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PAPER

Dynamically Variable Line-Size Cache Architecture for
Merged DRAM/Logic LSIs

Koji INOUE†, Koji KAI††, Nonmembers, and Kazuaki MURAKAMI†, Member

SUMMARY
This paper proposes a novel cache architecture suitable for

merged DRAM/logic LSIs, which is called “dynamically variable
line-size cache (D-VLS cache)”. The D-VLS cache can optimize
its line-size according to the characteristic of programs, and at-
tempts to improve the performance by exploiting the high on-chip
memory bandwidth on merged DRAM/logic LSIs appropriately.
In our evaluation, it is observed that an average memory-access
time improvement achieved by a direct-mapped D-VLS cache is
about 20% compared to a conventional direct-mapped cache with
fixed 32-byte lines. This performance improvement is better than
that of a doubled-size conventional direct-mapped cache†.
key words: cache, variable line-size, merged DRAM/logic LSIs,
high bandwidth

1. Introduction

Integrating processors and main memory (DRAM) on
the same chip, or merged DRAM/logic LSI, can offer a
number of advantages for breaking technological limi-
tations of conventional system design [12]. Especially,
the high on-chip memory bandwidth, which is one of
the advantages of the merged DRAM/logic LSIs, will
produce significant performance advantages. Because
it improves data-transfer ability between the processors
and the main memory dramatically.

For merged DRAM/logic LSIs with a memory hi-
erarchy including cache memory, we can exploit high
on-chip memory bandwidth by means of replacing a
whole cache line at a time on cache misses [11][13][17].
This approach tends to increase the cache-line size if
we attempt to improve the attainable memory band-
width. In general, large cache lines can benefit some
application as the effect of prefetching. Larger cache
lines, however, might worsen the system performance if
programs do not have enough spatial locality and cache
misses frequently take place. This kind of cache misses
(i.e., conflict misses) could be reduced by increasing the
cache associativity. But, this approach usually makes
the cache access time longer[4][18].
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To resolve the above-mentioned dilemma, we have
proposed a concept of “variable line-size cache (VLS
cache)”[11][6]. The VLS cache can alleviate the nega-
tive effects of larger cache-line size by partitioning the
large cache line into multiple small cache lines. The per-
formance of the VLS cache depends largely on whether
or not cache replacements can be performed with ad-
equate line-sizes. However, these paper [6][11] did not
have discussed how to determine the adequate cache-
line size. There are at least two approaches to optimiz-
ing the cache-line sizes: one is a static determination
based on compiler analysis; the other is a dynamic de-
termination using some run-time hardware supports. It
may be possible to adopt the former approach when tar-
get programs have regular access patterns within well-
structured loops. However, a number of programs have
non-regular access patterns. In addition, when a lot of
programs run concurrently, the amount of spatial local-
ity will vary both within and among programs.

This paper proposes one of the latter approaches,
which is referred to as “dynamically variable line-size
cache (D-VLS cache)” architecture, and evaluates the
cost/performance improvements attainable by the D-
VLS cache. The D-VLS cache changes its cache-line
size at run time according to the characteristics of ap-
plication programs to execute. Line-size determinater
selects adequate line-sizes based on recently observed
data reference behavior. Since this scheme does not re-
quire any modification of instruction set architectures,
the full compatibility of existing object codes can be
kept. The goal of D-VLS cache is to improve the sys-
tem performance of merged DRAM/logic LSIs such as
PPRAM (Parallel Processing RAM)[11] or IRAM (In-
telligent RAM)[12] by making good use of the high on-
chip memory bandwidth.

The rest of this paper is organized as follows. Sec-
tion 2 describes related work. Section 3 relates the con-
cept and principle of the VLS cache. Section 4 discusses
the D-VLS cache architecture. Section 5 presents some
simulation results and shows the cost/performance im-
provement achieved by the D-VLS cache. Section 6
concludes this paper.

2. Related Work

Several studies have proposed coherent caches in or-
der to produce the performance improvement of shared-



2

memory multiprocessor systems [1][2]. The cache pro-
posed in [2] can adjust the amount of data stored in
a cache line, and aims to produce fewer invalidations
of shared data and reduce bus or network transactions.
On the other hand, the VLS cache aims at improving
the system performance of merged DRAM/logic LSIs
by partitioning a large cache line into multiple indepen-
dently small cache sublines, and adjusting the number
of sublines to be enrolled on cache replacements. The
fixed and adaptive sequential prefetching proposed in
[1] allows us to fetch more than one consecutive cache
lines. This approach needs a counter for indicating the
number of lines to be fetched. Regardless of the values
of memory reference addresses, the counter is always
used for fetching cache lines on read misses. On the
other hand, the D-VLS cache has several flags indicat-
ing the cache-line size. Which flag should be used de-
pends on memory reference addresses. In other words,
the D-VLS cache can change the cache-line size not only
along the advance of program execution but also across
data located in different memory addresses.

Excellent cache architectures exploiting spatial lo-
cality have been proposed in [3], [9] and [8]. The caches
presented in [8] and [9] need tables for recording the
memory access history of not only cached data but also
evicted data from the cache. Similarly, the cache pre-
sented in [3] uses a table for storing the situations of
past load/store operations. In addition, the detection
of spatial locality in [3] relies on the memory access
behavior derived from constant-stride vector accesses.
On the other hand, the D-VLS cache determines a suit-
able cache-line size based on only the state of the cache
line which is currently being accessed by the processor.
Consequently, the D-VLS cache has no large tables for
storing the memory access history. Just a single bit is
added to each cache-tag for storing the memory access
history.

Furthermore, the D-VLS cache attempts to make
good use of the high on-chip memory bandwidth avail-
able on merged DRAM/logic LSIs. Since the high on-
chip memory bandwidth allows us to transfer any num-
ber of data (up to the width of on-chip memory bus)
at a time, the D-VLS cache can utilize very large cache
lines, for example 128-byte cache-lines, without increas-
ing miss penalty. The cache replacement always com-
pletes in a constant time regardless of the cache-line
sizes selected.

3. Variable Line-Size (VLS) Cache

3.1 Terminology

In the VLS cache, an SRAM (cache) cell array and
a DRAM (main memory) cell array are divided into sev-
eral subarrays. Data transfer for cache replacements is
performed between corresponding SRAM and DRAM
subarrays. Figure 1 summarizes the definition of terms.
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Fig. 1 Terminology for VLS Caches

Address-block, or subline, is a block of data associ-
ated with a single tag in the cache. Transfer-block, or
line, is a block of data transferred at once between the
cache and main memory. The address-blocks from ev-
ery SRAM subarray, which have the same cache-index,
form a cache-sector. A cache-sector and an address-
block which are being accessed during a cache lookup
are called a reference-sector and a reference-subline, re-
spectively. When a memory reference from the proces-
sor is found a cache hit, referenced data resides in the
reference-subline. Otherwise, referenced data is not in
the reference-subline but only in the main memory. A
memory-sector is a block of data in the main-memory,
and corresponds to the cache-sector. Adjacent-subline
is defined as follows.

• It resides in the reference-sector, but is not the
reference-subline.

• Its home location in the main-memory is in the
same memory-sector as that of the data which is
currently being referenced by the processor.

• It has been referenced at least once since it was
fetched into the cache.

3.2 Concept and Principle of Operations

To make good use of the high on-chip memory
bandwidth, the VLS cache adjusts its transfer-block
size according to the characteristics of programs. When
programs have rich spatial locality, the VLS cache
would determine to use larger transfer-blocks, each of
which consists of lots of address-blocks. Conversely, the
VLS cache would determine to use smaller transfer-
blocks, each of which consists of a single or a few
address-blocks, and could try to avoid cache conflicts.
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Fig. 2 Three Different Transfer-Block Sizes on Cache Replace-
ments

The construction of the direct-mapped VLS cache
illustrated in Figure 2 is similar to that of a conven-
tional 4-way set-associative cache. However, the con-
ventional 4-way set-associative cache has four locations
where a sub-line can be placed, while the direct-mapped
VLS cache has only one location for a sub-line, just like
a conventional direct-mapped cache. Since the VLS
cache can avoid cache conflicts without increasing the
cache associativity, the access time of it (i.e., hit time)
is shorter than that of conventional caches with higher
associativity[6].

The VLS cache works as follows:

1. When a memory access takes place, the cache tag
array is looked up in the same manner as normal
caches, except that every SRAM subarray has its
own tag memory and the lookup is performed on
every tag memory.

2. On cache hit, the hit address-block has the re-
quired data, and the memory access performs on
this address-block in the same manner as normal
caches.

3. On cache miss, a cache refill takes place as follows:

a. According to the designated transfer-block
size, one or more address-blocks are written
back from the indexed cache-sector to their
home locations in the DRAM main memory.

b. According to the designated transfer-block
size, one or more address-blocks (one of which
contains the required data) are fetched from
the memory-sector to the cache-sector.

For the example VLS cache shown in Figure 1,
there are three possible transfer-block sizes as follows:

• Minimum transfer-block size, where only the des-
ignated address-block is involved in cache replace-
ments (see Figure 2 (a)).

• Medium transfer-block size, where the designated
address-block and one of its neighborhood in the
corresponding cache-sector are involved (see Fig-
ure 2 (b)).

• Maximum transfer-block size, where the desig-
nated address-block and all of its neighborhood
in the corresponding cache-sector are involved (see
Figure 2 (c)).

4. Dynamically VLS (D-VLS) Cache

4.1 Architecture

The performance of the VLS cache depends heavily on
how well the cache replacement is performed with op-
timal transfer-block size. However, the amount of spa-
tial locality may vary both within and among program
executions. The line-size determinater for the D-VLS
cache selects adequate line-sizes based on recently ob-
served data reference behavior.

Figure 3 illustrates the block diagram of a direct-
mapped D-VLS cache with four subarrays. The
address-block size is 32 bytes, and we introduce the
following three transfer-block sizes:

• Minimum transfer-block size (=32 bytes) involving
just one (= 20) address-block,

• Medium transfer-block size (=64 bytes) involving
two (= 21) address-blocks, and

• Maximum transfer-block size (=128 bytes) involv-
ing four (= 22) address-blocks.

Since it is not be allowed that the medium transfer-
block misaligns with the 64-byte boundary in the 128-
byte cache-sector, the number of possible combinations
of address-blocks to be involved in cache replacements is
just seven (four for minimum, two for medium, and one
for maximum transfer-block size, respectively) rather
than fifteen (= 24 − 1).

The D-VLS cache provides the following for opti-
mizing the transfer-block sizes at run time:

• A reference-flag bit per address-block : This
flag bit is reset to 0 when the corresponding address-
block is fetched into the cache, and is set to 1 when the
address-block is accessed by the processor† . It is used
for determining whether the corresponding address-
block is an adjacent-subline. On cache lookup, if the tag
of an address-block which is not the reference-subline

†Of course, the reference-flag bit corresponding to the
address-block which has caused the cache miss is set to 1
when the cache replacement is performed.
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Fig. 3 Block Diagram of a Direct-Mapped D-VLS Cache

matches the tag field of the address and if the reference-
flag bit is 1, then the address-block is an adjacent-
subline.

• A line-size specifier (LSS) per cache-sector :
This specifies the transfer-block size of the corre-
sponding cache-sector. As described in Section 3.2,
each cache-sector is in one of three states: minimum,
medium, and maximum transfer-block-size states. To
identify these states, every LSS provides a 2-bit state
information. This means that the cache replacement
is performed according to the transfer-block size which
is specified by the LSS corresponding to the reference-
sector. The LSS is maintained in the LSS-table, as
shown in Figure 3.

• Line-size determinater (LSD) : On every cache
lookup, the LSD determines the state of the line-size
specifier of the reference-sector. The algorithm is given
in the next section.

The D-VLS cache works as follows:

1. The address generated by the processor is divided
into the byte offset within an address-block, subar-
ray field designating the subarray, index field used
for indexing the tag memory, and tag field.

2. Each cache subarray has its own tag memory and
comparator, and it can perform the tag-memory
lookup using the index and tag fields independently
with each other. At the same time, the LSS corre-
sponding to the reference-sector is read using the
index field from the LSS-table.

3. One of the tag-comparison results is selected by the
subarray field of the address, and then the cache
hit or miss is determined.

4. On cache miss, a cache replacement is performed
according to the state of the LSS.

5. Regardless of hits or misses, the LSD determines

Minimum Line Maximum Line

Medium Line

: reference-subline  or 
  adjacent-subline

Other PatternsOther Patterns

Other Patterns

Reference-Sector

Initial

Fig. 4 State Transition Diagram

the state of the LSS. After that, the LSD writes
back the modified LSS to the LSS-table.

4.2 Line-Size Determinater Algorithm

The algorithm for determining adequate transfer-block
sizes is very simple. This algorithm is based on not
memory-access history but the current state of the
reference-sector. This means that no information of
evicted data from the cache need to be maintained. On
every cache lookup, the LSD determines the state of
the LSS of the reference-sector, as follows:

1. The LSD investigates how many adjacent-sublines
exist in the reference-sector using all the reference-
flag bits and the tag-comparison results.

2. Based on the above-mentioned investigation result
and the current state of the LSS of the reference-
sector, the LSD determines the next state of the
LSS. The state-transition diagram is shown in Fig-
ure 4.

If there are many neighboring adjacent-sublines,
the reference-sector has good spatial locality. This is
because the data currently being accessed by the pro-
cessor and the adjacent-sublines are fetched from the
same memory-sector, and these sublines have been ac-
cessed by the processor recently. In this case, the
transfer-block size should become larger. Thus the
state depicted in Figure 4 transits from the minimum
state (32-byte line) to the medium state (64-byte line)
or from the medium (64-byte line) state to the maxi-
mum state (128-byte line) when the reference-subline
and adjacent-sublines construct a larger line-size than
the current line-size.

In contrast, if the reference-sector has been ac-
cessed sparsely before the current access, there should
be few adjacent-sublines in the reference-sector. This
means that the reference-sector has poor spatial local-
ity at that time. In this case, the transfer-block size
should become smaller. So the state depicted in Fig-
ure 4 transits from the maximum state (128-byte line)
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to the medium state (64-byte line) when the reference-
subline and adjacent-sublines construct equal or smaller
line-size than the medium line-size (64-byte or 32-byte
line). Similarly, the state transits from the medium
state (64-byte line) to the minimum state (32-byte line)
when the reference-subline and adjacent-sublines con-
struct minimum line-size (32-byte line).

5. Evaluations

In this section, we discuss the effectiveness of the D-
VLS cache. Before presenting the performance im-
provements produced by the D-VLS cache, we consider
the cache-hit time, cache-cycle time, and hardware cost.
In this evaluation, we represent conventional fixed line-
size caches and D-VLS caches as follows:

• FIX32, FIX64, FIX128 : Conventional 16 KB direct-
mapped caches, each of which has a fixed transfer-block
(line) size of 32 bytes, 64 bytes, and 128 bytes, respectively.

• FIX32W4 : Conventional 16 KB four-way set-associative
cache with fixed 32-byte line size.

• FIX32double : Conventional 32 KB direct-mapped cache
with fixed 32-byte line size.

• S-VLS128-32 : 16 KB direct-mapped VLS cache having
three line sizes of 32 bytes, 64 bytes, and 128 bytes. S-
VLS128-32 changes its line size program by program. The
adequate line-size of each program is determined based on
prior simulations.

• D-VLS128-32ideal : 16 KB direct-mapped D-VLS cache
having three line sizes of 32 bytes, 64 bytes, and 128 bytes.
It is an ideal D-VLS cache ignoring the hardware overhead.
D-VLS128-32ideal provides a line-size specifier (LSS) for
each memory-sector rather than for each cache-sector.

• D-VLS128-32LSS1, D-VLS128-32LSS8 : 16 KB realistic
direct-mapped D-VLS caches having three line sizes of 32
bytes, 64 bytes, and 128 bytes. D-VLS128-32LSS1 provides
one LSS for each cache-sector, while D-VLS128-32LSS8 pro-
vides it for eight consecutive cache-sectors. That is, the
total number of LSSs in D-VLS128-32LSS1 is 128 (=128
cache-sectors / 1), whereas that in VLS128-32LSS8 is 32
(=128 cache-sectors / 8).

5.1 Cache-Hit Time and Cache-Cycle Time

The structure of a direct-mapped VLS cache having 32-
byte, 64-byte, and 128-byte line sizes is similar to that
of a conventional 4-way set-associative cache with 32-
byte fixed-lines. However, an important difference be-
tween these caches is that there is hardly any bad influ-
ence of the delay generated by the VLS cache, whereas
increasing cache associativity make cache access-time
longer. Thus, we can assume that the cache-hit time
of a direct-mapped VLS cache having three line sizes
of 32 bytes, 64 bytes, and 128 bytes is same as that of
conventional direct-mapped cache with fixed 128-byte
lines (FIX128) [6].

To add to the VLS cache organization, the D-
VLS caches have reference-flag, LSS-table, and LSD, as
shown in Section 4.1. These components do not affect

the cache-hit time because they do not appear on VLS
cache critical-path [6]. In this evaluation, therefore, we
assume that the cache-hit time of D-VLS128-32LSS1
and D-VLS128-32LSS8 is same as that of FIX128.

From cache cycle-time point of view, however, two
accesses† to the LSS-table might make the cache cycle-
time longer. Because if the LSS-table is implemented
by an SRAM array, it is very hard to complete the
two SRAM accesses in a shorter processor clock cycle.
There are two methods to resolve this problem: one is
the pipelining of the LSS-table accesses, and the other
is to implement the LSS-table using flip-flops. In this
paper, the latter approach has been employed, because
the former approach makes the structure and control of
the LSS-table more complex.

5.2 Hardware Cost

Generally, a cache consists of an SRAM portion
(data-array and tag-array) and logic portions (decoder,
comparator, and multiplexors). Additionally, the D-
VLS cache requires the special hardware supports, the
reference-flag bits, the LSS-table and the LSD. We have
calculated the size of the SRAM portion and have de-
signed the logic portions in order to find the number
of transistors for each cache. In this design, we have
described the logic portions of each cache in RT-Level
using VHDL (VHSIC Hardware Description language),
and have translated that to a Gate-Level description
using Synopsys VHDL Compiler.

For the D-VLS caches (D-VLS128-32LSS1 and
D-VLS128-32LSS8), each tag field includes the 1-bit
reference-flag. The LSS-table is implemented by flip-
flops in order to keep the cache-cycle time, as explained
earlier in Section 5.1. Since 16 KB D-VLS caches with
32-byte, 64-byte, and 128-byte lines have 128 cache-
sectors (= 16KB / 128bytes), D-VLS128-32LSS1 and
D-VLS128-32LSS8 require 256-bits (= 2bits×128) and
32-bits (2bits×128/8) flip-flops for the LSS-table, re-
spectively. The LSD is independent of the number of
cache-sectors which share a single LSS. We can imple-
ment the LSD with small combinational logic due to
the simple algorithm for determining the adequate line-
sizes, as explained earlier in Section 4.2. Table 1 shows
the size of the SRAM portion and the number of tran-
sistors for the logic portions. The right-most column
describes the total number of transistors including the
SRAM portion where a 2-bit SRAM is assumed to be
one transistor††. The column described as “LSS” in-
cludes both flip-flops for the LSS-table and multiplex-

†one for reading the LSS corresponding to the reference-
sector and one for writing the modified LSS into the LSS-
table.

††“Overall Roadmap Technology Characteristics” in [14]
shows that the rate of the LogicTransistors/cm2 to
CacheSRAMBits/cm2 from 2001 to 2007 is approximately
1:2.
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Table 1 Hardware Costs

Cache Model SRAM portion Logic portion Total Hardware Cost
Data Tag Total Logic LSD LSS Total SRAM+Logic
[bits] [bits] [bits] [Tr] [Tr] [Tr] [Tr] [Tr]

FIX32 (direct) 131,072 9,216 140,288 8,354 – – 8,354 78,498

FIX64 (direct) 131,072 4,608 135,680 11,310 – – 11,310 79,150

FIX128 (direct) 131,072 2,304 133,376 17,988 – – 17,988 84,676
FIX32W4 (4-way) 131,072 10,240 141,312 18,968 – – 18,968 89,624

D-VLS128-32LSS1 (direct) 131,072 9,728 140,800 18,922 230 14,020 33,172 103,572
D-VLS128-32LSS8 (direct) 131,072 9,728 140,800 18,922 230 2,056 21,208 91,608

ors for selecting a LSS corresponding to the reference-
sector.

It is observed that the hardware overhead of D-
VLS128-32LSS1 from FIX32, FIX128 and FIX32W4
are about 32%, 22% and 16%, respectively. Since D-
VLS128-32LSS8 which is a reasonable D-VLS cache
does not require a lot of multiplexors for selecting
a LSS, it can be implemented with slight hardware
overhead. The hardware cost of D-VLS128-32LSS8
is only 17%, 8% and 2% higher than that of FIX32,
FIX128 and FIX32W4, respectively. Although the D-
VLS caches require more transistors than the conven-
tional caches, this hardware overhead is trivial for the
area of the entire chip of merged DRAM/logic LSIs
which have not only the on-chip cache but also on-chip
main memory (DRAM arrays).

5.3 Miss Rate

5.3.1 Simulation Environment

We measured miss rate using two cache simulators writ-
ten in C: one for conventional caches with fixed line-
sizes and the other for D-VLS (or VLS) caches with
32-byte, 64-byte, and 128-byte line sizes. In our ex-
periments, two integer programs and a floating-point
program from the SPEC92 benchmark suit [16] are ex-
ecuted using SPEC reference inputs. In addition, seven
integer programs and four floating-point programs from
the SPEC95 benchmark suite [16] are executed us-
ing SPEC training input, and SPEC test inputs, re-
spectively. We have also simulated mpeg2encode and
mpeg2decode programs from [10] using verification pic-
tures. These programs are compiled by GNU CC with
the “–O2” option, and are executed on Ultra SPARC
architecture. Furthermore, in order to assume more
realistic execution on general purpose processors, four
benchmark sets are used, each of which consists of three
programs as follows:

• mix-int1 : 072.sc, 126.gcc, and 134.perl.

• mix-int2 : 124.m88ksim, 130.li, and 147.vortex.

• mix-fp : 052.alvinn, 101.tomcatv, and 103.su2cor.

• mix-intfp : 132.ijpeg, 099.go, and 104.Hydro2d.
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The programs in each benchmark set are assumed to
run in multiprogram manner on a uni processor system,
and a context switch occurs per execution of one million
instructions. Mix-int1 and mix-int2 contain integer pro-
grams only, and mix-fp consists of three floating-point
programs. Mix-intfp is formed by two integer and one
floating-point programs. We captured address traces
using QPT[5] of each benchmark set for the execution
of three billion instructions.

5.3.2 Results for Benchmarks

Figure 5 presents simulation results. The left three
bars for each benchmark are miss rates given by con-
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Fig. 6 Amount of Spatial Locality at a Cache-Sector

ventional caches, each of which has 32-byte, 64-byte,
and 128-byte fixed line-size. The remaining bars to the
right are results given by the D-VLS caches (D-VLS128-
32LSS1 and D-VLS128-32LSS8). For each benchmark,
simulation results are normalized to the miss rate pro-
duced by the conventional cache with the best line-size.

As shown in Figure 5, the best line-size is highly
application-dependent. In a number of benchmarks,
however, the D-VLS caches give nearly equal or lower
miss rates than the conventional cache with the best
line-size. Especially, for 132.ijpeg, 134.perl, 052.alvinn,
and 104.hydro2d, the D-VLS caches have significant
performance advantages over conventional caches. In
the other benchmarks but one (072.sc), the D-VLS
caches produce better results than the conventional
cache with the second best line-size.

Although the D-VLS caches give good results in
almost all benchmarks, they do not work better for
072.sc. In order to clarify this cause, we have ana-
lyzed the transition of the amount of spatial locality
at the cache-sector which is most frequently accessed
by the processor on FIX128. In this analysis, we have
measured the number of 32-byte sublines referenced by
the processor in a 128-byte fixed-line while the 128-byte
line resides in the cache. We regard the number of the
referenced 32-byte sublines as the amount of spatial lo-
cality at the cache-sector. Figure 6 presents simulation
results; the horizontal axis shows cache-replacement se-
quence, and the vertical axis shows the number of the
referenced 32-byte sublines in the 128-byte fixed-line to
be evicted from the cache on each cache replacement.
It is clear that the amount of spatial locality in 134.perl
and 104.hydro2d are stable, whereas that in 072.sc fre-
quently varies. On every cache lookup, the line-size de-
terminater (LSD) tries to detect the amount of spatial
locality at the reference-sector based on the number of
adjacent-sublines. When the amount of spatial locality
of each cache-sector varies frequently, such as 072.sc,
the LSD will lack the accuracy for determining the ad-
equate line-sizes.
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5.3.3 Results for Benchmark Sets

Figure 7 shows the simulation results for all the
benchmark sets and the average of them. For each
benchmark set, all results are normalized to FIX32.

First, we compare the D-VLS caches (D-VLS128-
32LSS1 and D-VLS128-32LSS8) with the conventional
direct-mapped caches. On average of all benchmark
sets, the fixed large lines in FIX128 worsen the miss
rate by about 30% from FIX32 due to frequent evic-
tions, while the D-VLS caches give remarkable improve-
ments by means of the variable line-size. The miss
rate improvements produced by D-VLS128-32LSS1 and
D-VLS128-32LSS8 are about 27% and 22%, respec-
tively. These results are equal or better than that of
FIX32double which has two times larger cache size.
The conventional four-way set-associative cache with
32-byte lines (FIX32W4) gives the best result. How-
ever, the cache-hit time of set-associative caches is
longer than that of direct-mapped caches. Since the
cache-hit time affects all load/store operation, it has
great impact on total program execution time. We will
compare the FIX32W4 and D-VLS caches with aver-
age memory-access time which includes cache-hit time
metric in the next section.

Next, we compare the D-VLS caches with the stat-
ically variable line-size cache (S-VLS128-32). On aver-
age, D-VLS128-32LSS1 and D-VLS128-32LSS8 are su-
perior to S-VLS128-32. This is because S-VLS128-32
adjusts its line size among programs, while the D-VLS
caches can adjust its line size both within and among
programs.

Finally, we compare the realistic D-VLS cache
(D-VLS128-32LSS1) with the ideal D-VLS cache (D-
VLS128-32ideal). The difference of the performance
improvements given by the realistic model and the ideal
model is only 5% on average. This means that the line-
size determinater can select the adequate line-sizes even
if it does not accurately track the amount of spatial lo-
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Table 2 Cache-Hit Times

Cache Model Hit Time [ns]

FIX32 3.852

FIX128 3.476
FIX32W4 5.958

FIX32double 4.228
D-VLS128-32LSS1 3.476

D-VLS128-32LSS8 3.476

cality of individual memory-sectors.

5.4 Average Memory-Access Time

Average memory-access time (AMT ), which is an av-
erage latency required by the memory system to serve
a memory reference from the processor, is a popular
metric to evaluate the cache performance. AMT can
be expressed as follows:

AMT = HT + MR × MP

= HT + MR

×2 × (DRAMstup +
LineSize

BandWidth
)

,where HT , MR, and MP are cache-hit time, miss rate,
and miss penalty, respectively. On cache misses, if the
cache employs write back policy, two times main mem-
ory access will be occurred (one for write back and one
for fill). One memory access consists of two part : the
latency for an access to main memory (DRAMstup)
and the data transfer time between the main mem-
ory and the cache ( LineSize

BandWidth ). DRAMstartup is a
constant latency which depends on the DRAM perfor-
mance. In addition, the data transfer time in merged
DRAM/logic LSIs can be also a constant time regard-
less of the cache-line sizes, because of the high on-chip
memory bandwidth. In this evaluation, it is assumed
that the DRAMstup and LineSize

BandWidth are 40 ns and 10
ns, respectively.

In order to find cache-hit time of conventional
caches, we have used the CACTI†[18]. The CACTI
estimates the cache access-time with the detail analysis
of several components, for example, sense amplifiers,
output drivers, and so on. Table 2 shows the cache-
hit time of conventional caches and D-VLS caches. In
table 2, we have assumed that the cache-hit time of
direct-mapped D-VLS caches (D-VLS128-32LSS1 and
D-VLS128-32LSS8) are same as that of conventional
direct-mapped cache with 128-byte lines (FIX128), as
explained in Section 5.1.

Figure 8 shows average memory-access time for
benchmark sets. Again, these values are normalized
to those of the conventional direct-mapped cache hav-
ing 32-byte fixed lines (FIX32). When we consider

†In this simulation, we have assumed that the process
rule parameter, address width, and output-data width are
0.5 um, 32 bits, and 32 bits, respectively.
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only miss rate, as explained in section 5.3, perfor-
mance improvements produced by the conventional
four-way set-associative cache (FIX32W4) is about
34%. From view point of average memory-access time,
however, FIX32W4 can not give better result com-
pared to FIX32. To keep low cache-associativity is
very important to achieve high cache performance, be-
cause increasing set-associativity makes cache-access
time longer [18]. On the other hand, D-VLS caches
can achieve high hit rate without increasing cache-
associativity and cache-size. The average memory-
access time improvements of the D-VLS128-32LSS1 and
D-VLS128-32LSS8 are about 20% and 17%, respec-
tively.

5.5 Effect of Cache Size

The availability of large cache lines depends on not only
the amount of spatial locality but also the cache size.
When the cache size is very small, the number of large
cache lines which can be held in the cache is very few.
In this case, the negative effect of frequent evictions
caused by large cache lines exceeds the positive effect of
prefetching. Hence the small line size, which can avoid
the cache conflicts, should be employed when cache
size is very small. In contrast, increasing cache size
increases the total number of large cache lines which
can reside in the cache. As the result, conflict misses
caused by the large cache lines will be reduced even if
programs do not have enough spatial locality. That is,
the large cache lines should be employed when the cache
has enough capacity for the working-set of programs.

In order to investigate the effect of cache size on the
D-VLS cache performance, we have simulated conven-
tional caches and D-VLS caches varying the cache sizes
from 4 KB to 128 KB. Figure 9 presents the average
miss-rate of four benchmark sets. D-VLS128-32LSS1
and D-VLS128-32LSS8 are superior to the other con-
ventional caches even though the cache size is varied
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from 4 KB to 128 KB. Where the cache size exceeds 64
KB, however, the effectiveness of the D-VLS caches are
very small.

The D-VLS cache attempts to reduce the conflict
misses caused by large cache lines when programs have
poor spatial locality. However, increasing the cache size
reduces the frequent evictions caused by the large cache
lines even if programs have poor spatial locality. Fig-
ure 10 shows the breakdown of miss rate for mix-intfp
benchmark. It is clear that increasing the cache size re-
duces the conflict misses even if the fixed large-line size
is employed. That is, where the cache has enough ca-
pacity for the working-set of programs, the effectiveness
of the D-VLS cache is very small. Although the trend
has been certainly increasing the on-chip cache size,
the working-set of target application programs has been
also growing. Hence, we believe that the D-VLS caches
will produce the large performance improvements even
if the cache size is large when the working-set of pro-
grams is big. It is our future work to evaluate the D-
VLS cache using big working-set application programs.

6. Conclusions

In this paper, we have described the variable line-size
cache (VLS cache) in detail, which is a novel cache ar-
chitecture suitable for merged DRAM/logic LSIs. In
addition, we have proposed a realistic VLS cache, called
dynamically variable line-size cache (D-VLS cache).
The D-VLS cache has an adjustable line-size to the
characteristics of target application programs in order
to make good use of the high on-chip memory band-
width. The line-size determinater in the D-VLS cache
can detect the varying amount of spatial locality within
and among programs on run-time, and optimizes its
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cache-line size.
Experimental results showed that the realistic D-

VLS cache (VLS128-32LSS1) improves the average
memory-access time about 20%, and requires about
32% hardware overhead from the conventional cache.
And, the reasonable D-VLS cache (VLS128-32LSS8)
produces about 17% improvement while it increases the
hardware cost by only 17%.

Integrating processors and main memory pro-
duces greatly performance improvements by virtue of
the high on-chip memory bandwidth, so that merged
DRAM/logic LSIs will become to a core device in future
computer systems. Since the D-VLS cache is applica-
ble to any merged DRAM/logic LSIs, we believe that
the cache management using variable line-size is a very
useful approach to improve the systems performance.
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