emphasize the integration of natural elements into architectural spaces to enhance human well-
being [76].

Browning et al. (2014) extended this research in facade design by emphasizing the importance
of balancing complexity and order in architectural design and demonstrating the importance of
fractal geometries in creating environments that are visually engaging yet stress-reducing. Their
studies found that specific fractal dimensions (D=1.3-1.8), found in nature, art, and architecture,
are preferred by users for their ability to convey order and intrigue [58]. However, they caution
against the extremes of non-fractal or overly complex designs, which can induce stress or discom-
fort. This work offers practical guidance for architects seeking to incorporate complexity in a way
that promotes psychological and cognitive well-being.

A more recent method by Lee et al. (2023) uses fractal dimension analysis to measure the visual
complexity of architectural facades, which is crucial for assessing aesthetic character and predict-
ing attractiveness. They utilized the differential box counting method, which is better suited for
handling greyscale images, to calculate fractal dimensions based on grey-level variations. These
fractal dimension values are then used to predict human visual preferences, providing a reliable
measure of visual complexity in architectural design [77]. Their method provides an objective,
computational approach to understanding the aesthetic impact of complex forms, particularly
useful in the context of digital fabrication and parametric design. Lee et al. concluded that com-
putational measures of visual complexity (fractal dimensions) and attractive strength (visual at-
tention simulation) can effectively quantify the visual attractiveness of architectural facades. Their
findings indicate that these measures can distinguish different architectural styles, despite some
limitations. Importantly, they found that visual complexity (D) and attractive strength (S) are not



5.2. Literature review 115

mathematically correlated, suggesting that engagement and appeal may be independent quali-
ties. By predicting human visual preferences, Lee’s work offers architects a tool for refining fa-
cade complexity in real-time design scenarios. Though their proposed model for predicting visual
attractiveness, A = D × S, will require further validation [77].

Contemporary research continues to build on these theoretical foundations, exploring how
advanced technologies like BIM and computational design methods can be used to create com-
plex designs that are not only aesthetically but functionally effective,optimized for performance
and sustainability [57]. While these tools allow architects to push boundaries, the principles estab-
lished by earlier theories remain relevant in guiding the balance between complexity and usability.

In summary, the evolution of architectural complexity reflects an ongoing interplay between
cultural, technological, and theoretical influences. From ancient grandiosity to modern minimal-
ism and contemporary innovation, architects have continually sought to balance order and com-
plexity to create meaningful and engaging built environments.

Theoretical frameworks such as Birkhoff’s aesthetic measure, Alexander’s pattern language,
and Lee et al.’s fractal dimension analysis provide valuable insights into how complexity can
be harnessed to enhance architectural design. However, these theories must now be adapted to
incorporate the dynamic capabilities of modern tools, offering architects the ability to interact with
complexity in real-time.

Despite these advancements, a notable gap remains in translating theoretical insights into in-
teractive design tools that respond dynamically to user feedback. Current methodologies often
lack the ability to provide real-time evaluations of facade complexity, limiting their relevance in
contemporary, fast-paced design environments. Real-time interaction enables architects and de-
signers to assess complexity dynamically, making adjustments during the design process rather
than relying solely on post-design evaluations [78]. This capability is particularly valuable in
environments where client preferences and functional requirements frequently shift. Immediate
feedback on the impact of complexity on both aesthetic and functional outcomes leads to more
informed decision-making and optimized designs.

While tools like Shared Realities [78] demonstrated the potential of integrating real-time feed-
back into the design process, they remain limited in scope. These tools often fall short of fully
integrating environmental factors or the full complexity of design feedback into decision-making
workflows, highlighting the need for more comprehensive, real-time responsive systems.

My research aims to bridge this gap by providing a more integrated, real-time approach to
facade complexity analysis. By developing a comprehensive system that combines immersive VR
experiences with CV algorithms embedded in the CICA system this study offers a solution that
allows architects to quantify facade complexity in an interactive and dynamic manner. Unlike
existing tools, this system not only evaluates complexity but also incorporates real-time user feed-
back, enabling designers to optimize complexity levels while accounting for both aesthetic and
functional considerations. In doing so, this research pushes the boundaries of interactive design
by offering architects the ability to make informed, data-driven decisions that respond to shifting
user preferences and contemporary architectural practices.
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5.3 Methodology

The methodology of this study, comprises three main components (subdivided into 5 key steps,
as illustrated in Figure 5.1):

1. Complexity Analysis System Development: Outlined in Section 5.3.1 (Figure 5.1, element 3.1),
this component integrates a VR framework with the CICA system. The CICA system uses
CV algorithms to quantitatively assess facade design complexity, applied to both contempo-
rary 3D-modeled facades and historical analysis. The VR component allows real-time par-
ticipant interaction with facade variations, combining 3D models and CICA analysis. Key
elements include the 3D modeling process (Section 5.3.1, Figure 5.6), the CICA system (Sec-
tion 5.3.1, Figure 5.7), and VR integration (Section 5.3.1, Figure 5.7).

2. Experiment Execution: Detailed in Section 5.3.2 (Figure 5.1, element 3.2), this phase involves
participants engaging with the ‘Complexity Analysis’ system through three stages: ‘VR In-
teraction’ Stage, ‘Screen-Based Ranking’ Stage, and ‘Post-Experiment Survey’. This process
combines quantitative CICA scores and qualitative user feedback.

3. Data Analysis and Validation: Detailed in Section 5.3.3 (Figure 5.1, element 3.3), this final
component analyzes both CICA scores and experiment data to validate the system’s effec-
tiveness in measuring complexity and user preferences. Statistical tools are used to evaluate
the alignment between CICA scores and user perceptions. The system’s accuracy and its ap-
plication to historical and contemporary facades are assessed through detailed complexity
analysis, providing insights for architectural design practices.

With the methodology outlined, we now move forward to a comprehensive breakdown of
each component.

5.3.1 Complexity Analysis System Development

The ‘Complexity Analysis’ system addresses the challenge of quantifying complexity in architec-
tural facade design, playing a pivotal role in our study. To achieve this, we developed a process
that integrates immersive VR experiences with CV algorithms embedded in the CICA system (see
Figure 5.1, element 3.1). This approach enables real-time interaction with various facade designs
while providing complexity data, offering comprehensive insights into the aesthetic and practical
implications of architectural complexity.

The system comprises three integral components: ‘3D Modeling and Environment Setup’, ‘CICA
System’, and ‘VR Integration and Simulation Tools’. These components are illustrated in Figure 5.1
(labeled 1 to 3) and are detailed in the following sections.
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FIGURE 5.5: Detailed Unified Methodology Process Flowchart: illustrating the sequential steps of
this study’s approach framework designed to assess the quantification of complexity in building
design and the perception of occupants in complex environemnts. It showcases the 3 main com-
ponents of the methodology ‘Complexity Analysis System Development’(detailed in Section 5.3.1,
‘Experiment Execution’ (detailed in Section 5.3.2), and ‘Data Analysis and Validadtion’ (detailed

in Section 5.3.3).
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FIGURE 5.6: 3D Modeling Flowchart: This flowchart shows the process of creating a 3D model
of the Architectural Environment Research Building and its facade variations in Blender (v3.6)
(Section 5.3.1). The process covers geolocation, terrain modeling, and virtual replication of both
exterior and interior (a-d). Facade complexity is generated through parametric operations applied
to three patterns—Hishi (g), Tortoise (h), and Asanoha (i)—resulting in 10 variations per pattern
(j-l), showing increasing complexity. These models are integrated into the VR environment and the
CICA system for complexity assessment (Detailed record of all variations in Tables 5.1 and 5.2).

3D Modeling and Environment setup

To achieve realistic VR experiences for assessing user responses to facade complexity, a build-
ing site and facade variations were 3D modeled using Blender (v3.6). Blender was selected for
its advanced rendering capabilities, support for parametric and generative design, and seamless
Python integration, necessary for integrating it with the CICA and VR components of the ‘Com-
plexity Analysis’ system.

The ‘building site’ used for this study is a detailed virtual replica of the Architectural Envi-
ronment Research Building at Kyushu University, Fukuoka-Japan, including both exterior and
interior elements of the existing building (Figure 5.6, elements [a] to [d]). This building was cho-
sen because it is the location where this study takes place, contributing significantly to the sense
of immersion for participants during the experiment.

To test the response of occupants to various degrees of complexity, ten facade variations across
three different patterns were 3D modeled and strategically placed over the large windows of the
‘building site’ for maximum visual impact (see Figure 5.6, element [e] to [j]).

These patterns were selected to reflect a range of design approaches commonly seen in con-
temporary architecture—from minimalist to highly intricate facades reminiscent of Parametricism
and Pragmatic Utopianism— representing current trends in modularity, geometric intricacy, and
parametric design [57]. This ensures that the study captures a broad spectrum of facade styles
relevant to contemporary architectural practices (see Figure 5.4 [d-e]).

The complexity of each facade variation was systematically increased by applying 3D model-
ing operations, from simple subdivisions to more advanced modifications such as rotations and
decimation. These operations simulate different levels of geometric intricacy that are reflective of
real-world facade design challenges, such as material usage, constructability, and cost (Figure 5.6
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(element [j] to [l])and further detailed in Tables 5.1 and 5.2). Facades with higher mesh complex-
ity represent designs that may demand more resources and construction time, making this aspect
crucial for evaluating both aesthetic appeal and practical feasibility. By varying the complexity
levels, the study provides insight into how architectural complexity influences user perception
and decision-making in facade design.

Each facade variation is rendered and labeled for use in the CICA complexity analysis, ensur-
ing control over complexity variability. This setup, provides a comprehensive environment for
analyzing the accuracy of the ‘Complexity Analysis’ system and investigating user perception.
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TABLE 5.1: Patterns variations for the First five levels of complexity

Description Pattern 1 Pattern 2 Pattern 3

Pattern Name Hishi Pattern Tortoise shells Asanoha Pattern

Base Module

Mesh complexity
Level

Pattern 1 Pattern 2 Pattern 3

Level 1

Level 2

Level 3

Level 4

Level 5
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TABLE 5.2: Patterns variations for the last five levels of complexity

Description Pattern 1 Pattern 2 Pattern 3

Pattern Name Hishi Pattern Tortoise shells Asanoha Pattern

Base Module

Mesh complexity
Level

Pattern 1 Pattern 2 Pattern 3

Level 6

Level 7

Level 8

Level 9

Level 10
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FIGURE 5.7: CICA System and VR Integration Flowchart illustrating the CICA process (element 2)
and its integration into the Virtual Reality (VR) system (element 3). The CICA system, applied to
3D-modeled facades (a) and historical architectural styles (b), generates complexity scores through
image processing steps: noise reduction (1), edge detection (2), and contour count analysis (3). The
VR integration (Section 5.3.1) showcases 3D model views used in the immersive VR environment,
including exterior (c), interior (d), and interface (e), demonstrating the combined functionality of

CICA and VR for facade complexity assessment. Variations are detailed in Tables 5.1 and 5.2.

CICA System

The literature review in Section 5.2 revealed a cyclical nature in architectural evolution, alternating
between complex and simple styles. Our initial goal for the CICA system is to empirically validate
these trends by developing a quantifiable scoring system capable of evaluating the complexity of
historical and 3D-modeled building facades (Figure 5.1, element 2).

Implemented as a Python script, the CICA system leverages Python’s compatibility with Blender
and its robust CV libraries, facilitating the integration of 3D models with complexity analysis
scripts. Inspired by Venturi et al.’s perspective on complexity [79], the CICA system measures
complexity by the mental processing time required for a building’s elements.

It uses two primary metrics: edge density and contour count, selected for their relevance to
human vision’s edge and object contour detection [37].

Edge Density: Utilizing the Canny Edge Detection algorithm [80], this metric focuses on edge
presence and density, defining architectural boundaries (Figure 5.7, element [(2)]).
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TABLE 5.3: Table of Metrics and Weights for Complexity Scoring: Outlines the key criteria and
corresponding weights utilized in the CICA system to determine the ‘Complexity Score’ of archi-
tectural facades, detailing the systematic approach to quantifying facade intricacy through edge
density and contour count metrics, chosen for the critical role these metrics play in human visual

perception [37]. Please refer to Section 5.3.1 for further details.

Table of Metrics and Weights for CICA Complexity Scoring on Architectural Facades

Complexity met-
ric

N Metric name/description Quantitative method Weights

Edge Density 1 Edge detection using Canny
Edge Detection algorithm for
highlighting the most relevant
features of a building.

Measured by dividing the num-
ber of non-zero (edge) pixels in
the edges image by the total
number of pixels in the image.

8

Contour count 2 Employs contour approxima-
tion algorithm for shape anal-
ysis to determine intricacy of
edges.

Measure by counting the num-
ber of segments in an edge.

2

TOTAL 10

Contour Count: Using contour approximation techniques [81], this metric assesses shape intri-
cacies outlined by edges (Figure 5.7, element [(3)]).

Both metrics are essential for shaping perceived complexity and are computationally efficient
for large datasets [37].

Given that both edge density and contour count metrics play critical roles in shaping perceived
complexity, determining how to balance these two factors is key to assessing facade complexity.
However, these metrics often have conflicting influences on the final design. For instance, in-
creasing edge density might improve the clarity of structural boundaries but could overwhelm
the overall aesthetic if not paired with appropriate contour complexity. To handle this trade-off,
we used a Multi-Objective Optimization (MOO) approach.

The MOO algorithm allows us to balance these competing metrics, optimizing the trade-off be-
tween edge density and contour count. Research shows that the human eye prioritizes edge detec-
tion over contour recognition when processing visual stimuli [37]. Edge detection is more directly
related to the perception of form and structure, providing a clearer representation of boundaries
and spatial relationships, whereas contour count provides more nuanced, secondary information
regarding shape intricacies. Given this, we assigned a higher weight (8) to edge density and a
lower weight (2) to contour count, reflecting their relative importance in visual complexity per-
ception [37] (see Table 5.3). To implement this, we applied the Analytic Hierarchy Process (AHP),
a robust Multi-Criteria Decision-Making (MCDM) technique for detailed analysis and prioritiza-
tion based on expert input and quantitative data [21]. AHP ensures that the weights reflect the
significance of both edge density and contour count in terms of human perception and aesthetic
appeal.

By assigning these weights and integrating MOO within the CICA system, we ensure that
the complexity score reflects an optimal balance of the metrics, thereby offering a more holistic
and nuanced measure of facade complexity. This optimization aligns with the study’s goals of
balancing aesthetic and functional considerations while accounting for human perception.

The MOO algorithm is represented in the ‘Complexity Score’ function f1(x), defined in Equa-
tion 5.1, which normalizes the metrics and combines them into a ‘Unified Complexity Score’:

f1(x) = round

(
n

∑
i=1

wi · ai, 2

)
= complexity_score (5.1)
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where n is the number of performance indicators, wi is the weight of the i-th element, and
ai is the normalized score for the i-th metric (e.g., ‘Edge Density’ and ‘Contour Count’). This
weighted sum provides the overall complexity score or ‘CICA score’ a quantifiable measure of
facade complexity, crucial for the CICA system.

The CICA system has three main applications:

• Historical Analysis: Evaluates over 180 buildings from various architectural eras, creating
a scatter graph of complexity scores organized by year and architecture style, showing
complexity trends over time (Figure 5.7[b]). Results are presented in Section 5.4.1. Build-
ings were selected based on their significance in architectural history, with priority given
to iconic or influential structures frequently cited in architectural discourse. Selection crite-
ria included high-resolution images of the main facade, with minimal visual obstructions,
captured from a frontal angle for consistency. Images were chosen under optimal lighting
conditions to avoid distortion of architectural features. Only well-documented and widely
recognized buildings were included to ensure the dataset’s representativeness. Each build-
ing was represented by a single image to standardize the analysis, as multiple perspectives
could introduce variability in complexity scores.

• 3D-Modeled Facades Analysis: Analyzes 10 facade variations across 3 patterns of 3D-modeled
facades with varying complexity for the VR experiment (Figure 5.7[a]). The CICA scores
are used for comparison with user perceptions (Figure 5.8). Results, are presented in Sec-
tion 5.4.2.

• Urban Streetscape Analysis: Evaluates 50 building facades across major streets in 5 cities—Barcelona,
Budapest, Florence, Fukuoka, and Paris—to validate the CICA complexity score in real-
world contexts. This application highlights the system’s sensitivity to cultural and architec-
tural diversity by analyzing consecutive facades along streetscapes. Selection criteria priori-
tized buildings with clear visibility and minimal obstructions.For each facade, CICA scores
are calculated by averaging results from three perspectives—left, front, and right—captured
using Google Earth imagery to ensure consistency. Results, presented in Section 5.4.4, em-
phasize how facade complexity reflects urban identity and cultural influences.

Through these applications, the CICA system aims to validate architectural complexity trends
empirically, prepare for experiments assessing user perceptions of facade complexity, and demon-
strate its robustness across historical, experimental, and real-world urban contexts.
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FIGURE 5.8: Scatter Graph Analysis of 3D Modeled Facade Complexity: This graph presents the
CICA scores for ten variations of three distinct patterns created in Blender, with a trendline indicat-
ing the range of complexity levels among the facade designs, illustrating the nuanced relationship

between design intricacy and CICA scores.
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FIGURE 5.9: VR simulations of the building’s exterior (left) and interior (right) as experienced dur-
ing the facade complexity analysis, illustrating the transitions through various facade variations

across all three patterns.

VR integration and simulation tools

The goal of this component is to integrate the virtual environment from the ‘3D Modeling and
Environment Setup’ with data from the CICA complexity analysis (Figure 5.9). This module fea-
tures an immersive ‘VR simulation’ and a ‘data visualization interface’ that allows users to explore
and interact with the building’s interior and exterior, visualize its context, and manipulate facade
variations (Figure 5.7, element 3).

The ‘VR simulation,’ was developed using Unity (v.2022.2.21f1) and accessible through a Head-
Mounted Display (HMD), Oculus Quest 2. This software was chosen for its robust VR support,
pre-built templates, and seamless integration with Python and C#, enhancing simulation interac-
tivity and data handling.

The VR data visualization interface provides real-time feedback on facade variations, facili-
tating data collection on user response to varying levels of facade complexity. Structured into
five key sections—Viewpoint Navigation, Facade Variation Slider, Facade Render Preview, CICA
Scores Comparative Analysis Charts, and Utility Functionss (Figure 5.7, [e])—it enhances usability
and interpretability, thereby optimizing the facade selection process.
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FIGURE 5.10: ‘Experiment Execution’ and ‘Data Analysis’ Flowchart: This flowchart illustrates
the experiment design and transition to the ‘Data Analysis and Validation’ phase. It outlines the
VR Interaction Stage (I), Screen-Based Ranking Stage (II), and Post-Experiment Survey (III) (Sec-
tion 5.3.2). The ‘Data-Statistical Analysis and Evaluation’ phase highlights historical complexity
analysis across styles and statistical analysis of experiment data, leading to the validation of the

Complexity Analysis system (Section 5.3.3).

5.3.2 Experiment Execution

The experiment assesses participants’ reactions to complex facade variations in VR, using CICA-
derived complexity data (element 3.2 in Figure 5.10) and gathers their impression regarding eval-
uating facade complexity. The participant pool consisted of 26 individuals, comprising 13 males
and 13 females, aged between 18 and 31. A majority were university students, with varied back-
grounds including construction and facade design. These demographic factors are revisited in the
discussion and limitations sections to assess generalizability.

The experiment consists of three stages:

1. ‘VR interaction’ stage: as illustrated in the flowchart in Figure 5.10 (element I), participants
engage with a VR simulation of the actual laboratory and building where the experiment
takes place (see Figure 5.7, element 3). They select preferred facade variations from three
patterns, each with ten complexity-labeled variations and data visualization of their CICA
complexity score, considering the scenario as their permanent workplace or study location.
Patterns’ variations are presented in randomized order to ensure unbiased results, accessible
through the VR interface.

2. ‘Screen-based Ranking’ Stage: As depicted in the flowchart in Figure 5.10 (element II), par-
ticipants rank the same 10 facade variations based on their perception of complexity via a
screen-based interface without CICA system data. This is conducted for each of the three
patterns to refine the CICA system’s complexity analysis capabilities.

3. ‘Post-interaction’ Survey: As shown in the flowchart in Figure 5.10 (element III), after complet-
ing the first two stages, participants answer a 15-question survey divided into Participant
Background (Figures 5.12 5.13) and Complexity Perception sections(Figures 5.18 5.19), ex-
ploring qualitative perceptions of complexity and the factors influencing their choices. This
section uses a 7-point Likert scale for capturing detailed responses.

The combined analysis of these stages provides a comprehensive understanding of how users
engage with and perceive facade complexity. By merging quantitative and qualitative findings,
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we contribute to the discourse on architectural complexity and its impact on contemporary design
and construction.

5.3.3 Data Analysis and Validation

The final phase of our methodology focuses on analyzing the data from the implementation of
the CICA system to images of historical buildings, to the study the data collected during the
experiments, and finally to the comparative analysis of urban streetscapes, aiming to validate the
effectiveness of the ‘Complexity Analysis’ system in quantifying facade complexity and aligning
it with user perceptions (see Figure 5.10, element 3.3).

• Data Processing and Analysis: We assess CICA scores from historical buildings to identify
patterns across different architectural styles, analyze experiment data using statistical tools
to understand perceptions of complexity, and evaluate the scores derived from the urban
streetscape analysis to validate the system’s adaptability to real-world contexts.

• Performance Evaluation: The efficacy of the ‘Complexity Analysis’ system and the CICA score
is assessed through:

– Accuracy Analysis: Evaluating the alignment between CICA scores and user percep-
tions.

– Participant Perception: Analyzing user feedback to gain insights into the impact of
complex facades.

– Urban Context Sensitivity: Examining how CICA scores reflect cultural and architec-
tural diversity in urban streetscapes.

• Results Interpretation and Reporting: Synthesizing data from historical analysis, user experi-
ments, and urban streetscapes to confirm the validity of the CICA system and its applicabil-
ity across varied architectural contexts.

While the primary focus of this phase is on validating the CICA system’s ability to quantify
complexity, the combined analysis of historical architectural trends and real-time user perceptions
provides potential insights into future construction trends. The inclusion of the urban streetscape
analysis strengthens the validation process by extending the CICA system’s application beyond
controlled experimental settings to real-world environments. By comparing historical architec-
tural trends, user preferences, and urban streetscape patterns, the CICA system provides a robust
framework for understanding and predicting future design shifts.

Additionally, through the system’s ability to conduct accuracy analysis, architects could better
identify the optimal range of complexity that appeals to users, allowing for the design of facades
that align with predicted trends while balancing aesthetic interest and functional sustainability.

Over time, as more data is gathered, the CICA system’s predictive capabilities could offer ar-
chitects valuable foresight into emerging trends in facade design that might become prominent in
future construction practices. This structured approach ensures a thorough evaluation, providing
insights into the relationship between facade complexity and user perception.
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5.4 Results and Discussion

Building upon the methodologies outlined in the previous sections, this section presents findings
from three primary sources: the application of the CICA system to a historical dataset of archi-
tectural images across various epochs and styles, data collected from the experiment designed
to gauge user responses to facade complexity, and a comparative analysis of facade complexity
across urban streetscapes in five cities. Organized according to the goals set forth in the introduc-
tion, this section elucidates the evolving relationship between users and architectural complexity,
providing valuable insights for future construction practices and the quantification of complexity
in facade design.

5.4.1 Assessment and Implications of Facade Complexity across Architectural Eras
using the CICA System and insights from literature review

While defining architectural complexity is inherently challenging due to its interconnection with
various socio-economic and cultural factors influencing urban development, the CICA system
was developed on the premise that analyzing a vast and diverse dataset of architectural works
from different centuries could reveal patterns validating our hypothesis. This hypothesis, estab-
lished on the literature review (Section 5.2.1), suggests a cyclical nature in architecture—an ongo-
ing dialogue between simplicity and complexity—with a trend towards increased complexity in
contemporary architecture. This trend is evidenced by recent architectural styles , influenced by
technological advancements, computer-aided design tools, and a growing focus on sustainability.

CICA System for Quantitative Assessment
To validate this trend objectively, we conducted a quantitative analysis using the CICA sys-

tem. This analysis utilized images of 177 iconic buildings across 14 architectural styles (samples
illustrated in Figures 5.2 to 5.4). As outlined in the methodology (section 5.3.1), each building was
represented by a single high-resolution, unobstructed frontal image of the main facade to ensure
consistency. The CICA system calculated the complexity scores for all buildings and plotted the
graph in just 4.54 seconds, demonstrating its efficiency.

The results are depicted in the scatter graph ‘Historical Analysis of Architectural Complexity
Trends Over Time’ in Figure 5.11. A 9th-degree polynomial trendline, best accommodating the
intricate data patterns, revealed a distinctive undulating curve. This pattern validates our hy-
pothesis of continual oscillation between architectural complexity and simplicity, aligning with
the paradigmatic shifts discussed in the Literature Review (Section 5.2.1) and showcasing a trend
towards complexity in the post-modern era.

Periods of Rapid Change:
The trendline in the ‘Historical Analysis of Architectural Complexity Trends Over Time’ Chart

(Figure 5.11) reveals dynamic oscillations between periods of ornamental richness and minimalist
restraint, illustrating the unique interpretation of architectural complexity in each era. Notably, a
shift is observed from the Gothic to the Renaissance period, where the trendline peaks with the
ornate and vertical architecture of the Gothic era [65] and descends as the Renaissance favors har-
mony, proportion, and classical simplicity [66]. Additionally, the late 20th century shows spikes
in complexity scores, indicating significant shifts in architectural trends associated with the tran-
sition from the minimalist aesthetics of Modernism to the more eclectic and elaborate designs of
Postmodernism. Furthermore, our analysis of the last 50 years of data reveal an upward trajectory
in architectural complexity, marking a departure from the uniformity of barren walls and fully
glazed facades.
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FIGURE 5.11: Scatter Graph of Architectural Complexity Over Time: This graph presents the CICA
scores for 177 buildings, categorized by historical timeline and architectural style. An overlaid
trendline highlights the current evolving trend towards increased complexity in architectural de-

sign as analyzed by the CICA system.
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Outliers:
Certain buildings stand out with exceptionally high or low CICA scores, warranting individ-

ual examination. Our investigation into these extremes, as evidenced by the top 5 highest and
bottom 5 lowest CICA scores (Table 5.4), reveals significant outliers. Westminster Abbey, exempli-
fying Gothic architecture, tops the chart with the highest complexity score of 7.81, underscoring
the intricate design characteristic of the Gothic period [65]. However, buildings like the Seattle
Central Library, ranked second with a score of 7.78, highlight certain limitations in the CICA sys-
tem’s current approach. Despite the library’s relatively simplistic volumetric form compared to
Gothic cathedrals, its grid-like facade generated a high number of edges and contours, which the
algorithm interpreted as markers of complexity. This suggests that the system, which currently
emphasizes edge density and contour count, may overestimate complexity in buildings with reg-
ular, repetitive patterns, as it does not differentiate between regular and irregular geometries.
Conversely, the Luce Memorial Chapel in Taichung City, Taiwan, built in 1963, represents the
minimalist ethos of the time with the lowest complexity score of 0.66. These buildings illustrate
the broad spectrum of architectural styles and associated complexity over time, serving as critical
case studies for understanding exceptional complexity or simplicity in design.

TABLE 5.4: Table of comparative CICA Historical Analysis results: Top 5 Highest and Bottom 5
Lowest CICA Complexity Scores from Historical Analysis, Including Year of Construction and

Architectural Style.

Buildings with the Top 5 Highest CICA Complexity Scores
Rank Building Name Year of Construction Architectural Style CICA Score

1 Westminster Abbey 1245 Gothic 7.81
2 Seattle Central Library 2004 Deconstructivism 7.78
3 Reims Kathedrale 1275 Gothic 7.51
4 California Academy of Sciences 2008 Hightech Modernism 7.45
5 Rome Trevi Fountain 1732 Baroque 7.39

Buildings with the Bottom 5 Lowest CICA Complexity Scores
Rank Building Name Year of Construction Architectural Style CICA Score

1 Luce Memorial Chapel, Taichung
City, Taiwan

1963 Modernism 0.66

2 Imperial War Museum North 2002 Deconstructivism 0.79
3 St. Mary’s Cathedral, Tokyo 1964 Modernism 1.07
4 Disney Concert Hall 2003 Deconstructivism 1.13
5 Cathedral of Brasilia in Brazil 1970 Modernism 1.22
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5.4.2 Quantitative Analysis on Users Response to Complex Facades

The experiment was carried out at Kyushu University, Fukuoka, Japan. The study took place in
two timeframes, from October 12 to October 30, 2023, and July 1 to July 12, 2024, with experiments
held between 10:00 and 18:00.

A total of 26 participants, comprising 13 males and 13 females, engaged in the experiment.
The participants’ ages ranged from 18 to 31, with 69.2% of participants aged between 18 and 24,
and 30.8% aged between 25 and 31. The demographic distribution of the participants is illus-
trated in Figure 5.12. The majority (41%) were students from various disciplines, while 27% had
a background in construction, and 20% had prior experience in facade design, as illustrated in
Figure 5.13. The participant pool consisted largely of university volunteers, which explains the
limited professional experience among participants, as most were students.

FIGURE 5.12: Participants’ Background: This pie chart shows the distribution of participants’
backgrounds, with architects (23%) and graduate students (30.77%) as the predominant groups (26

participants, males (50%) and females (50%), aged between 18 and 31).

FIGURE 5.13: Participants’ Professional Experience in Facade Design: This pie chart displays the
distribution of experience levels, with 80% having none and 12% having 1–5 years of experience
(26 participants). Most participants were university volunteers, which explains the limited profes-

sional experience.
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VR to measure user preference for complexity in facade design.
In the VR Interaction stage, participants engaged with the facade selection task for all three

patterns, resulting in 78 experiment sessions. For each pattern, participants selected the facade
variation they found most comfortable based on its perceived complexity level.

The preferred complexity levels from the VR simulation stage were consolidated into the ‘Fa-
cade variatio selection and CICA score Chart,’ a bar chart, shown in Figure 5.14. Analysis of this
chart reveals that most participants favored one of the first five facade variations, with only 1/3
of instances selecting options beyond this range. The results show a preference for mid-range
complexity with a mean CICA score of Mean = 4.05, but the standard deviation of SD = 1.2
highlights significant variability. This deviation indicates that complexity perception is highly
subjective and influenced by personal or contextual factors, such as visual tolerance or interaction
with the VR environment. Notably, ‘facade variation 3’ emerged as the most popular choice for
all three patterns among the ten variations (see Figure 5.6).

The ‘Probability Distribution Graph of Preferred CICA Scores Across Patterns’, showcased in
Figure 5.15, provides a visual representation of the distribution of participant choices. It accentu-
ates that there is a 40% probability of the focus group selecting an answer proximate to the calcu-
lated complexity score average,Mean = 4.05 with a modest standard deviation of SD = 12% in
predicting individual data points or outcomes. This indicates a moderate level of predictability in
participant choices suggesting that while most selections align near the average CICA score, there
is still a notable range in individual preferences, indicating subjective differences in complexity
perception.

The ‘Comparison chart of Average Chosen Facade and CICA scores by pattern’, displayed in
Figure 5.16, underscores that the average choice of facade variation for each pattern hovers around
the overall average complexity score, Mean = 4.05 and the average choice of facade variation
Mean = 4.4, further supporting the alignment between participant preferences and the CICA
system’s complexity evaluation.

The results from these preliminary analysis indicate a preference among participants for fa-
cades with moderate complexity, hinting at a future architectural trend that favors a harmonious
balance between intricacy and simplicity. Such designs are likely to be visually engaging with-
out being overwhelming. Additionally, the observed deviations, though modest, suggest that
individual preferences for complexity vary, reinforcing the need for flexible and customizable ar-
chitectural designs tailored to meet individual preferences and needs.
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FIGURE 5.14: Facade Variation Selections and CICA Scores During VR Stage: This chart shows
participants’ selected facade variations (bars) and their corresponding CICA complexity scores
(line) during the VR experiment. The x-axis indicates session-based IDs (1, 2, 3) per participant,
with the solid line for individual scores and the dotted line for the average. It highlights the
relationship between selections and complexity levels across ten facade options and three patterns

(Mean CICA Score = 4.05, SD = 1.2; 26 participants, 78 sessions).
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FIGURE 5.15: This scatter graph illustrates the probability distribution of preferred CICA scores
for facade design across all three patterns, based on data collected during the VR stage of the

experiment. (CICA score: Mean = 4.05, withProbability = 40% ; SD = 12%) (26 participants).

FIGURE 5.16: This bar chart presents the average chosen facade variation and corresponding CICA
scores per pattern, as selected by participants during the VR stage of the experiment. (Facade

variation: Mean = 4.4) (dotted line, CICA score: Mean = 4.05; SD = 1.2) (26 participants).
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FIGURE 5.17: Comparative Analysis of Perceived vs. CICA Complexity Scores: Line graphs com-
pare participants’ perceived complexity rankings with CICA scores for facade variations within
three facade patterns: Pattern 1 (a), Pattern 2 (b), and Pattern 3 (c). Rankings range from least (1) to
most complex (10), highlighting contrasts between human perception and computational analysis

(26 participants).
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Alignment of user perception with CICA system evaluation of complexity
The accuracy of the CICA system in assessing facade complexity, compared to participant

perceptions, was analyzed in Stage 2 of the experiment, the Screen-Based Ranking Stage. The
results of this comparison are visually represented in the graphs in Figure 5.17. These graphs
illustrate the alignment between the trendlines of the overall participants’ rankings and the CICA
system’s rankings for all three patterns, with an average standard deviation of 9% SD = 0.9 in
complexity level categorization.

The results reveal varying degrees of accuracy across different patterns:
In Pattern 1, in Figure 5.17(a), participants’ perception of complexity rises gradually and then

sharply peaks at facade variation 8, which they rated the highest in terms of complexity. The CICA
system, however, peaks earlier at facade variation 4, suggesting that the system detected a higher
level of complexity at an earlier stage than the participants. The standard deviation SD1 = 1.0
indicates that there was a considerable spread in participant responses, highlighting a divergence
in complexity perception between the human participants and the CICA system, especially at
higher complexity levels.

For Pattern 2, in Figure 5.17(b), the participant rankings show a peak at facade variation 9,
rated as the most complex, and a near-peak score for facade variation 10. Conversely, the CICA
system also recognizes variation 9’s complexity but assigns higher scores to variations 7 and 8
than to variation 10. This discrepancy suggests that certain design elements in variation 10 might
be perceived by users as contributing to complexity more than the CICA system’s metrics capture.
The smaller standard deviation SD2 = 0.6 here indicates a closer alignment between participants’
perceptions and the CICA scores, suggesting a more consistent agreement on complexity rankings
for this pattern among the participants.

In Pattern 3, as illustrated in Figure 5.17(c), participant rankings highlight one peak in per-
ceived complexity, with facade variation 9 rated highest and variation 8 closely behind. However,
the CICA system assigns the highest complexity score to variation 7 and ranks variation 5 as the
second most complex, diverging significantly from participant rankings for variations 8, 9, and 10.
This mismatch, along with the standard deviation SD = 1.1, similar to Pattern 1, underscores the
variability in how participants perceive complexity as opposed to the CICA system, particularly
at the upper end of the complexity scale.

The analysis across patterns demonstrates that while the CICA system provides a systematic
approach to complexity measurement, it does not always reflect the human perception, partic-
ularly at higher complexity variations. The differences between participant responses and the
CICA system are most pronounced in Patterns 1 and 3, suggesting subjective nuances in complex-
ity perception that the CICA system might not capture. These insights highlight the importance
of integrating subjective human input with objective algorithmic assessments in the architectural
design process.

While these results primarily demonstrate the CICA system’s capability to quantify facade
complexity, its application also holds promise for sustainable design. By quantifying complexity,
architects can balance visual appeal with material efficiency, reducing unnecessary resource use
and minimizing a building’s carbon footprint. More complex designs often require more materi-
als and energy, but the CICA system enables architects to control this complexity, selecting levels
that enhance aesthetics while maintaining environmental sustainability. Furthermore, optimiz-
ing facade designs for durability and adaptability can reduce the need for frequent renovations,
supporting long-term sustainable building practices. When combined with tools for energy effi-
ciency, the system can also contribute to improved environmental performance, such as enhancing
natural light and thermal regulation, while ensuring user satisfaction.
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FIGURE 5.18: Questions 6 to 10 of the Complexity perception section from the Post-Experiment
Survey. (n = 10), 1 - strongly disagree, 7 - strongly agree.

5.4.3 Qualitative Analysis on Users Perception to Complex Facades

We gathered additional insights through a survey and interviews, presenting a multifaceted view
of user perceptions regarding architectural complexity. The responses to the ‘complexity percep-
tion’ section of the survey have been summarized in Figure 5.18 and Figure 5.19, with evaluations
conducted using a 7-point Likert scale.

Survey responses show a moderate to high endorsement of complexity in facade designs, with
average ratings above 3.5 and mean scores around Mean = 5.2. However, the standard deviation
of SD = 1.3 reveals considerable variations in participant responses, underscoring the subjective
nature of architectural complexity. These deviations reflect the diverse perspectives and pref-
erences among participants, which is significant in understanding that the perception of facade
complexity is not uniform across users. This range of responses suggests that while some partici-
pants are more attuned to intricate designs, others may prefer simpler structures, thus reinforcing
the need for adaptable design approaches in architecture.

Survey Insights and Post-Experiment Reflections
Participants rated the appeal of facade complexity positively, with an average score indicating

moderate to high appeal (Q6mean = 4.8; Figure 5.18). This suggests that complex facade designs
have the potential to attract and satisfy user preferences, aligning with broader architectural dis-
course and highlighting the potential for integrating such designs into future practices.

The survey also revealed that the intricacy of patterns and textures in the facade designs was
well-received, scoring above the midpoint on the Likert scale (Q7 mean = 5.0; Figure 5.18). This
indicates that these design elements significantly contribute to user satisfaction and visual engage-
ment, encouraging their exploration in future projects. Participants rated the contribution of ar-
chitectural element arrangement to the facade’s visual interest highly (Q8 mean=5.8; Figure 5.18),
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FIGURE 5.19: Questions 11 to 15 of the Complexity perception section from the Post-Experiment
Survey. (n = 10), 1 - strongly disagree, 7 - strongly agree.

suggesting that thoughtful composition can greatly enhance a facade’s appeal. The complexity of
patterns and textures was perceived as moderate to high appeal (Q9 mean=4.7; Figure 5.18), re-
flecting a balanced approach where complexity is appreciated but not overwhelming. This points
to the importance of finding the right complexity level that resonates with users.

The detail in ornamentation received a score that indicates users found it moderately detailed
(Q10 mean=5.0 ; Figure 5.18). This suggests a user preference for ornamentation that contributes
to the visual richness of a facade without dominating the design. The combination of materials
was seen as an important factor in contributing to facade complexity (Q11 mean=5.4; Figure 5.19),
underscoring the role of materials in defining a facade’s character and aesthetic appeal.

The aesthetic intricacy of the composition received a moderately high rating (Q12 mean=5.2;
Figure 5.19), emphasizing the value of thoughtful arrangement of design elements in enhancing a
facade’s visual complexity. Participants placed significant value on the role of shapes and forms in
adding to facade complexity (Q13 mean=6.3; Figure 5.19). It solidifies the notion that the strategic
placement of visual elements holds substantial sway over how a facade is perceived, highlighting
the need for architects to consider geometric aspects when designing complex facades. The use of
color was considered to moderately enhance visual complexity (Q14 mean=5.1; Figure 5.19). While
not as impactful as form or texture, color is still an important design tool influencing complexity
perception. Depth and layering were perceived as contributing moderately to facade complexity
(Q15 mean=4.6; Figure 5.19), indicating that while not rated as highly significant as other factors,
three-dimensionality and interplay of different design layers can enhance perceived complexity.

These insights suggest that participants appreciate complexity that is intelligently integrated
into design through form, texture, and color, yet still desire a certain level of clarity without be-
ing overwhelmed by excessive details. These findings can guide architects in creating facades
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that are complex yet coherent, appealing to a broad spectrum of users. However, while partici-
pants were prompted to assess shapes and forms on the facade, the survey did not address the
overall volumetric complexity or building massing. The focus remained on surface details such
as patterns and textures, rather than the three-dimensional geometry of the entire building. This
suggests that the impressions reflect mostly two-dimensional visual factors, potentially missing
how volumetric complexity—like the building’s size, shape, and articulation—affects perception.

In post-experiment interviews, participants articulated a clear preference for the role of form
in facade design, assigning it significantly more importance than materials at an 80:20 ratio, em-
phasizing form as a dominant influence in their assessment of facade complexity and aesthetic
value.

Interestingly, when discussing complex facades, participants gained a more comprehensive
understanding of how complexity is perceived in different contexts, thanks to the VR experiment,
which allowed them to assess facades from both interior and exterior perspectives. They agreed
that intricate designs were appreciated when viewed from the exterior and generally favored more
complex facades from an outside viewpoint. However, after experiencing them from the inside,
participants tended to prefer simpler designs—particularly when enjoying the simulated unob-
structed views of the campus. This distinction highlights that users may desire more visual com-
plexity on facades facing non-critical or less scenic areas, while favoring simplicity on facades that
interact with prominent external views to maintain visual comfort and openness from within. The
results of the VR experiment align with these findings, reinforcing the notion that the perception
of facade complexity shifts depending on the viewer’s position. This underscores the need for
context-sensitive design strategies that account for both indoor and outdoor experiences.

These interviews reveal a nuanced understanding of facade design among participants, high-
lighting the need for context-sensitive approaches that align architectural form and complexity
with the functional and aesthetic needs of building users. Complex designs can enhance privacy
or visual interest where appropriate, while simpler facades can preserve the aesthetic experience
of key external views.
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FIGURE 5.20: Workflow of the ‘CICA Complexity analysis of building lineups across multiple
cities‘ for validating the CICA Complexity Score applciability to real scenarios.

5.4.4 Validating the CICA Complexity Score in Urban Streetscapes

Building upon the findings from the previous subsections, which demonstrated the historical evo-
lution of facade complexity using the CICA system and explored user responses to complex fa-
cades through experimental analysis, this section aims to validate the applicability and reliability
of the CICA complexity score in a real-world context. While prior analyses focused on specific his-
torical datasets and controlled experiments, this study extends the application of the CICA system
to evaluate building facades along major streets in diverse urban environments.

The objective of this analysis is twofold: first, to assess how the CICA system performs when
applied to actual streetscapes with varying architectural styles and urban contexts; and second,
to identify patterns and trends in facade complexity across cities. By analyzing ten consecutive
building facades along major streets in five cities—Barcelona, Budapest, Florence, Fukuoka, and
Paris—this section demonstrates the versatility of the CICA system in quantifying complexity
across different cultural and architectural settings. This analysis not only tests the robustness of
the CICA system but also provides valuable insights into urban facade design trends that can
inform future architectural practices.

Methodology
The goal of this analysis is to evaluate facade complexity across major urban streets using the

CICA system, thereby validating its applicability in real-world contexts. This involves quantify-
ing the complexity of building facades along selected streets and comparing trends across cities to
uncover broader patterns. The key steps of the workflow for this analysis are as follows (see Fig-
ure 5.20): ‘Data Collection’, ‘Cities and Streets Selection‘, ‘CICA Complexity Score Calculation’,
and ‘Analysis and Visualization‘.

For the ‘Data Collection‘, the primary source for facade images was Google Earth, leveraging
its virtual tour feature to capture high-resolution visuals from multiple perspectives. To ensure
accuracy, images with minimal obstructions—such as trees, vehicles, or pedestrians—were pri-
oritized. For each building, three perspectives were captured: left, front, and right, providing a
comprehensive view of the facade. In total, 50 buildings were analyzed, with 10 buildings selected
per street and city.
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The main criteria for the ‘Cities and Streets Selection‘ process focused on diversity in archi-
tectural and cultural contexts. Five cities were chosen: Barcelona (La Rambla), Budapest (Szent
István), Florence (Piazza del Duomo), Fukuoka (Otemon), and Paris (Boulevard Haussmann).
While most selected streets are iconic and globally recognized for their architectural significance,
the choice of Otemon in Fukuoka was guided by the fact that the study was conducted in this
city. By selecting a regular street in Fukuoka rather than a world-renowned one, this study of-
fers an interesting perspective on how iconic streets compare to a more typical urban road. Along
each street, ten consecutive building facades were identified and labeled sequentially from 1 to 10,
creating a dataset of 50 facades spanning all cities (see Figure 5.21).

The method for ‘CICA Complexity Score Calculation‘ involved applying the CICA system to
each building facade by averaging the scores derived from the left, front, and right perspectives.
This ensured a comprehensive representation of each facade’s complexity. To validate these scores,
the system referenced a dataset of 177 historical buildings established in the historical analysis sec-
tion (see Section 5.4.1). This comparative baseline allowed the scores to reflect a broad spectrum of
architectural styles and periods. As the dataset grows to include more buildings, the accuracy and
representativeness of the scores will improve further. By anchoring complexity evaluations within
this evolving historical dataset, the methodology ensures both quantitative rigor and contextual
relevance. Finally, the average complexity score of the ten facades was calculated for each city to
enable trend comparisons.

The approach to ‘Analysis and Visualization‘ included plotting complexity scores for indi-
vidual facades on line graphs to illustrate variations across the ten buildings in each city (see
Figure 5.21). A bar chart was also created to display the average complexity score for each city,
highlighting overall trends (see Figure 5.22). These visualizations were analyzed to identify pat-
terns in facade complexity between cities and to explore unique architectural characteristics that
influenced the scores.
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FIGURE 5.21: Scatter Graph of CICA Complexity analysis of building lineups across multiple
cities: This graph presents the CICA scores for 50 buildings, across major streets in 5 diferent
cities. The buildings are categorized by city and labeled from 1 to 10 in accordance to the way
they line up in the selected major street of each city. An overlaid trendline highlights the range of

complexity levels among the facades of each street across cities.
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Quantifying Facade Complexity Variation Across Cities and Streets

Trends in Facade Complexity Along Streets
The scatter graph ‘CICA Complexity Analysis of Building Lineups Across Multiple Cities,’

shown in Figure 5.21, illustrates the variation in facade complexity scores for the ten consecutive
buildings along each selected street. The graph reveals distinctive patterns in facade complexity
across the ten buildings for each city, highlighting both consistency and variability in architectural
styles:

Barcelona (La Rambla) displays a relatively steady trend with minor fluctuations in CICA
scores. The lineup reflects a cohesive architectural language characterized by consistent orna-
mentation and rhythmic facade arrangements. This uniformity mirrors the cultural and historical
significance of La Rambla as an iconic urban promenade.

Budapest (Szent István) shows a stable trend with relatively moderate variations, indicating a
uniformity in facade designs along the street. The inclusion of the Comedy Theatre of Budapest at
position 3, a Neo-Baroque landmark with intricate detailing, contributes to the overall richness of
the streetscape without introducing sharp contrasts in complexity scores.

Florence (Piazza del Duomo) demonstrates a sharp increase in complexity scores from position
5 onward, coinciding with the dominance of the Florence Cathedral (Duomo) in the lineup. The
Cathedral’s richly detailed Renaissance facade significantly elevates the scores for these positions,
contrasting sharply with the simpler structures in positions 1 through 4.

Paris (Boulevard Haussmann) highlights a moderate peak at position 3, attributed to the Palais
Garnier Opera House, a Beaux-Arts masterpiece known for its elaborate ornamentation. The sub-
sequent buildings maintain moderate complexity, reflecting the structured elegance of Hauss-
mann’s urban design principles.

Fukuoka (Otemon) exhibits the lowest complexity scores among the cities, with sharp vari-
ations between some positions. The absence of historical landmarks and the predominance of
contemporary modernist facades contribute to the overall simplicity of the streetscape, offering a
stark contrast to the historical richness of the European streets.

Iconic buildings, such as the Florence Cathedral, the Palais Garnier Opera House, and the
Comedy Theatre of Budapest, demonstrate the significant influence of architectural landmarks on
facade complexity scores, underscoring their role in shaping the character and identity of urban
streetscapes.

Variation in Facade Complexity Across Cities
The bar chart ‘Average CICA Complexity Score of Building Facades on Major Streets by City,’

shown in Figure 5.22, provides an aggregated view of the average complexity scores for each city.
The results highlight notable differences in facade complexity across the selected urban streetscapes:

Barcelona (La Rambla) has the highest average CICA complexity score (6.4), indicating rich
architectural detailing and visual intricacy in its streetscape. The cohesive blend of historical and
ornamental features contributes to its standout complexity.

Budapest (Szent István) follows closely with an average score of 6.1, reflecting a similarly in-
tricate yet distinct architectural style. The street’s consistent and decorative facades underline Bu-
dapest’s architectural richness.

Florence (Piazza del Duomo) and Paris (Boulevard Haussmann) present moderate complexity
scores, at 5.1 and 5.7 respectively. Florence’s score reflects a mix of Renaissance harmony and
simpler surrounding facades, while Paris balances ornamental elegance with structured urban
coherence.

Fukuoka (Otemon) has the lowest average complexity score (4.1). This result is likely influ-
enced by the prevalence of contemporary and minimalist architectural styles, which contrast
sharply with the historical richness of the European streets.

The observed variations emphasize the cultural and architectural diversity among the selected
cities. European cities such as Barcelona, Budapest, and Paris demonstrate a higher emphasis on



5.4. Results and Discussion 145

FIGURE 5.22: Average CICA Complexity score of buildings in major street across cities. (50 build-
ings, 5 cities).

intricate facade designs rooted in historical and cultural significance, while Fukuoka highlights
the simplicity often seen in modern urban environments.

Cultural and Architectural Influences on Facade Complexity
The relationship between facade complexity and design intricacy reflects the cultural and ar-

chitectural contexts of each city. Using the CICA complexity score as a basis, this study identifies
patterns in facade complexity and design approaches across urban streetscapes. The findings are
visually summarized in the scale diagram ‘Comparing Architectural Complexity Across Cities’
(see Figure 5.23), which compares high-complexity cities emphasizing cultural aesthetics and or-
nate facades with low-complexity cities prioritizing functional urban planning and modern sim-
plicity.

Barcelona’s La Rambla falls on the high-complexity side of the spectrum, reflecting its strong
focus on cultural aesthetics and architectural expression. The facades along this iconic promenade
exemplify Modernisme (Catalan Modernism) style influences, with ornate details and vibrant aes-
thetics that reflect the city’s cultural emphasis on artistic expression and architectural innovation.

Budapest’s Szent István street similarly aligns with ornate, intricate facades but displays a
slightly lower overall complexity. Characterized by structured, uniform facades enriched with
Neo-Baroque and Neo-Renaissance elements. These designs emphasize elegance and craftsman-
ship without overwhelming the streetscape with excessive complexity.

Florence’s Piazza del Duomo reflects a balance between high facade complexity and cultural
significance. The sharp rise in facade complexity due to the dominance of the Florence Cathedral
illustrates how singular architectural landmarks can define the visual identity of a streetscape.
The balance between simpler and more elaborate facades further reflects the city’s Renaissance
heritage, where architectural landmarks coexist with more restrained urban designs.

Paris’s Boulevard Haussmann represents a unique approach to achieving complexity through
simplicity and consistency. Haussmann’s urban planning principles, which prioritize symmetry,
proportions, and consistency, result in facades that achieve visual richness through balance and
coherence rather than intricate detailing. The Palais Garnier Opera House (Figure 5.21, position
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FIGURE 5.23: Scale diagram ‘Comparing Architectural Complexity Across Cities’. Key considera-
tions Cultural and Architectural Influences on Facade Complexity (50 buildings, 5 cities).

3) serves as a notable exception, enriching the overall complexity of the street with its elaborate
Beaux-Arts style.

In contrast, Fukuoka’s Otemon street occupies the lower-complexity side of the scale, where
the minimalist and modern facades reflect contemporary urban development priorities. This sim-
plicity underscores the functional focus of modern Japanese architecture, contrasting sharply with
the historical ornamentation prevalent in European cities.

The scale diagram (Figure 5.23) highlights the contrasting priorities between cities empha-
sizing cultural and aesthetic expression versus those focusing on functional urban planning and
modern simplicity. These findings reveal how tradition and modernity shape urban streetscapes.
European cities such as Barcelona, Florence, Budapest, and Paris maintain cultural identity through
varying balances of intricacy and complexity, while Fukuoka reflects evolving priorities in modern
architecture, where minimalism emphasizes practicality and adaptability.

The CICA complexity score provides a structured way to quantify these visual characteris-
tics, serving as both a marker of cultural heritage and a tool for analyzing evolving architectural
trends. By combining the measurable insights of CICA with conceptual interpretations of design
intricacy, this study offers a comparative framework for understanding how cultural and archi-
tectural factors influence the aesthetic and functional characteristics of urban streetscapes.

Insights for Urban Design
The findings of this study underscore the critical role of facade complexity and design intri-

cacy in shaping urban identity, aesthetic appeal, and functionality. By analyzing patterns across
culturally and architecturally diverse cities, this research provides valuable lessons for urban de-
sign, highlighting how facade complexity reflects a balance between tradition, modernity, and
evolving urban priorities.

Cities such as Barcelona, Florence, and Paris demonstrate the enduring value of intricate fa-
cades in preserving cultural identity and enhancing the visual richness of urban environments.
The ornate details and cohesive designs seen in these cities illustrate how architectural complex-
ity can evoke a sense of place and history. Iconic landmarks like the Florence Cathedral or the
Palais Garnier Opera House reinforce the importance of integrating visually striking elements
within urban streetscapes to maintain cultural significance and attract public engagement.

Moreover, these cities highlight the success of cohesive urban planning approaches that har-
monize complexity across streetscapes. By maintaining a balance between individual building
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intricacies and overall street uniformity, cities can create visually engaging yet orderly environ-
ments.

In contrast, Fukuoka’s Otemon offers lessons in simplicity and functionality. Modernist fa-
cades prioritize clarity and practicality, emphasizing the importance of efficient, adaptable urban
environments. While these designs lack the intricate detailing seen in historical contexts, they
showcase opportunities for innovation in minimalist architecture, such as using clean lines and
modular elements to achieve visual appeal without excessive ornamentation. This approach can
be especially relevant in rapidly developing or space-constrained urban areas.

The challenge of integrating historical richness with contemporary priorities is central to urban
design. The findings of this study suggest that achieving this balance requires thoughtful planning
and a nuanced understanding of cultural and architectural contexts. Data-driven tools like the
CICA complexity score offer a powerful means of quantifying visual characteristics and guiding
design decisions. Urban designers can use such tools to evaluate how proposed developments
align with historical aesthetics or contribute to contemporary urban priorities.

The CICA system’s ability to quantify facade complexity offers significant potential for urban
design practices, including evaluating new developments to ensure facade designs align with the
desired visual and cultural identity of an area, revitalizing historical districts by using complex-
ity insights to guide restoration projects that respect historical aesthetics while accommodating
modern needs, and integrating complexity metrics into urban development policies to promote
aesthetically and culturally responsive design. By incorporating these quantitative metrics into
design processes, urban planners and architects can create cohesive and engaging urban environ-
ments that balance heritage with innovation.

The insights derived from this study highlight the interplay between tradition and modernity
in urban design. Facade complexity serves as both a reflection of cultural heritage and a tool for
shaping visually engaging, functional streetscapes. By leveraging data-driven approaches like the
CICA system, urban designers can craft sustainable and culturally responsive cities that honor the
past while embracing the future.

Reliance of the CICA system
The findings from this study highlight the reliability and versatility of the CICA complexity

score in analyzing facade complexity across diverse urban contexts. By consistently capturing
the visual intricacies of facades and adapting to cultural and architectural differences, the CICA
system demonstrates its robustness as a tool for urban analysis.

The consistent scoring patterns observed within cities reinforce the reliability of the CICA
system. For instance, the relatively stable trends along streets like Barcelona’s La Rambla and
Budapest’s Szent István suggest that the system effectively quantifies facade intricacies while ac-
counting for architectural uniformity. These results confirm the system’s ability to produce repeat-
able and coherent scores across varied urban environments.

Differences in scoring trends between cities underscore the sensitivity of the CICA system to
cultural and architectural diversity. For example: High scores in Barcelona and Florence reflect the
rich detailing and ornate designs characteristic of their historical and cultural contexts. Moderate
scores in Paris and Budapest illustrate the balance between ornamentation and structural elegance
in their cohesive urban plans. Lower scores in Fukuoka align with the minimalist, functionality-
driven aesthetic of modern Japanese architecture. This sensitivity validates the CICA system’s
application for comparative studies, offering a robust framework for analyzing urban streetscapes
with diverse architectural influences.
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5.5 Conclusions, Limitations, and Future Works

This study investigates architectural design at the intersection of digital fabrication, VR assess-
ment, and CV algorithms, aiming to deepen our understanding of complexity in facade design.
Our primary goal is to verify the practical application of a VR and CV based ‘Complexity Analysis’
system for facade design, offering insights into user acceptance of complex facades.

A literature review theorized a current trend towards increasing complexity in contemporary
architecture, moving away from the uniformity of barren walls and fully glazed facades approach
of the modernist movement. The CICA system quantitatively analyzed this same timeframe, prov-
ing this theory and revealing the existence of an upward complexity trendline since the late 20th
century (see Figure 5.8). Furthermore, the historical analysis using the CICA system underscored
the cultural and historical significance of facades, indicating that architectural complexity is not
merely a matter of quantitative metrics but also involves cultural resonance and historical context.

This study contributes to architectural design theory by bridging qualitative perceptions of
complexity with a quantifiable,data-driven approach. The CICA system offers a novel method
for assessing facade complexity using CV algorithms, providing adaptable, quantitative insights
across different contexts. By validating historical trends with empirical data and demonstrating
a clear rise in complexity in recent decades, the study advances the theoretical understanding of
architectural complexity. Moreover, the integration of complexity metrics with VR technologies
enhances user-centered design, allowing for more interactive assessments of how complexity in-
fluences user satisfaction and aesthetics.

Participants in the experiment showed a preference for facades with moderate complexity, sug-
gesting that future architectural trends may favor designs that balance intricacy with simplicity.
On average, participants preferred a moderate level of complexity, with a mean CICA complexity
score of 4.05 (out of 10) and a 40% probability of selecting a score close to this value.

Discrepancies between participant perceptions and the CICA system’s complexity rankings,
with an average standard deviation of 9%, were more evident at higher complexity levels, high-
lighting the subjective nature of complexity perception and the need to integrate human feedback
into architectural assessments. Qualitative data suggest a shift towards customizable and user-
responsive architectural solutions, with participants favoring form over materials and preferring
facades that consider views and privacy.

By expanding the analysis to include urban streetscapes in Barcelona, Florence, Paris, Bu-
dapest, and Fukuoka, the CICA system demonstrated its robustness in capturing facade com-
plexity across diverse cultural and architectural contexts. The results showed that historical cities
exhibit higher complexity scores driven by ornamentation and cohesive urban planning, while
modernist cities prioritize simplicity and functionality. This comparative analysis underscores the
potential of the CICA system to inform urban design by identifying patterns and cultural influ-
ences that shape facade complexity.

The CICA system’s ability to consistently capture facade complexity across cities, combined
with its sensitivity to architectural and cultural diversity, reaffirms its potential as a reliable tool for
urban design and analysis. Its application extends beyond theoretical analysis, offering valuable
insights into public space development, urban renewal projects, and historic building renovations.

Limitations
While this research provides valuable insights into architectural complexity, certain limitations

warrant cautious interpretation of the results:
The study involved a relatively small sample of 26 participants, primarily composed of univer-

sity students, with 69.2% aged between 18 and 24. Most participants lacked extensive professional
experience in architecture, particularly in facade design. This limited demographic representation
may affect the generalizability of the findings, as preferences for complexity could vary signifi-
cantly with broader participant pools, including professionals with diverse levels of expertise and
experience.
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The use of VR offered a controlled and immersive environment but may not entirely capture
the experience of interacting with real-world facades. VR settings could affect perceptions of
complexity and comfort, leading to different results compared to real-world interactions.

The CICA system, while effective in evaluating facade complexity using metrics like edge de-
tection and contour count, may not capture all elements influencing perceived complexity. These
metrics focus on two-dimensional visual data and might not fully address the subjective nature
of complexity perception, which is shaped by individual aesthetic preferences, prior experiences,
and cultural factors—factors that CV algorithms struggle to encapsulate. Furthermore, the sys-
tem lacks tools to analyze three-dimensional articulation and hierarchical design elements, which
are crucial to volumetric complexity and the overall form of buildings. This omission limits the
system’s ability to fully represent how buildings are perceived in terms of spatial interaction and
three-dimensionality.

The survey questions focused mainly on surface-level details, such as patterns and textures,
without addressing the building’s overall form and three-dimensional geometry. Incorporating
questions and metrics related to volumetric complexity would provide a more complete under-
standing of how architectural complexity is perceived in real-world settings.

The historical evaluation is based on single images of each facade, which limits the ability
to fully grasp the overall complexity of a building, as different perspectives might reveal addi-
tional elements that contribute to its perceived intricacy. This choice was made to standardize the
analysis, but multiple images from different angles could provide a more comprehensive under-
standing of architectural complexity. The limited dataset of 177 historical buildings may restrict
the comprehensiveness of the complexity assessment. Expanding the dataset could yield a more
detailed understanding of trends in architectural complexity over time.

For the analysis of urban streetscapes was based on facades from five cities and selected streets,
limiting its generalizability. Expanding the dataset to include more cities, streets, and diverse ar-
chitectural styles could improve its representativeness.

This study concentrated on facade design, which is just one aspect of architectural complexity.
While the insights into patterns, textures, and materials are valuable, the CV models developed
for specific facade features might not generalize well to other architectural elements or styles.

Future Works
The findings and limitations of this study provide opportunities for further exploration in

architectural complexity:
Future studies should involve a larger and more diverse group of participants to broaden

the generalizability of the findings. Conducting long-term studies could also shed light on the
evolution of preferences for architectural complexity over time.

Future research could compare VR-based assessments with evaluations of physical facades to
better understand the correlation between virtual experiences and real-world perceptions. Lever-
aging emerging technologies in Extended Reality (ER), such as Mixed Reality (MR) and Aug-
mented Reality (AR), could further bridge the gap between virtual simulations and reality en-
hancing the assessment and prediction of user preferences in complexity in architectural design.

Future works could improve the accuracy of the CICA system by incorporating additional
metrics such as color, texture, and contextual integration, providing a more nuanced understand-
ing of facade complexity. In particular, incorporating volumetric complexity, such as the three-
dimensional articulation, massing, and hierarchical design elements, would significantly enhance
the system’s ability to capture how buildings are perceived holistically in real-life contexts. This
could be achieved by developing tools that assess not just the surface-level details but also the
overall building form and its spatial interaction with the environment. Developing methodologies
that integrate user feedback more directly into the design process could lead to more personalized
and culturally sensitive architectural solutions. Future iterations should consider both the quanti-
tative aspects of facade complexity and the cultural resonance and historical context to provide a
comprehensive evaluation of architectural evolution.



150 Chapter 5. Implementation of VR and Computer Vision-Based Facade Complexity Analysis

Furthermore, future research should encompass additional elements, such as interior design
and spatial organization, to achieve a more holistic understanding of architectural complexity.
Investigating the relationship between architectural complexity and sustainability could also pro-
vide insights into how complex designs impact sustainable building practices, helping architects
balance intricate aesthetics with environmental considerations.

Conclusion
In conclusion, this study successfully addressed the challenge of quantifying complexity in

architectural facade design through the integration of VR and CV technologies. The practical ap-
plication of the CICA system extends beyond theoretical analysis, offering architects a tool for
informed decision-making in real-world design contexts. By enabling the quantification of facade
complexity, the CICA system provides insights into how visual interest, user satisfaction, and ma-
terial efficiency can be balanced to create sustainable and adaptable designs. Architects can apply
these findings across various design scenarios. Future applications of the system include urban
heritage preservation, where facade complexity insights could guide the restoration of historical
districts, and contemporary urban planning, where the CICA system could ensure new develop-
ments align with cultural identity and modern needs. Its potential for cross-disciplinary research
further expands its relevance, offering opportunities to explore how architectural complexity im-
pacts urban aesthetics, pedestrian behavior, and sustainability.

Additionally, by integrating the CICA system with existing energy efficiency tools, the system
could be instrumental in designing facades that optimize natural light, thermal performance, and
environmental comfort while maintaining aesthetic appeal. This capability makes the system rele-
vant for a wide range of building projects, helping architects make more DBD decisions that align
with both functional and cultural contexts. This can prove useful for guiding the optimization
of building design towards a more user-centric approach in architectural design, catering to the
evolving demands of modern society.

By addressing its limitations and expanding its applications, the CICA system has the poten-
tial to reshape architectural and urban design practices, enabling culturally responsive, visually
engaging, and functionally efficient building design.

The development and application of the CICA system exemplify the versatility of the Data-
Driven Immersive Design Optimization (DIDO) framework. The DIDO framework integrates
computational precision with immersive visualization tools, bridging the gap between data-driven
insights and stakeholder engagement. This dual capability makes DIDO a transformative method
for architectural workflows, enhancing both the aesthetic and functional dimensions of design.
As demonstrated in this study, DIDO’s flexibility enables it to address varying contexts, from ur-
ban streetscapes to individual facade designs, aligning with cultural, historical, and user-centered
priorities.
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Chapter 6

Conclusions, Limitations, and Future
Works

6.1 Introduction

The evolution of architectural practices in recent decades has been marked by the growing integra-
tion of computational technologies and immersive tools, responding to the increasing complexity
of design demands in the Architecture, Engineering, and Construction (AEC) industry. This thesis
aimed to validate the Data-Driven Immersive Design Optimization (DIDO) framework, a pio-
neering methodology that bridges the gap between technical precision and user-centered design
through the convergence of Data-Driven Building Design (DBD), Virtual Reality (VR), and Com-
puter Vision (CV).

By addressing both macro-level urban challenges, such as ‘Site Layout Planning’ (SLP), and
micro-level architectural details, like ‘Facade Complexity’, this research has demonstrated the ver-
satility and adaptability of the DIDO framework. Through the development of case studies, the
research explored how immersive technologies and computational insights can complement each
other to optimize architectural outcomes while engaging stakeholders in meaningful ways.

This chapter concludes the thesis by summarizing the key findings, revisiting the research
objectives, and evaluating the DIDO framework’s contributions to architectural practices. It also
highlights the limitations encountered during the research and proposes avenues for future ex-
ploration to further refine and expand the applicability of the DIDO framework.

6.2 Summary of Research Contributions

This section highlights the significant contributions of the research, focusing on the development
and application of the DIDO framework, advancements in site layout planning (SLP), and inno-
vations in ‘Facade Complexity Analysis’, as well as their broader impacts on the Architecture,
Engineering, and Construction (AEC) industry (see Figure 6.2).

Development of the DIDO Framework

The DIDO framework represents a pioneering integration of Data-Driven Building Design (DBD),
Virtual Reality (VR), and Computer Vision (CV), offering a robust solution to contemporary chal-
lenges in architectural workflows. By combining computational precision with user-centered ex-
periential tools, the framework bridges the gap between technical optimization and intuitive
decision-making, ensuring that performance-based metrics resonate with stakeholders’ insights
and preferences. This fusion of analytical rigor and immersive engagement fosters a deeper un-
derstanding of design trade-offs, enabling architects and planners to create designs that are both
efficient and user-friendly.
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FIGURE 6.1: Flowchart illustrating the summary of research contributions.

A defining feature of the DIDO framework is its versatility, demonstrated by its applicability
across diverse architectural scales, from macro-level site planning to micro-level facade optimiza-
tion. By integrating immersive visualization tools with data-driven methodologies, the framework
enhances collaboration and decision-making throughout the design process. This adaptability al-
lows DIDO to address a wide range of challenges, facilitating more informed, cohesive, and sus-
tainable design practices that align with the evolving needs of the Architecture, Engineering, and
Construction (AEC) industry.

Contributions to SLP from implementation of DIDO framework

The integration of Multi-Objective Optimization (MOO) with VR within the DIDO framework has
significantly enhanced stakeholder engagement in site layout planning. By offering stakehold-
ers an immersive environment to interact with data-driven recommendations, the study enabled
more precise and informed decision-making. The use of VR allowed participants to intuitively
explore spatial arrangements and assess the impact of various layout configurations, fostering
greater trust and understanding of optimization processes.

The research further demonstrated that VR-based immersion reduces deviations between com-
putationally optimized layouts and user-selected outcomes. Stakeholders found it easier to align
with data-driven solutions when presented with dynamic, visually enriched scenarios, which en-
hanced their ability to evaluate trade-offs and make decisions that balance technical efficiency
with experiential considerations. This alignment highlights VR’s transformative role in bridging
the gap between abstract optimization models and stakeholder preferences.

Contributions from Implementation of DIDO for ’Facade Complexity Analysis’

A key innovation of this research was the creation and validation of the ‘Computational Image
Complexity Analysis’ (CICA) system, a tool designed to objectively quantify facade complexity
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using advanced Computer Vision (CV) algorithms. The system combines quantitative metrics,
such as edge density and contour count, with qualitative insights derived from historical data and
user preferences. The study validated the robustness of the CICA system across different contexts,
establishing it as a reliable tool for analyzing architectural intricacy.

Through empirical analysis, this study uncovered oscillations between simplicity and com-
plexity across architectural history, while also documenting an upward trend in complexity over
the past several decades. The application of the CICA system to urban streetscapes in five cul-
turally and architecturally diverse cities further demonstrated its effectiveness in capturing the
nuanced interplay between facade design and urban identity. This analysis not only highlighted
the system’s scalability but also revealed how cultural and contextual factors shape perceptions
of complexity.

Moreover, the research aligned complexity metrics with user preferences by integrating VR-
based experiments into the facade analysis process. By validating the CICA scores against partic-
ipant feedback, the study confirmed that moderate levels of complexity are generally preferred,
emphasizing the importance of designing facades that balance intricacy with usability. This in-
sight is particularly valuable for architects seeking to create designs that resonate with both func-
tional and aesthetic considerations.

Broad Impacts on the AEC Industry

The DIDO framework offers a pathway for integrating advanced technologies into the architec-
tural workflows of the AEC industry. By combining data-driven methodologies with immersive
tools, the framework addresses longstanding challenges in stakeholder engagement, decision-
making, and sustainability. It provides a practical approach to harmonizing computational rigor
with human-centered design, enabling architects and planners to make more informed decisions
while fostering collaboration among project stakeholders.

One of the most significant contributions of this research is its emphasis on adaptability and
cultural responsiveness. By providing tools for balancing material efficiency, energy optimiza-
tion, and user satisfaction, the research highlights the potential for DIDO to enhance architectural
workflows while remaining sensitive to both functional and aesthetic needs. The CICA system, in
particular, demonstrates how complexity metrics can inform facade design decisions and support
projects focused on urban renewal or historical preservation. These applications ensure that new
developments respect cultural heritage and align with contemporary urban demands, offering a
means to integrate architectural innovation with context-sensitive planning.
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FIGURE 6.2: Flowchart illustrating the evaluation of the primary objectives.

6.3 Evaluation of Research Objectives

The objectives outlined in this study, as detailed in Chapter 1 (Section 1.3), were designed to ad-
dress critical gaps in the architectural design process by integrating advanced computational tech-
niques and immersive technologies. Through the Data-Driven Immersive Design Optimization
(DIDO) framework, the research aimed to explore, implement, and validate innovative methods
for enhancing decision-making in architectural workflows. The evaluation presented here reflects
on the achievement of these objectives, structured into primary goals and specific targets for Site
Layout Planning (SLP) and ‘Facade Complexity Analysis’. By analyzing the findings in light of
these goals, this section highlights the contributions of the study, identifies challenges encoun-
tered, and underscores opportunities for further advancement.

6.3.1 Evaluation of Primary Objectives

The primary objectives of this study, as outlined in Section 1.3, were centered on advancing ar-
chitectural design through the integration of data-driven methodologies, immersive visualization
tools, and computational analysis. The discussion highlights how the DIDO framework success-
fully addressed these goals while offering insights into future possibilities (see Figure 6.2).

Exploration of Data-Driven Optimization Techniques with VR and CV in Architectural Design

The exploration of integrating data-driven design (DBD), Virtual Reality (VR), and Computer
Vision (CV) through the DIDO framework demonstrated its capacity to address complex archi-
tectural workflows. The framework effectively merged computational analysis with immersive
visualization, allowing for data-informed yet intuitive decision-making. Findings confirmed the
value of this approach in improving design outcomes, particularly through the alignment of com-
putational optimization with user-centric feedback.

The implications of these findings emphasize the transformative role of combining computa-
tional methods with experiential tools in modern architectural design practices. By bridging the
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gap between analytics and human interaction, the study highlights how architects can achieve
both precision and accessibility in design workflows.

However, challenges were observed in adapting these techniques across varying design scales
and project contexts. Further research could explore how data-driven optimization can integrate
with other emerging technologies, such as AI-enhanced design tools, to broaden its application.

Development of the DIDO Framework

The research successfully established the DIDO framework, unifying DBD, VR, and CV to create
a comprehensive methodology for architectural design. This framework demonstrated its effec-
tiveness in aligning technical performance metrics with user-centered design objectives, balancing
computational precision with human engagement.

The broader implications of DIDO’s development lie in its ability to redefine design processes
across the AEC industry. The framework bridges the traditionally separate realms of technical
optimization and stakeholder participation, making it a versatile tool for fostering collaborative
workflows.

Challenges include scalability across diverse design scenarios. While DIDO performed well in
the tested applications, further refinement is required to adapt the framework to other complex
projects, such as large-scale infrastructure planning or hyper-localized interior designs.

Impact of Immersive Technology on Stakeholder Engagement

The research demonstrated how VR and CV can significantly enhance stakeholder engagement
in architectural decision-making. Immersive technologies made complex spatial and visual data
more accessible, improving comprehension and fostering collaborative feedback. Case studies
in Site Layout Planning (SLP) and ‘Facade Complexity Analysis’ showcased how these tools im-
proved user satisfaction and decision-making accuracy.

The implications of these findings are profound for democratizing architectural processes. Im-
mersive technologies empower a wider range of stakeholders, regardless of their technical exper-
tise, to participate meaningfully in design decisions.

However, the reliance on VR and CV revealed certain technical and logistical challenges, such
as the need for user training and potential hardware limitations. Future studies should focus
on refining these tools for broader adoption, including solutions for low-cost or mobile-based
immersive experiences.

Evaluation of DIDO’s Practical Applications and Limitations

Case studies on SLP and ‘Facade Complexity Analysis’ validated the DIDO framework’s versa-
tility and adaptability. The findings showcased how DIDO could address both macro-level chal-
lenges in urban planning and micro-level considerations in aesthetic optimization.

The practical implications of these results are significant for the AEC industry. DIDO’s capacity
to integrate diverse datasets, align stakeholder feedback with computational metrics, and stream-
line workflows positions it as a transformative tool for sustainable and efficient design practices.

However, limitations in applying DIDO to untested scenarios were noted. Expanding the
framework’s scope to include diverse architectural scales and real-time stakeholder feedback would
enhance its practical relevance and adaptability.



156 Chapter 6. Conclusions, Limitations, and Future Works

6.3.2 SLP-Specific Objectives

Optimization of Site Layout Decisions Using DBD and MOO

The application of DIDO to SLP demonstrated that Multi-Objective Optimization (MOO) signifi-
cantly enhanced the precision and efficiency of layout planning. The alignment between stakeholder-
selected layouts and MOO-driven recommendations in the VR environment was evident, with an
average improvement in decision-making accuracy of 48.3% compared to traditional screen-based
methods (Figure 4.13). This alignment underscores DIDO’s potential to streamline spatial plan-
ning, ensuring layouts satisfy both technical and user-defined goals.

Interestingly, improvements varied across sites, correlating with the topographical complexity
of the locations. Site 2, which featured the most challenging terrain, saw the highest accuracy
improvement (57.2%), while Site 1 exhibited the lowest improvement (42.1%; Figure 4.15). This
suggests that the visual and interactive features of VR are particularly valuable in navigating
complex spatial conditions, where traditional methods might struggle.

The findings also emphasize the resource-saving potential of DIDO, as reduced deviation from
MOO recommendations minimizes costly redesigns and optimizes land use efficiency. Future
research should explore integrating dynamic environmental factors, such as real-time traffic pat-
terns or energy simulations, to further expand DIDO’s applicability in SLP. By incorporating these
adaptive metrics, the framework could offer even greater precision and adaptability in addressing
evolving site planning challenges.

Evaluation of VR’s Role in Stakeholder Engagement

The study revealed that VR immersion significantly enhanced stakeholder engagement, leading to
greater confidence and satisfaction in layout decisions. Participants consistently reported higher
levels of understanding regarding spatial relationships within their selected layouts, with survey
responses highlighting a mean usability score of 5.1 (Figure 4.17). This suggests that VR’s intuitive
visualization capabilities enable stakeholders to grasp complex site dynamics more effectively
than traditional 2D representations.

Moreover, the probability graph (Figure 4.14) showed a 40% likelihood of participants achiev-
ing high alignment with MOO recommendations, further reflecting VR’s influence in improving
decision-making precision. While these findings demonstrate VR’s potential as a transformative
tool for participatory urban design, challenges remain. Variability in user responses, as indicated
by the standard deviation of 44.1% in accuracy improvements (Figure 4.13), underscores the im-
portance of developing training protocols and intuitive interfaces to bridge gaps in user familiarity
with VR technology.

Future work could explore integrating VR with other immersive tools, such as AR, to create
hybrid environments for site analysis. These tools could further enhance stakeholder compre-
hension and interaction, fostering more collaborative and inclusive decision-making processes in
urban planning.

Impact of Data-Driven Immersive Design on Layout Planning Outcomes

The integration of immersive design tools in SLP resulted in marked improvements in decision-
making accuracy and user satisfaction. The VR-based approach achieved an average improve-
ment of 48.3% in decision accuracy compared to screen-based methods, with particularly strong
results observed for complex sites like Site 2 (57.2%; Figure 4.15). These findings highlight the
potential for immersive tools to optimize urban planning outcomes by aligning stakeholder pref-
erences more closely with data-driven recommendations.
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Survey responses further validated this impact, with participants rating VR’s effectiveness in
aiding SLP at 5.4 out of 7 (Q15 in Figure 4.18). This aligns with qualitative feedback empha-
sizing the enhanced comprehension and confidence VR provided during decision-making. The
usability metrics also reflect a generally positive user experience, though some participants noted
challenges related to navigation and interface intuitiveness.

The broader implications of these findings suggest that immersive tools like VR can foster
more inclusive, efficient, and data-informed design processes in urban planning. However, scaling
these tools to larger projects will require integrating real-time data feedback, such as environmen-
tal or traffic simulations, to ensure decisions remain contextually relevant. Future studies should
also address the variability in user experiences by incorporating adaptive learning interfaces tai-
lored to diverse participant backgrounds.
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6.3.3 ‘Facade Complexity Analysis’-Specific Objectives

Integration of CV, DBD, and VR for ‘Facade Complexity Analysis’

The creation and validation of the ‘Complexity Image Complexity Analysis’ (CICA) system marked
a significant milestone in integrating Computer Vision (CV) with Data-Driven Design (DBD) and
Virtual Reality (VR) under the Data-Driven Immersive Design Optimization (DIDO) framework.
The system efficiently quantified facade complexity across diverse architectural styles and con-
texts, processing 177 buildings in 4.54 seconds (see Section 5.3.1), showcasing both its computa-
tional efficiency and adaptability.

The integration of CICA within the DIDO framework emphasizes the potential to blend com-
putational rigor with user-centered design insights. By aligning data-driven metrics with sub-
jective user preferences observed during the VR experiments, the system has demonstrated its
capability to create designs that harmonize aesthetic and functional goals.

Future directions include expanding the system’s capabilities to account for three-dimensional
and volumetric complexity. This enhancement could address current limitations, such as the in-
ability to analyze spatial hierarchy and massing, which were highlighted in the limitations of the
CICA system (see Section 5.5). Incorporating additional metrics like materiality and environmen-
tal performance could further advance its relevance in sustainable design practices.

Quantification of Facade Complexity and User Preference Alignment

The CICA system quantitatively demonstrated a preference for moderate facade complexity, with
an average CICA complexity score of 4.05/10 (see Section 5.4.2). This preference was corroborated
by the VR-based user experiment, where participants consistently selected facades with moderate
intricacy across three patterns. The probability distribution graph (Figure 5.15) highlighted a 40%
likelihood of users selecting a design with a complexity score near this average, despite individual
variability (standard deviation of SD = 1.2).

This balance between intricacy and simplicity provides critical insights for designing facades
that are visually engaging yet approachable. These findings guide sustainable and user-responsive
architectural practices by emphasizing a balance between aesthetic appeal and functionality. For
instance, the moderate complexity preference aligns with the need for adaptable designs that cater
to diverse user groups while maintaining efficient resource utilization (see Section 5.4.3).

Future research should explore cultural and environmental factors influencing complexity per-
ception. Expanding the dataset to include diverse cultural and geographic contexts could yield lo-
calized insights, enabling architects to tailor complexity levels to specific user and environmental
needs.

Extending ‘Facade Complexity Analysis’ to Urban Streetscapes

The application of the CICA system to urban streetscapes revealed distinct patterns in facade com-
plexity across five cities—Barcelona, Budapest, Florence, Fukuoka, and Paris. Complexity scores
ranged from 4.1 in Fukuoka to 6.4 in Barcelona (see Figure 5.22), highlighting the influence of
cultural and architectural contexts. Barcelona’s ornate ‘Catalan Modernisme‘ facades maintained
high scores, while Fukuoka’s minimalist modernist designs exhibited lower scores, emphasizing
functionality over ornamentation. This analysis confirmed the CICA system’s reliability in cap-
turing both visual intricacy and urban cohesion across diverse settings.

These findings underscore the role of facade complexity in preserving cultural identity and
guiding urban renewal. Iconic cities with higher complexity, like Barcelona and Florence, demon-
strate the value of intricate designs in enhancing visual richness and fostering cultural continuity.
Conversely, the regular street from Fukuoka, with a modern and less intricate design, highlight
the potential for contemporary designs to prioritize clarity and adaptability while showcasing
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room for improvement of aesthetic appeal. The ability of the CICA system to identify these pat-
terns offers practical insights for architects and planners, informing both preservation efforts and
the integration of contemporary elements into historic urban fabrics.

Future research should extend this analysis to additional cities and diverse street typologies
to enhance the generalizability of the findings. Incorporating volumetric complexity and environ-
mental performance metrics into the CICA system could provide a more comprehensive assess-
ment of urban environments. These advancements would strengthen its application in designing
sustainable streetscapes that balance cultural heritage with modern demands, ensuring the sys-
tem’s utility in diverse urban renewal and planning scenarios.

Validation of CV Metrics in Assessing Architectural Complexity

The application of the CICA system to historical datasets, experimental user evaluations, and
urban streetscape analysis validated its reliability in quantifying architectural complexity across
varied contexts. In the historical analysis (Figure 5.11), the system identified a rising complexity
trendline in postmodern architecture, corroborating the hypothesis of increasing complexity in
contemporary design (see Section 5.4.1). In urban streetscapes, it consistently captured the nu-
anced interplay of cultural and architectural influences, as illustrated by the average complexity
scores across cities, ranging from 4.1 (Fukuoka) to 6.4 (Barcelona) (see Figure 5.22).

The discrepancies observed between participant preferences and CICA rankings, particularly
at higher complexity levels (standard deviation of 9%; see Section 5.4.2), underscore the impor-
tance of integrating user feedback with algorithmic assessments. These results highlight the po-
tential for refining facade optimization practices by blending quantitative data with subjective
input.

Future work should focus on expanding the dataset to include more architectural styles and
contexts, as recommended in Section 5.5. This expansion would enhance the system’s general-
izability and applicability, ensuring its utility in both historical preservation and contemporary
design optimization.

6.3.4 Integration of Findings

This subsection combines results stemming from both the primary and specific objectives, putting
into focus how data-driven methodologies and immersive technologies are working together to
change architectural practices. By combining computational precision and immersive interaction,
the DIDO framework has proven to be versatile in different contexts, starting from site layout
planning (SLP) to the analysis of facade complexity.

Collaborative Impact of Data-Driven Insights and Immersive Technologies

The integration of data-driven insights and immersive tools, as explored in both SLP and ‘Facade
Complexity Analysis’, illustrates the transformative potential of DIDO in architectural design. The
findings reveal that VR technologies significantly enhanced decision-making accuracy, reducing
deviations in SLP by an average of 48.3% (Section 4.4, Figure 4.13) and aligning user-selected de-
signs more closely with multi-objective optimization (MOO) recommendations. Similarly, the use
of VR in ‘Facade Complexity Analysis’ enabled participants to engage with CICA-based evalua-
tions, revealing a pattern in preferred level of complexity, the otherwise subjective interpretation
of complexity in facade design now backed by a measurable CICA complexity score with 40%
of users consistently selecting facades rated near the mean CICA score of 4.05 (Section 5.4.2, Fig-
ure 5.15), contributing to refine the predicting computational model.
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These findings highlight the synergistic relationship between computational tools like MOO
algorithms and CICA metrics, and experiential technologies like VR. While computational sys-
tems provided data-driven precision, VR’s immersive environment bridged the gap between ab-
stract metrics and human-centered design, enabling users to intuitively assess spatial layouts and
facade aesthetics.

Adaptability of the DIDO Framework

The adaptability of the DIDO framework across diverse scales and design challenges underscores
its versatility. At the macro-level, SLP demonstrated how VR and MOO integration can improve
urban planning efficiency, reducing resource waste and fostering stakeholder engagement (Sec-
tion 4.5). At the micro-level, ‘Facade Complexity Analysis’ showed how CV-based metrics could
capture intricate architectural patterns, as seen in the urban streetscapes analysis (Section 5.4.4,
Figure 5.22).

This adaptability reflects DIDO’s capacity to address both functional optimization and aes-
thetic refinement, balancing quantitative metrics with qualitative user feedback. For example, SLP
participants valued real-time feedback for its role in spatial exploration (Section 4.4), while facade
complexity participants emphasized the importance of moderate intricacy in designs and consid-
erations for views (Section 5.4.3). The consistent application of the DIDO framework across these
contexts highlights its potential as a standardized tool for participatory and data-driven architec-
tural design.

Future Directions for Cross-Disciplinary Applications

While DIDO’s successes demonstrate its robustness, challenges identified in its implementation
offer opportunities for refinement. For example, differences in user perceptions—such as the vari-
ability in VR interaction outcomes in SLP (SD = 44.1%, Figure 4.14) and the standard deviation
in facade complexity preferences (SD = 1.2, Figure 5.15)—emphasize the need for more intuitive
interfaces and adaptive feedback loops.

Looking ahead, expanding DIDO to incorporate emerging technologies like augmented reality
(AR) and mixed reality (MR) could bridge the gap between immersive virtual environments and
real-world applications. For urban renewal, DIDO could integrate facade complexity metrics to
guide the restoration of historical districts (Section 5.4.4). Similarly, combining MOO-driven SLP
with facade optimization could foster holistic urban design practices, balancing efficiency with
cultural and aesthetic considerations.

By synthesizing computational insights with immersive technologies, the DIDO framework
has proven its potential to foster inclusive, efficient, and culturally responsive architectural prac-
tices. The integration of these approaches not only enhances decision-making but also empowers
stakeholders to engage meaningfully in design processes, paving the way for sustainable and
adaptive design innovations.
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FIGURE 6.3: Flowchart illustrating the limitations of this study.

6.4 Limitations of the Study

This study has provided significant insights into the integration of data-driven methodologies and
immersive technologies in architectural design, yet several limitations must be acknowledged for
advancing the methodologies and expanding the impact of data-driven immersive design in the
architectural, engineering, and construction (AEC) industry (see Figure 6.3).

Methodological Limitations
One of the key limitations of this study lies in its sample size and demographics. The SLP

experiments involved only 17 participants, while the ‘Facade Complexity Analysis’ included 26
participants. Most participants were university students and faculty members, with limited repre-
sentation from diverse professional backgrounds and age groups. This homogeneity restricts the
generalizability of findings to broader stakeholder groups, such as experienced urban planners,
architects, and non-academic users. A larger and more diverse participant pool is necessary to
validate the findings and expand their applicability.

The virtual reality (VR) environment, while effective in facilitating immersive decision-making,
introduces its own constraints. The controlled experimental setting may not fully replicate the
complexities of real-world conditions, such as environmental distractions or dynamic urban con-
texts. Moreover, participants’ familiarity with VR technology varied, leading to potential biases in
decision-making outcomes. Some participants reported mild discomfort, such as motion sickness,
which could impact their performance and engagement. These challenges underline the need for
more robust VR systems and standardized user protocols.

Similarly, the CICA system demonstrated limitations in its current methodology. The reliance
on two-dimensional (2D) images for complexity analysis omits crucial three-dimensional (3D)
architectural features, such as volumetric articulation and spatial hierarchy. Additionally, the
metrics used—such as edge detection and contour density—do not fully encapsulate subjective
aesthetic preferences, which are deeply influenced by cultural and individual factors. These con-
straints highlight areas for refinement in both experimental design and algorithmic approaches.

Contextual and Dataset Constraints
The datasets used in this study present contextual limitations. The SLP experiments were con-

ducted using hypothetical site scenarios rather than real-world urban environments, which limits
the practical applicability of the findings. For ‘Facade Complexity Analysis’, the historical dataset



162 Chapter 6. Conclusions, Limitations, and Future Works

comprised 177 architectural facades, while urban analysis focused on five streetscapes from se-
lected cities. While these datasets provided valuable insights, their scope does not fully capture
the global diversity of architectural styles or urban contexts. Expanding these datasets to include
a wider range of building types, geographic regions, and cultural influences would enhance the
robustness of the results.

Furthermore, the analysis did not deeply explore cultural or environmental considerations in
user preferences. For instance, while the CICA system identified a preference for moderate com-
plexity (mean score of 4.05/10, Section 5.4.2), it did not account for how cultural backgrounds
might shape these preferences. Similarly, the environmental implications of facade complexity,
such as energy efficiency and material sustainability, were not integrated into the analysis. Ad-
dressing these aspects in future studies could offer a more holistic understanding of facade design.

Technological and Practical Challenges
The usability of VR systems posed a significant challenge, with participants displaying vary-

ing levels of comfort and proficiency. Designing universally intuitive interfaces for such a diverse
group of users remains a critical challenge. While survey results highlighted the potential of VR
for enhancing decision-making (Section 4.4, Figure 4.18), they also pointed to areas requiring im-
provement, such as better visualization of design flaws and enhanced navigation controls.

Economic feasibility is another practical limitation. Implementing advanced VR and computer
vision (CV) systems at scale requires substantial financial and technical resources, which may hin-
der their adoption in smaller architectural and urban planning firms. This constraint underscores
the need for cost-effective solutions to democratize access to these technologies.

Lastly, scalability emerged as a challenge, particularly for the DIDO framework. While this
study demonstrated the effectiveness of DIDO in focused applications like SLP and facade com-
plexity, its adaptability to large-scale urban planning projects or multi-site analysis has not been
tested. Understanding how DIDO performs in such scenarios is essential for its widespread im-
plementation.

Theoretical Limitations
This study’s focus on facade complexity represents another limitation. While it provided valu-

able insights into patterns, textures, and user preferences, the narrow scope may overlook other
critical aspects of architectural design, such as interior spaces, urban integration, and landscape
interactions. Future research should adopt a more comprehensive approach to address these in-
terconnected design elements.

Moreover, discrepancies between computational metrics and user perceptions underscore the
ongoing gap between quantifiable data and experiential insights. For instance, while the CICA
system provided systematic complexity scores, it occasionally diverged from participants’ subjec-
tive evaluations, particularly at higher complexity levels (Section 5.4.2, Figure 5.17). Bridging this
gap will require advancements in algorithms that better incorporate human-centered and cultur-
ally sensitive factors into data-driven methodologies.

This comprehensive discussion of limitations provides a clear pathway for addressing the con-
straints of the study while aligning future research directions with the evolving needs of the ar-
chitectural, engineering, and construction (AEC) industry.
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FIGURE 6.4: Flowchart illustrating Future Research Directions of this study.

6.5 Future Research Directions

Building on the findings and limitations identified in this study, future research offers numerous
opportunities to refine and expand the applications of the Data-Driven Immersive Design Op-
timization (DIDO) framework. By addressing key gaps, such as participant diversity, advanced
metrics for facade complexity, and the integration of dynamic data, researchers can enhance the
robustness and scalability of DIDO, making it a transformative tool for architectural design (see
Figure 6.4).

To improve the generalizability of this study’s findings, future research should expand partic-
ipant demographics to include diverse user groups with varying professional expertise, cultural
backgrounds, and geographic representation. This would provide a more comprehensive under-
standing of how different user profiles influence decision-making in SLP and ‘Facade Complexity
Analysis’. Additionally, testing DIDO in large-scale, real-world applications, such as urban plan-
ning projects or high-density developments, will help assess its scalability and adaptability across
diverse architectural contexts.

Enhancing the capabilities of the Computational Image Complexity Analysis (CICA) system
represents a critical area for future exploration. Incorporating volumetric and three-dimensional
complexity metrics would allow for a more holistic evaluation of architectural designs. Additional
metrics, such as materiality, energy efficiency, and environmental performance, could further align
the CICA system with sustainable design goals. Expanding datasets to include a broader range of
cities, architectural styles, and geographic regions will enhance the system’s applicability and
reliability in diverse contexts.

The inclusion of dynamic, real-time environmental data offers the potential to improve the
robustness of site layout planning (SLP) models. Future research could integrate data such as
traffic flow, energy consumption, and climatic conditions into multi-objective optimization (MOO)
processes. These inputs would allow stakeholders to evaluate how designs perform under varying
conditions, providing a more realistic basis for decision-making in immersive virtual reality (VR)
environments.

Exploring the potential of extended reality (XR) technologies, such as augmented reality (AR)
and mixed reality (MR), could complement VR-based workflows by enabling real-time, in-situ
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evaluations of design proposals. Integrating DIDO with generative design algorithms and ad-
vanced simulation tools could further enhance its computational workflows, opening up new
possibilities for iterative, data-driven design optimization.

Future research should focus on refining the human-computer interaction (HCI) aspects of
DIDO to enhance accessibility and user engagement. This includes developing alternative visu-
alization paradigms tailored to users with varying levels of expertise and exploring innovative
interaction techniques to make VR environments more intuitive. Long-term studies on the cogni-
tive and psychological impacts of immersive technologies in professional settings could provide
valuable insights into their usability and effectiveness.

DIDO’s potential for advancing sustainable architectural practices warrants further investiga-
tion. Future studies could examine the interplay between facade complexity, energy performance,
and material efficiency to identify design strategies that balance aesthetic appeal with environ-
mental responsibility. The framework’s adaptability to projects such as adaptive reuse, urban re-
newal, and green building certification processes also represents a promising avenue for research.

The interdisciplinary nature of architectural workflows calls for broader collaboration across
related fields. Future research could explore how DIDO enhances communication and collabora-
tion between architects, engineers, urban planners, and other stakeholders. Expanding the frame-
work’s applications to adjacent disciplines, such as industrial design or interior architecture, could
reveal additional opportunities for innovation.

Future works delineated in this section seek to realize the comprehensive capabilities of the
DIDO framework, establishing it as a fundamental element in contemporary architectural prac-
tice. By tackling the recognized deficiencies and broadening its scope of applications, DIDO has
the potential to reconcile computational accuracy with human-centric design, thereby fostering
innovation within the field of architecture and beyond.
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6.6 Final Thoughts

This thesis, titled ‘Enhancing Architectural Design through Data-Driven Building Design using Virtual
Reality and Computer Vision,’ set out to explore how computational precision and user-centered de-
sign could converge to redefine architectural practices. Through the development and application
of the Data-Driven Immersive Design Optimization (DIDO) framework, the study demonstrated
the transformative potential of integrating data-driven methodologies with immersive tools like
Virtual Reality (VR) and Computer Vision (CV). By addressing Site Layout Planning (SLP) and ‘Fa-
cade Complexity Analysis’, the research validated how the DIDO framework enables informed,
efficient, and collaborative decision-making processes, fulfilling the initial vision of harmonizing
technological innovation with human-centric design principles.

Beyond its specific contributions to SLP and facade design, the broader implications of this
work extend into the future of architectural workflows. By adopting immersive technologies, ar-
chitects and planners can tackle contemporary challenges such as sustainability, urban renewal,
and cultural sensitivity. The findings highlight that tools like the CICA system and VR not only
enhance analytical capabilities but also foster deeper stakeholder engagement, paving the way for
more inclusive, adaptive, and resilient architectural solutions. This intersection of computational
rigor and experiential insights exemplifies a shift towards design methodologies that prioritize
both precision and empathy.

As architecture evolves to meet the demands of a dynamic world, this research underscores
the need for continuous innovation. The DIDO framework, as articulated in this thesis, serves as
a foundational model for bridging the gap between advanced computation and human creativ-
ity, inspiring researchers and practitioners alike to push the boundaries of what is possible. By
embracing such integrative approaches, the field of architecture can unlock new possibilities for
collaboration, sustainability, and design excellence.

In conclusion, this study not only advances theoretical understanding but also provides prac-
tical tools and methodologies for real-world application. Its journey reflects a commitment to ex-
ploring the convergence of data and design, offering a vision for architecture that is as grounded
in human experience as it is in technological progress. The work presented here aspires to influ-
ence not just the projects of today but the architectural landscapes of tomorrow, driving the field
toward a future that is innovative, inclusive, and impactful.
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Appendix A

Appendix for Virtual Reality-based Site
Layout Planning for Building Design

A.1 Post-interaction Survey of experiment for Site Layout Planning

The evaluation survey had three sections. The first one task with identifying the professional back-
ground of the participants (see A.1). The second one, a 10 question survey using a 7-point Likert
scale to measure the usability of the system (see A.2) and perception of the influence that said
system had on their solution (see A.3).

TABLE A.1: Multiple choice survey for professional background

Participant background section. Multiple choice questions

1 What is your current occupation?
a) Architect
b) Civil engineer
c) Construction manager
d) Urban planner
e) Other (please specify)

2 How many years of professional experience do you have in site layout planning?
a) None
b) Less than 1 year
c) 1-5 years
d) 6-10 years
e) More than 10 years

3 What is the highest level of education you have completed?
a) High school diploma
b) Associate degree
c) Bachelor’s degree
d) Master’s degree
e) Doctoral degree

4 Which software tools have you used for site layout planning? (Select all that apply)
a) AutoCAD
b) SketchUp
c) Revit
d) Rhino
e) ArcGIS
f) Other (please specify)

5 What challenges have you encountered when designing site layouts? (Select all that apply)
a) Limited space
b) Limited budget
c) Site constraints
d) Client preferences
e) Environmental factors
f) Other (please specify)
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TABLE A.2: User satisfaction section from Usability survey for VR simulation for site layout plan-
ning design

User satisfaction section. 7 - Likert scale

6 Overall, how satisfied are you with the virtual reality simulation for site layout planning design?
1) Very dissatisfied
2) Moderately dissatisfied
3) Slightly dissatisfied
4) Neither satisfied nor dissatisfied
5) Slightly satisfied
6) Moderately satisfied
7) Very satisfied

7 To what extent did the virtual reality simulation enhance your ability to visualize the site layout plan?
1) Not at all
2) Slightly
3) Moderately
4) Neither
5) Somewhat
6) Very
7) Extremely

8 How easy was it to use the virtual reality simulation for site layout planning design?
1) Very Difficult
2) Moderately Difficult
3) Slightly Difficult
4) Neither Easy nor Difficult
5) Slightly Easy
6) Moderately Easy
7) Very Easy

9 To what extent did the virtual reality simulation allow you to explore different design options?
1) Not at all
2) Slightly
3) Moderately
4) Neither
5) Somewhat
6) Very
7) Extremely

10 How helpful was the virtual reality simulation in identifying potential design flaws or issues?
1) Not at all helpful
2) Slightly helpful
3) Moderately helpful
4) Neither helpful nor unhelpful
5) Somewhat helpful
6) Very helpful
7) Extremely helpful
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TABLE A.3: User-System Influence Perception section from Usability survey for VR simulation for
site layout planning design

Influence perception section. 7 - Likert scale

11 To what extent did the suggested solutions presented through the virtual reality simulation influence your de-
cision regarding the site layout planning design?
1) Not at all
2) Slightly
3) Moderately
4) Neither
5) Somewhat
6) Very
7) Extremely

12 How valuable were the suggested solutions presented through the virtual reality simulation in improving the
site layout planning design?
1) Not valuable at all
2) Slightly valuable
3) Moderately valuable
4) Neither valuable nor invaluable
5) Somewhat valuable
6) Very valuable
7) Extremely valuable

13 How likely are you to implement the suggested solutions presented through the virtual reality simulation in the
final site layout plan?
1) Very unlikely
2) Moderately unlikely
3) Slightly unlikely
4) Neither likely nor unlikely
5) Slightly likely
6) Moderately likely
7) Very likely

14 How likely are you to use a virtual reality simulation for site layout planning design in the future?
1) Very unlikely
2) Moderately unlikely
3) Slightly unlikely
4) Neither likely nor unlikely
5) Slightly likely
6) Moderately likely
7) Very likely

15 How would you rate the overall effectiveness of the virtual reality simulation for site layout planning?
1) Very dissatisfied
2) Moderately dissatisfied
3) Slightly dissatisfied
4) Neither satisfied nor dissatisfied
5) Slightly satisfied
6) Moderately satisfied
7) Very satisfied
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Appendix B

Appendix for Facade Complexity
Analysis for Building Design

B.1 Post-interaction Survey of experiment for Facade Complexity Anal-
ysis

Survey conducted for the experiment related to Facade Complexity analysis in Chapter 5. The
evaluation survey had two sections. The first one tasked with identifying the professional back-
ground of the participants (see TableB.1). The second one, a 10 question survey using a 7-point
Likert scale to measure the degree of complexity and pattern arrangement within facade design
tailored for digital fabrication (see TableB.2).
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TABLE B.1: Multiple choice survey for
professional background

Participant background section. Multiple choice
questions

1 What is your current occupation?
a) Architect
b) Civil engineer
c) Construction manager
d) Urban planner
e) Other (please specify)

2 How many years of professional experience
do you have in facade design?
a) None
b) Less than 1 year
c) 1–5 years
d) 6–10 years
e) More than 10 years

3 What is the highest level of education you
have completed?
a) High school diploma
b) Associate degree
c) Bachelor’s degree
d) Master’s degree
e) Doctoral degree

4 Which software tools have you used for fa-
cade design? (Select all that apply)
a) AutoCAD
b) SketchUp
c) Revit
d) Rhino
e) ArcGIS
f) Other (please specify)

5 What challenges have you encountered
when designing facades? (Select all that ap-
ply)
a) Limited space
b) Limited budget
c) Building program constraints
d) Client preferences
e) Environmental factors
f) Other (please specify)

TABLE B.2: Perception section from sur-
vey for facade complexity analysis

Complexity perception section. 7 - Likert scale

6 To what extent do you find the overall com-
plexity of this facade design appealing?
Strongly Disagree (1) —————— Strongly
Agree (7)

7 How do you rate the intricacy of the patterns
and textures used in this facade design?
Not Intricate at All (1) —————— Ex-
tremely Intricate (7)

8 To what extent do you think the arrangement
of architectural elements on this facade adds
to its visual interest?
Not at All (1) —————— Adds Signifi-
cantly (7)

9 How complex do you perceive the facade’s
use of patterns and textures?
Not Complex at All (1) —————— Very
Complex (7)

10 How detailed do you find the ornamentation
on this facade design?
Not Detailed at All (1) —————— Ex-
tremely Detailed (7)

11 How much do the combination of materials
contribute to the overall complexity of the fa-
cade?
Minimally (1) —————— Significantly (7)

12 To what degree does the composition of the
facade strike you as aesthetically intricate?
Not Intricate at All (1) —————— Ex-
tremely Intricate (7)

13 How much do you believe that the arrange-
ment of shapes and forms on the facade con-
tributes to its complexity?
Not at All (1) —————— A Great Deal (7)

14 How significantly does the use of color en-
hance the facade’s visual complexity?
Not Significantly (1) —————— Very Sig-
nificantly (7)

15 How much depth and layering do you ob-
serve in the design of this facade?
None (1) —————— A Great Deal (7)
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