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Abstract

We study the properties of a stochastic heat equation with a generalized mixed
fractional Brownian noise. We obtain the covariance structure, stationarity and
obtain bounds for the asymptotic behavior of the solution. We suggest estimators
for the unknown parameters based on discrete time observations and study their
asymptotic properties.
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1. Introduction

For modeling fluctuations in movements of stock prices, Brownian motion has been
used traditionally as the driving force for modeling log returns. It was suggested by
some that the driving force may be chosen as a fractional Brownian motion to model
long range dependence. Bjork and Hult (2005) and Kuznetsov (1999) observed that the
use of fractional Brownian motion for modeling fluctuations in movement of stock prices
is not justifiable as it allows arbitrage opportunities. To avoid this problem, Cheridito
(2000, 2003) suggested the use of a mixed fractional Brownian motion (mfBm) as a suit-
able model for the driving force. The mixed fractional Brownian motion is a Gaussian
process which is a mixture of a Brownian motion and an independent fractional Brow-
nian motion. Option pricing for processes driven by mfBm with superimposed jumps is
investigated in Prakasa Rao (2015). Pricing geometric Asian power options under mixed
fractional Brownian motion environment is studied in Prakasa Rao (2016). Kallianpur
and Xiong (1995) discussed the properties of solutions of stochastic partial differential
equations (SPDEs) driven by an infinite-dimensional Brownian motion. They indicate
that such SPDEs can be used for modeling the study of neuronal behavior in neuro-
physiology and for building stochastic models for turbulence. Parametric estimation for
SPDEs driven by fBm is discussed in Chapter 8 of Prakasa Rao (2010). Generalized
mixed fractional Brownian motion is a finite mixture of independent fractional Brow-
nian motions. It is known that this process is a centered Gaussian process which is
self-similar in a suitable sense and not Markov. Properties of these processes are studied
in Chapter 3 of Mishura and Zili (2018). Long range dependence property of time-
changed Generalized mixed fractional Brownian motion is investigated in Prakasa Rao
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(2025). Ergodic properties of the solution of a fractional stochastic equation driven by
a mixed fractional Brownian motion are discussed in Avetisian and Ralchenko (2020).
Parameter estimation for a mixed fractional stochastic heat equation has been investi-
gated in Avetisian and Ralchenko (2023). Parametric estimation for SPDEs driven by
infinite dimensional mixed fractional Brownian motion is investigated in Prakasa Rao
(2022). Parametric estimation for stochastic parabolic equations driven by an infinite
dimensional mfBm are studied in Prakasa Rao (2023). Our aim in this paper is to study
problems of parameter estimation in a stochastic heat equation driven by a Generalized
mixed fractional Brownian motion based on discrete time observations. Our techniques
are analogous to those in Avetisian and Ralchenko (2023).

We study parameter estimation for a stochastic heat equation of the form

(
∂u

∂t
− 1

2

∂2u

∂x2
)(t, x) = σ1Ẇ

H1
x + σ2Ẇ

H2
x , t > 0, x ∈ R (1)

under the condition
u(0, x) = 0, x ∈ R. (2)

We denote the space of real numbers by R for typographical convenience. The process
on the right hand side of the equation (1) is a generalized mixed fractional noise. It
consists of two independent fractional Brownian motions WH1 and WH2 with Hurst
indices 0 < H1,H2 < 1 and the parameters σ1 and σ2 are positive constants. We
investigate the problem of estimating the parameters H1,H2, σ1 and σ2 based on discrete
observations of the solution u(t, x) of the equation (1).

2. Preliminaries

Suppose that WHi = {WHi
x , x ∈ R}, i = 1, 2 are two independent two-sided frac-

tional Brownian motions with Hurst indices Hi, i = 1, 2 respectively. Let G be the
Green’s function of the heat equation given by

G(t, x) =
1√
2πt

exp{−x2

t
}, if t > 0,

= δ0(x) if t = 0.

The random field {u(t, x), t ≥ 0, x ∈ R} defined by

u(t, x) = σ1

∫ t

0

∫
R
G(t− s, x− y)dWH1

y ds+ σ2

∫ t

0

∫
R
G(t− s, x− y)dWH2

y ds (3)

is called a solution of the stochastic partial differential equation (SPDE) defined by (1)
and (2).

As pointed out by Avetisian and Ralchenko (2020), the stochastic integrals in (3)
exist as path wise Riemann-Stieltjes integrals since the Green’s function is Lipshitz
continuous and the sample paths of the fractional Brownian motion WHi are Holder
continuous up to order Hi, i = 1, 2. We will now derive some properties of the solution
u(t, x).
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Theorem 2.1. Let u(t, x), t ∈ [0, T ], x ∈ R} be a solution to the equations (1) and
(2) as defined by (3). Then the following properties hold.
(i)For 0 ≤ t, s ≤ T and for x, z ∈ R,

(4)

Cov(u(t, z), u(s, x+ z)) = Cov(u(t, 0), u(s, x))

=
1√
2π

∫ t

0

∫ s

0

(q + r)−
3
2

∫
R
(σ2

1H1|y|2H1−1 + σ2
2H2|y|2H2−1)

×(sign y)(y − x) exp{− (y − x)2

2(q + r)
}dy dq dr.

(ii) For any fixed t1, . . . , tn ∈ [0, T ], the multivariate process {(u(t1, x), . . . , u(tn, x)), x ∈
R} is a centered stationary Gaussian process.
(iii) The variance of u(t, x) is given by

V ar(u(t, x)) = E[u(t, x)]2 = σ2
1vt(H1) + σ2

2vt(H2), t > 0, x ∈ R (5)

where

vt(H) = cHtH+1 and cH =
2H+1(2H − 1)Γ(H + 1

2 )√
π(H + 1)

. (6)

(iv)For t, s ∈ [0, T ] and x > 0, the covariance function admits the following upper bound:

|Cov(u(t, 0), u(s, x))| ≤ CH1,H2
ts(σ2

1x
2H1−2 + σ2

2x
2H2−2) (7)

where CH1,H2 is a positive constant depending on H1 and H2.
(v) For t, s ∈ [0, T ] and x ∈ R,

Cov(u(t, x), u(s, x)) =
σ2
12

H1Γ(H1 +
1
2 )((t+ s)H1+1 − tH1+1 − sH1+1)

√
π(H1 + 1)

(8)

+
σ2
22

H2Γ(H2 +
1
2 )((t+ s)H2+1 − tH2+1 − sH2+1)

√
π(H2 + 1)

.

(vi) For fixed t > 0, the process {u(t, x), x ∈ R} is ergodic.

Proof: Since the processesWH1 andWH2 are independent fractional Brownian motions,
it is easy to see that

Cov(u(t, x), u(s, z)) = σ2
1Cov(u1(t, x), u1(s, z)) + σ2

2Cov(u2(t, x), u2(s, z)) (9)

where

ui(t, x) =

∫ t

0

∫
R

G(t− s, x− y)dWHi
y ds, i = 1, 2.

The properties (i)-(v) follow from the results in Avetisian and Ralchenko (2020,2023) for
fractional Brownian motion as noise. For any fixed t ∈ [0, T ], the process {u(t, x), x ∈ R}
is a stationary Gaussian process . From Proposition 4 in Avetisian and Ralchenko (2020),
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it follows that the covariance function R(t, x) = Cov(u(t, 0), u(t, x)) of the process will
satisfy the inequality

|R(t, x)| ≤ CH1σ
2
1t

2x2H1−2 + CH2σ
2
1t

2x2H2−2, x > 0.

Since 0 < H1,H2 < 1,, it follows that R(t, x) → 0 as x → ∞. This in turn implies that
the process {u(t, x), x ∈ R} is an ergodic process for any fixed t > 0.

Let δ > 0 and define

VN (t) =
1

N

N∑
i=1

[u(t, kδ)]2, t > 0, N ≥ 1, (10)

µ(t) = σ2
1vt(H1) + σ2

2vt(H2). (11)

Let

ρH1,H2

t,s (k) = Cov(u(t, kδ), u(s, 0)) and rt,s(H1,H2) = 2

∞∑
k=−∞

[ρH1,H2

t,s (k)]2.

Theorem 2.2. (i) For any t > 0,

VN (t) → µ(t) a.s. as N → ∞. (12)

(ii) Suppose further that H1,H2 ∈ (0, 3
4 ). Then, for any distinct positive t1, . . . , tn, the

random vector √
N(VN (t1)− µ(t1), . . . , VN (tn)− µ(tn))

converges in law to a multivariate normal distribution with mean vector 0 and covariance
matrix R as N → ∞ where

R = ((rti,tj (H1,H2)))n×n.

Proof: Since the process {u(t, x), x ∈ R} is an ergodic process for any t > 0,, it follows
that

VN (t) =
1

N

N∑
k=1

[u(t, kδ)]2 → E([u(t, 0)]2) a.sas N → ∞.

Note that
|ρH1,H2

ti,tj (k)| ≤ C(σ2
1(kδ)

2H1−2 + σ2
2(kδ)

2H2−2)

for some constant C > 0 depending on H1 and H2 and hence

(ρH1,H2

ti,tj (k))2 ≤ C(σ4
1(kδ)

4H1−4 + σ4
2(kδ)

4H2−4)

which in turn implies that
∞∑

k=−∞

(ρH1,H2

ti,tj (k))2 < ∞
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since H1,H2 ∈ (0, 3
4 ). Following the arguments in the proof of Theorem 1 in Avetisian

and Ralchenko (2023), it follows that

√
N(VN (t1)− µ(t1), . . . , VN (tn)− µ(tn))

converges in law to a multivariate normal distribution with mean vector 0 and covariance
matrix R where

R = ((rti,tj (H1,H2))n×n

by the Cramer-Wold technique and the multivariate Breuer-Major theorem (cf. Arcones
(1994)).

3. Estimation of H1 given H2

Let δ > 0. We now consider the problem of estimation of the parameter H1 given
H2, σ

2
1 and σ2

2 and the process {u(t, x), t ≥ 0, x ∈ R} is observed at the points, xk =
kδ, k = 1, . . . , N for fixed 0 < t1 < t2 < t3. Following the method of moments for
estimation of the unknown parameters which consists in equating the sample moments
to the population moments and observing that

VN (t) → µ(t) = σ2
1vt(H1) + σ2

2vt(H2) a.s as N → ∞,

we obtain the Equations

Vn(ti) = σ2
1vti(H1) + σ2

2vti(H2), i = 1, 2, 3 (13)

= σ2
1CH1t

H1+1
i + σ2

2CH2t
H2+1
i , i = 1, 2, 3.

As a consequence, it follows that

t
−(H2+1)
2 VN (t2)− t

−(H2+1)
1 VN (t1) = σ2

1CH1
(tH1−H2

2 − tH1−H2
1 ) (14)

and
t
−(H2+1)
3 VN (t3)− t

−(H2+1)
1 VN (t1) = σ2

1CH1(t
H1−H2
3 − tH1−H2

1 ). (15)

Taking ratios of the terms on either side of the equations given above, we obtain that

t
−(H2+1)
2 VN (t2)− t

−(H2+1)
1 VN (t1)

t
−(H2+1)
3 VN (t3)− t

−(H2+1)
1 VN (t1)

=
(tH1−H2

2 − t
H1−H2)
1

(tH1−H2
3 − tH1−H2

1 )
.

Observe that

lim
H1→H2

(tH1−H2
2 − tH1−H2

1 )

(tH1−H2
3 − tH1−H2

1 )
=

log t2 − log t1
log t3 − log t1

by L’Hopital rule. Define the function

f(H) =
(tH−H2

2 − tH−H2
1 )

(tH−H2
3 − tH−H2

1 )
if H ̸= H2 (16)

=
log t2 − log t1
log t3 − log t1

if H = H2.
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For any fixed H2, and for 0 < t1 < t2 < t3, it can be shown that the function f :
R → (0,∞) is strictly increasing function in H following arguments in Avetisian and
Ralchenko (2023) and hence has an inverse f−1. We define the estimator Ĥ1N of the
parameter H1 by the equation

Ĥ1N = f−1(
t
−(H2+1)
2 VN (t2)− t

−(H2+1)
1 VN (t1)

t
−(H2+1)
3 VN (t3)− t

−(H2+1)
1 VN (t1)

) (17)

which will be well-defined for large N. Following the method of proof of Theorem 1 in
Avetisian and Ralchenko (2023), we obtain the following result.

Theorem 3.1. Suppose H1 ∈ (0, 1) and H1 ̸= H2. Then the estimator Ĥ1N is a
strongly consistent estimator of H1 as N → ∞. Furthermore

√
N(Ĥ1N −H1) → N(0, ζ2) in distribution as N → ∞

where ζ2 depends on t1, t2, t3 and H2.

Proof: Note that

t
−(H2+1)
2 VN (t2)− t

−(H2+1)
1 VN (t1)

t
−(H2+1)
3 VN (t3)− t

−(H2+1)
1 VN (t1)

→ f(H1) a.s as N → ∞.

From the continuity of the inverse function f−1, it follows that Ĥ1N converges a.s. to
H1 as N → ∞. Taking expectations on both sides of the equations (14) and (15) and
then taking the ratios, we obtain that

t
−(H2+1)
2 µ(t2)− t

−(H2+1)
1 µ(t1)

t
−(H2+1)
3 µ(t3)− t

−(H2+1)
1 µ(t1)

=
(tH1−H2

2 − tH1−H2
1 )

(tH1−H2
3 − tH1−H2

1 )
= f(H1).

Hence

H1 = f−1(
t
−(H2+1)
2 µ(t2)− t

−(H2+1)
1 µ(t1)

t
−(H2+1)
3 µ(t3)− t

−(H2+1)
1 µ(t1)

).

Therefore

√
N(Ĥ1N −H1) =

√
N(g(Vn(t1), VN (t2), Vn(t3))− g(µ(t1), µ(t2), µ(t3)))

where

g(x1, x2, x3) = f−1(
t
−(H2+1)
2 x2 − t

−(H2+1)
1 x1

t
−(H2+1)
3 x3 − t

−(H2+1)
1 x1

).

Applying the delta method and observing that (VN (t1), VN (t2), VN (t3)) is asymptotically
normal after suitable scaling, it can be shown that

√
N(Ĥ1N −H1) → N(0, ζ2) in distribution as N → ∞

for some ζ2 depending on ti, i = 1, 2, 3 and H2.. We skip the details.



Parameter Estimation for Generalized Mixed Fractional Stochastic Heat Equation 7

4. Estimation of σ2
1 and σ2

2 when H1 and H2 are known and H1 ̸= H2

Suppose that the Hurst indices H1 and H2 are known. We now study the problem
of estimation of the parameters σ2

1 and σ2
2 based on the discrete set of observations

u(ti, kδ), i = 1, 2, , k = 1, . . . , N with t1 < t2 and a fixed δ > 0. Using the method of
moments again, we obtain the equations

Vn(ti) = σ2
1CH1t

H1+1
i + σ2

2CH2t
H2+1
i , i = 1, 2.

Solving these equations, we obtain the estimators

σ̂2
1N =

t
−(H2+1)
1 Vn(t1)− t

−(H2+1)
2 VN (t2)

CH1
(tH1−H2

1 − tH1−H2
2 )

and

σ̂2
2N =

t
−(H1+1)
1 Vn(t1)− t

−(H1+1)
2 VN (t2)

CH2(t
H2−H1
1 − tH2−H1

2 )

for σ2
1 and for σ2

2 respectively. From the almost sure convergence of Vn(t) to µ(t) as
N → ∞, it follows that

σ̂2
iN → σ2

i a.s as N → ∞
for i = 1, 2 whenever H1 ̸= H2. Observe that the random vector

(
√
N(σ̂2

1N − σ2
1),

√
N(σ̂2

2N − σ2
2))

is a linear function of the random vector

(
√
N(Vn(t1)− µ(t1)),

√
N(Vn(t2)− µ(t2))

with coefficients depending on t1, t2,H1 and H2. Furthermore the random vector

(
√
N(Vn(t1)− µ(t1)),

√
N(Vn(t2)− µ(t2))

is asymptotically bivariate normal with mean zero and suitable covariance matrix.
Hence, it follows that the random vector

(
√
N(σ̂2

1N − σ2
1),

√
N(σ̂2

2N − σ2
2))

is asymptotically bivariate normal with mean zero and suitable covariance matrix Σ.

Following the method of moments, one can obtain alternate set of estimators by
observing that, for any δ > o,

1

N

N∑
k=1

[u(t, kδ)]4 → µ4 a.s as N → ∞

where µ4 is the 4-th central moment of the Gaussian distribution with mean zero and
variance 3[σ2

1vt(H1) + σ2
2vt(H2]

2. This follows from the observation that for a Gaussian
distribution with mean zero and variance σ2, the 4-th central moment is 3σ4. Let

JN (t) =
1

N

N∑
k=1

[u(t, kδ)]4.
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Solving the Equations

VN (t1) = σ2
1CH1

tH1+1
1 + σ2

2CH2
tH2+1
1

and √
JN (t2)/3 = σ2

1CH1
tH1+1
2 + σ2

2CH2
tH2+1
2 ,

we obtain alternate estimators for σ2
1 and σ2

2 depending on H1,H2 and the choice of t1
and t2. These estimators will also be strongly consistent as N → ∞.
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