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Shunsuke Shiraishi∗, Tsuneshi Obata† and Kazunori Yokoyama‡

Abstract

Invex functions form a broader class of differentiable functions than convex
functions, ensuring global optimality at stationary points. However, the theoret-
ical properties of invex functions, particularly those that drop convexity, remain
underexplored. In this paper, we investigate these properties, providing examples
that include both smooth and nonsmooth cases, and demonstrate the existence of
infinitely many invex functions that are not necessarily convex. An illustrative ex-
ample using a characteristic polynomial highlights the critical role of consistency in
a 4th-order pairwise comparison matrix in determining invexity. Our findings ex-
pand the theoretical understanding of invexity and suggest potential enhancements
in optimization techniques, enabling the analysis of a broader class of functions be-
yond convexity.

Key Words and Phrases: Invex function, convex function, AHP, nonsmooth function, optimiza-

tion

1. Preliminary results

Optimization problems often rely on convexity to ensure global optimality; however,
many real-world problems involve functions that do not satisfy convexity. Although
invex functions generalize convexity and provide global optimality for stationary points,
there remains a gap in understanding their broader theoretical properties and practical
implications. In particular, the distinction between invexity and convexity requires
further exploration, particularly in cases involving nonsmooth or higher-dimensional
functions.

Understanding the properties of invex functions has significant implications for
optimization theory, as it opens avenues for solving problems that cannot be addressed
using convexity alone. This study is motivated by the need to expand the theoretical
framework of invexity and to explore its potential applications, such as in mathematical
economics and other fields where convexity limitations arise.
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This paper aims to investigate the properties of invex functions by 1. Constructing
examples of invex functions, including both smooth and nonsmooth cases. 2. Demon-
strating the existence of infinitely many invex functions that are not convex. 3. Highlight-
ing the role of 4th-order pairwise comparison matrices in determining invexity. Through
these objectives, the study seeks to expand the theoretical understanding of invexity
and its potential applications.

We begin with the notion of convex functions. A function f : Rn → R is said to be
convex (see Tiel (1984))1, if it satisfies

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) ∀x, y ∈ Rn, ∀λ ∈ [0, 1].

There are many generalizations of the concept of convex functions. In this paper,
we focus on a well-known generalization of convex functions, called invex functions. For
other generalizations of convexity, see Auslender (1976), Avriel (1976), Fukushima (2001).
We do not consider further generalizations of invexity in this study (for definitions of
generalized invexity, see, for example, Kuk et al. (2001)). However, generalized invexity
has faced some criticism by Zǎlinescu (2014); hence, we do not focus on it in this study.

Invex functions have been applied to problems in nonlinear optimization program-
ming, where significant results have been achieved under the assumption of invexity
alone (not generalized invexity). For more details, see Ben-Israel and Mond (1986),
Das et al. (2018), Hanson (1981), Jeyakumar and Mond (1992), Obata and Shiraishi (1997),
Mishra and Giorgi (2008), Shiraishi (1998), Tanaka (1990), Tanaka et al. (1989) and the
references therein. Recent research has explored the application of invex functions in the
study of neural networks, see Sapkota and Bhattarai (2021). For a generalization of in-
vex functions and their applications to optimization problems, see Wang and Feng (2024)
and the references therein. However, the original invexity continues to be an appealing
and active area of research. In this section, we revisit the definition of invex functions
for smooth and nonsmooth cases, along with their basic properties.

1.1. Smooth invex functions

For smooth convex functions, the following theorems are essential tools in opti-
mization theory. As for the following result, see Theorem 4.32 and Corollary 4.37 in
Avriel (1976) and

Theorem 1.1. Let f be a convex function on Rn. Then, every local minimum is a
global minimum over Rn.

Since a local minimizer x∗ ∈ Rn satisfies the first-order condition,

∇f(x∗) = 0,

we immediately obtain the following result:

Theorem 1.2. Let f be a differentiable convex function on Rn. Then,

∇f(x∗) = 0

if and only if f attains its global minimum at x∗.

1 For extended valued functions, consult the definitions of convexity in Auslender (1976),
Fukushima (2001), Rockafellar (1970)
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Broadly speaking, every stationary point of a smooth convex function is a global
minimizer. A natural question arises: Is a function for which every stationary point is a
global minimizer necessarily convex? The answer is no. A function for which every sta-
tionary point is a global minimizer is called an invex function. The (smooth) invex func-
tion is formally defined as follows (see, Ben-Israel and Mond (1986), Hanson (1981)):

Definition 1.3. A function f : Rn → R is said to be invex if there exists a mapping
η(x, u) : Rn × Rn → Rn such that

f(x) − f(u) ≥ [η(x, u)]⊤∇f(u) ∀x, u ∈ Rn.

The following theorem (Theorem 1 in Ben-Israel and Mond (1986)) answers the
aforementioned question.

Theorem 1.4. A function f is invex if and only if every stationary point is a global
minimum.

In Sections 2.1. and 3., we show that there exist smooth invex functions that are
not necessarily convex. Moreover, in Section 4., we demonstrate that there are infinitely
many invex functions that do not exhibit convexity.

The following theorem is used to determine whether a given function is not convex
(see, Theorem 4.30 in Avriel (1976)).

Theorem 1.5. Let f : Rn → R be a twice continuously differentiable function.
Then, f is convex if and only if the Hessian ∇2f of f is positive semidefinite at every
point.

Remark. We can determine that a given function is non-convex if the Hessian of
the function is negative at some point. This procedure can also be applied to nonsmooth
functions. If the Hessian of the function is negative at a smooth point, then the function
under consideration is non-convex.

1.2. Nonsmooth invex functions

Tanaka (1990), Tanaka et al. (1989) generalized the notion of invexity for nons-
mooth functions. Throughout the sequel, let f : Rn → R be locally Lipschitz continuous.

Definition 1.6. A function f : Rn → R is said to be locally Lipschitz near x if
there exists a neighborhood U of x and a nonnegative scalar K such that

|f(y) − f(y′)| ≤ K‖y − y′‖

for all points y, y′ ∈ U .

For example, the absolute-value function y 7→ |y| is Lipschitz continuous. From the
triangle inequality, we have

|y| = |y − y′ + y′|
≤ |y − y′| + |y′|.

Thus,
|y| − |y′| ≤ |y − y′|.

The following assertion follows directly from the definition. See Theorem 4.6.14 in
Sohrab (2014).
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Lemma 1.7. Let f : Rn → R and g : Rn → R be locally Lipschitz near x. Then, the
additive function f + g is also locally Lipschitz near x. If, in addition, both are bounded
near x, then the product function f · g : Rn → R is also locally Lipschitz near x.

Proof. By the assumption of the lemma, there exists a neighborhood U of x and
scalars L,K > 0 such that for all y, y′ ∈ U , the following inequalities hold:

|f(y) − f(y′)| ≤ L‖y − y′‖,
|g(y) − g(y′)| ≤ K‖y − y′‖.

Thus, we have

|(f(y) + g(y)) − (f(y′) + g(y′))| ≤ |f(y) − f(y′)| + |g(y) − g(y′)|
≤ L‖y − y′‖ + K‖y − y′‖.

Moreover, if the functions are locally bounded, there exists a neighborhood U of x and
scalars M,N > 0 such that for all y, y′ ∈ U , we have

|f(y′)| ≤ M,

|g(y)| ≤ N.

Thus, we have

|f(y)g(y) − f(y′)g(y′)| = |f(y)g(y) − f(y′)g(y) + f(y′)g(y) − f(y′)g(y′)|
≤ |(f(y) − f(y′))g(y) + f(y′)(g(y) − g(y′))|
≤ LN‖y − y′‖ + KM‖y − y′‖.

The following lemmas are trivial.

Lemma 1.8. Let f : R → R and g : Rn → R be locally Lipschitz near x. Then, the
composite function f ◦ g(x) = f(g(x)) is also locally Lipschitz near x.

Lemma 1.9. Let f : Rn → R be locally Lipschitz and g : Rm → Rn be an affine
map, where g(y) = Ay + b and A is an m × n matrix. Then, the composite function
f ◦ g(y) = f(Ay + b) is locally Lipschitz.

Clarke (1983) defined the generalized directional derivative and the generalized
gradient for a locally Lipschitz function f : Rn → R as follows:

Definition 1.10. The generalized directional derivative of f at x in the direction
d is defined by

f◦(x; d) = lim sup
y→x,t↓0

f(y + td) − f(y)

t
.

The generalized gradient of f at x is defined by

∂f(x) = {ξ ∈ Rn | f◦(x; d) ≥ 〈ξ, d〉∀d ∈ Rn}.

Theorem 1.11 Proposition 2.3.2 in Clarke (1983). Let f be locally Lipschitz
near x. If f attains a local minimum at x, then 0 ∈ ∂f(x).
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The following theorems are due to Proposition 2.1.2 and Theorem 2.5.1 in Clarke (1983).

Theorem 1.12. Let f be locally Lipschitz near x. Then,

(a) ∂f(x) is a nonempty convex compact set.

(b) For every d in Rn, one has

f◦(x; d) = max{〈ξ, d〉 | ξ ∈ ∂f(x)}.

Theorem 1.13. Let f be locally Lipschitz near x, and suppose S is any set of
Lebesgue measure 0 in Rn. Then,

∂f(x) = co{lim∇f(xi) | xi → x, xi 6∈ S, xi 6∈ Ωf},

where Ωf denotes the set of points at which f fails to be differentiable.

Let f ′(x; d) be the one-sided directional derivative, defined by

f ′(x; d) = lim
t↓0

f(x + td) − f(x)

t
.

Note that both f◦(x; d) and f ′(x; d) are positively homogeneous in d, see Clarke (1983),
Rockafellar (1970). The regularity in Clarke’s sense is defined in terms of the one-sided
directional derivative.

Definition 1.14. A function f is said to be regular at x if for all d in Rn, the
one-sided directional derivative exists and satisfies

f◦(x; d) = f ′(x; d), ∀d ∈ Rn.

Definition 1.15. Assume that a function f is regular at each x. The function f
is said to be invex if there exists a mapping η(x, u) : Rn × Rn → Rn such that

f(x) − f(u) ≥ f ′(u; η(x, u)), ∀x, u ∈ Rn.

The following theorem is the variant for nonsmooth functions of Theorem 1.4, see
Theorem 2.1 of Tanaka et al. (1989).

Theorem 1.16. Let f be locally Lipschitz and regular at each point. Then, f is
invex if and only if every point u such that 0 ∈ ∂f(u) is a global minimum of f .

For a convex function f , the generalized gradient is the same as the subdifferential in
the sense of convex analysis. Every convex function has the property that all stationary
points are global minima. We consider the converse of this assertion. Is a function for
which every stationary point is a global minimum necessarily convex?

In Section 2.3., we show that there exists a nonsmooth invex function without
convexity.
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2. Examples of one variable

2.1. Smooth functions of one variable

We begin with a simple example (Exercise 5.15 in Shiraishi (2014)).

Example 2.1. Let f1 : R → R be a function defined by

f1(x) = xex.

Then, f1(x) is invex but not convex.

−10 −8 −6 −4 −2

1

2

x

f1(x)

Figure 1: Graph of f1(x)

Proof. The first-order derivative of f1(x) is

f ′
1(x) = ex(x + 1).

The first-order condition implies that x = −1 is the point where f1(x) achieves its global
minimum. Therefore, f1(x) is invex.

The second-order derivative of f1(x) is

f ′′
1 (x) = ex(x + 2).

The second derivative f ′′
1 (x) is negative for x < −2. Therefore, f1(x) is not convex.

The next example is a slight modification of the characteristic polynomial of the
4th-order pairwise comparison matrix of the analytic hierarchy process (AHP)2 , see
Obata and Shiraishi (2021).

Example 2.2. Let f2 : R → R be a function defined by

f2(x) = x4 − 4x3 − 64x

Then, f2(x) is invex but not convex.

2 For details, see Brunelli (2014), Ku lakowski (2021).
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Figure 2: Graph of f2(x)

Proof. If we take the first-order derivative of f2(x), we get

f ′
2(x) = 4x3 − 12x2 − 64 = 4(x− 4)(x2 + x + 4).

Since x2 +x+4 > 0, the first-order condition implies that x = 4 is the unique stationary
point of f2(x). The function f2(x) attains its global minimum at x = 4; hence, f2(x) is
invex.

Next, we take the second-order derivative of f2(x), which is

f ′′
2 (x) = 12x2 − 24x = 12x(x− 2).

The second derivative f ′′
2 (x) takes negative values when 0 < x < 2. Hence, f2(x) is not

convex.

Remark. If we define a 4 × 4 matrix A by

A =


1 4 1/2 1/7

1/4 1 1/3 2
2 3 1 3
7 1/2 1/3 1

 ,

then, we have the following characteristic polynomial PA(λ) of A:

PA(λ) = det(λE −A)

= λ4 − 4λ3 − 5389

84
λ +

5225

336

= λ4 − 4λ3 − 64.1547619λ + 15.55059524,

where E denotes the identity matrix. The indicated polynomial function is a source of
f2(x) in Example 2.2.

2.2. Characteristic polynomial and invexity

In this subsection, we deal with the pairwise comparison matrix of order 4:

A =


1 a12 a13 a14

1/a12 1 a23 a24
1/a13 1/a23 1 a34
1/a14 1/a24 1/a34 1

 .
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The characteristic polynomial PA(λ) = det(λE −A) of A has the following form (
Obata and Shiraishi (2021)):

Theorem 2.3. PA(λ) = λ4 − 4λ3 + c3λ + detA, where

c3 =
∑

i<k<j

(
2 − aikakj

aij
− aij

aikakj

)
.

We remark that c3 ≤ 0. The pairwise comparison matrix is said to be consistent
if aikakj = aij for all i, k, j. If this condition is not satisfied, we call the matrix A
inconsistent. The consistency of the pairwise comparison matrix is determined by c3
(see, Shiraishi et al. (1998)).

Theorem 2.4. The pairwise comparison matrix A is consistent if and only if c3 =
0. In this case, we have PA(λ) = λ4 − 4λ3.

We can assert that the characteristic polynomial of the 4th-order pairwise compar-
ison matrix is invex if it is inconsistent.

Theorem 2.5. The characteristic polynomial PA(λ) of the 4th-order pairwise com-
parison matrix A is invex if and only if A is inconsistent.

Proof. (If) Let A be inconsistent. Then, by Theorem 2.4, we have c3 < 0. Taking
the derivative of PA(λ), we get P ′

A(λ) = 4λ3 − 12λ2 + c3. Since P ′
A(0) = c3 < 0 and

limλ→∞ P ′
A(λ) = ∞, the equation P ′

A(λ) = 0 has a unique root λ∗ > 0, which is a
stationary point of PA(λ), as shown in Figure 3. Hence, P ′

A(λ) = 4λ2(λ − 3) + c3 < 0
for λ < λ∗, and P ′

A(λ) > 0 for λ > λ∗. Therefore, PA(λ) attains a strict minimum at
λ∗. Thus, PA(λ) is invex.

2 3

λ∗

c3

λ

P
′

A
(λ)

Figure 3: Graph of P ′
A(λ) = 4λ3 − 12λ2 + c3

(Only if) We prove by using the contrapositive. If A is consistent, then by Theorem
2.4, we have c3 = 0 and PA(λ) = λ4 − 4λ3. The function has two stationary points,
λ = 0, 4 and λ = 0 is not a global minimum. Hence, PA(λ) is not invex. See Figure 4.

A 4th-order pairwise comparison matrix based on Saaty’s discrete scale has a to-
tal of 176 = 24,137,569 possible matrices. Among these, only 343 are consistent (
Obata and Shiraishi (2021)). As a result, the characteristic polynomials of 4th-order
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3

4

λ

PA(λ)

Figure 4: Graph of PA(λ) = λ4 − 4λ3

pairwise comparison matrices generate a huge number of invex functions, specifically
24,137,226. However, not all of these are necessarily distinct functions; some of them
may coincide. Consequently, the total number will be smaller. In Chapter 4., we will
proceed to construct an infinite number of invex functions.

2.3. Nonsmooth function of one variable

Example 2.6. Let f3 : R → R be a function defined by

f3(x) = |x|e(x−1)2 .

−0.5 0.5 1 1.5

1

2

3

x

f3(x)

Figure 5: Graph of f3(x)

Lemma 2.7. The function f3(x) is locally Lipschitz.

Proof. Since the functions x 7→ |x| and x 7→ e(x−1)2 are locally Lipschitz and
bounded, the assertion of the lemma follows from Lemma 1.7.

Lemma 2.8. The function f3(x) is regular.
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Proof. If we take the derivative of f3(x) for x > 0 and x < 0, respectively, where
the function is smooth, f3(x) has the following formulas.

f3(x) = xe(x−1)2 for x > 0,

f3(x) = −xe(x−1)2 for x < 0.

Then, we get the following expressions for the derivative:

f ′
3(x) = e(x−1)2(2x2 − 2x + 1) for x > 0,

f ′
3(x) = −e(x−1)2(2x2 − 2x + 1) for x < 0.

Hence, at the unique nonsmooth point x = 0 of f3(x), the generalized gradient is

∂f3(0) = co{lim f ′
3(xi) | xi → 0} = co{−e, e} = [−e, e],

f◦
3 (0; 1) = max

ξ∈[−e,e]
ξ · 1 = e,

f◦
3 (0;−1) = max

ξ∈[−e,e]
ξ · (−1) = e.

Furthermore, we have

f ′
3(0; 1) = lim

t↓0

te(t−1)2

t
= e,

f ′(0;−1) = lim
t↓0

te(−t−1)2

t
= e.

Hence, we have f◦
3 (0;±1) = f ′

3(0;±1). By the positive homogeneity of f ′(x; d) and
f◦(x; d), we conclude that f◦

3 (0; d) = f ′
3(0; d) for all d. Thus, f3 is regular.

Proposition 2.9. The function f3(x) is invex.

Proof. As we noted above lemma, the derivative of f3(x) for x > 0 and x < 0,
respectively, where the function is smooth, is non zero, because

f ′
3(x) = e(x−1)2

(
2
(
x− 1

2

)2
+

1

2

)
> 0 for x > 0,

f ′
3(x) = −e(x−1)2

(
2
(
x− 1

2

)2
+

1

2

)
< 0 for x < 0.

At the unique nonsmooth point x = 0 of f(x), the generalized gradient is

∂f3(0) = [−e, e].

Since 0 ∈ ∂f3(0) is unique stationary point and f3(x) attains its global minimum at this
point, we conclude that f3(x) is invex.

Proposition 2.10. The function f3(x) is not convex.

Proof. If we take the second derivative of f3(x) for x > 0, where the function is
smooth, then we get

f ′′
3 (x) = 2e(x−1)2(2x3 − 4x2 + 5x− 2) < 0,

for sufficiently small x > 0.
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3. Example of two variables

Example 3.1. Let F1 : R2 → R be a function defined by

F1(x1, x2) = (x1 + x2)ex1+x2 .

Then, F1(x1, x2) is invex but not convex.

Proof. If we take the partial derivatives of F1(x1, x2), we get

∂F1

∂x1
(x1, x2) = (x1 + x2 + 1)ex1+x2 ,

∂F1

∂x2
(x1, x2) = (x1 + x2 + 1)ex1+x2 .

The first-order condition implies x1 + x2 = −1. From Example 2.1, we know that
for all x = x1 + x2 and −1 = x∗

1 + x∗
2,

F1(x1, x2) = f1(x) ≥ f1(−1) = F1(x∗
1, x

∗
2).

Thus, F1(x1, x2) achieves the global minimum at all stationary points of F1(x1, x2),
which confirms that F1(x1, x2) is invex. Now, consider x2 = 0. In this case, F1(x1, 0) =
f1(x1). Since f1(x) is not convex, the function F1(x1, x2) is also not convex.

−4
−2

0 −4
−2

0

0

1

2

3

x1
x2

F1(x1, x2) = (x1 + x2)e
x1+x2

Figure 6: Graph of F1(x1, x2)

4. Infinitely many invex functions

Theorem 4.1. There exist infinitely many invex functions that are not convex.

Proof. We consider the function f2(x) of Example 2.2, again. For non-negative
α ≥ 0, let us consider the family of functions F2(x1, x2 : α) : R2 → R defined by

F2(x1, x2 : α) = f2(x1) + αx2
2.

Evidently, F2(x1, x2 : α) is invex but not convex for all α ≥ 0. Hence, the statement of
the theorem holds.
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According to this method, we can construct other infinitely many invex functions
by employing the functions in Examples 2.1 and 2.6. Furthermore, we can construct
infinitely many invex functions defined on Rn. The function is given by

F (x : α) = fi(x1) +

n∑
j=2

αjx
2
j ,

where i = 1, 2, 3, x = (x1, . . . , xn), α = (α2, . . . , αn), and αj ≥ 0 for j = 2, . . . , n.

−4 −2 0 2 4 6
−5

0

5

0

500

1,000

1,500

x1

x2

F2(x1, x2, α) = x4

1
− 4x3

1
− 64x1 + αx2

2

Figure 7: Graph of F2(x1, x2)

5. Conclusion

Invex functions have been defined by restricting the domain of the functions (see,
Kuk et al. (2001), Martinez-Legaz (2009)). Under such definitions, every polynomial
function could be considered invex, which we find counterintuitive. We believe the
significant feature of an invex function lies in its global properties. In this study, we
demonstrated that the class of convex functions and the class of global invex functions
defined on the entire space Rn are distinct.

Can one truly claim that the class of invex functions is substantially richer than the
class of convex functions? Reflecting on our proof of Theorem 4.1, we must conclude,
“No.” The task of identifying practical, concrete examples remains an open avenue
for future research. To the best of our knowledge, invexity has yet to find significant
application in mathematical economics (see, Crouzeix (2003)). Therefore, exploring
applications of invexity in economics is an important area for future investigation.
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