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ABSTRACT

Identifying reaction coordinates (RCs) is a key to understanding the mechanism of reactions in complex systems. Deep neural network (DNN)
and machine learning approaches have become a powerful tool to find the RC. On the other hand, the hyperparameters that determine the
DNN model structure can be highly flexible and are often selected intuitively and in a non-trivial and tedious manner. Furthermore, how the
hyperparameter choice affects the RC quality remains obscure. Here, we explore the hyperparameter space by developing the hyperparameter
tuning approach for the DNN model for RC and investigate how the parameter set affects the RC quality. The DNN model is built to predict the
committor along the RC from various collective variables by minimizing the cross-entropy function; the hyperparameters are automatically
determined using the Bayesian optimization method. The approach is applied to study the isomerization of alanine dipeptide in vacuum and
in water, and the features that characterize the RC are extracted using the explainable AI (XAI) tools. The results show that the DNN models
with diverse structures can describe the RC with similar accuracy, and furthermore, the features analyzed by XAI are highly similar. This
indicates that the hyperparameter space is multimodal. The electrostatic potential from the solvent to the hydrogen H,g plays an important
role in the RC in water. The current study shows that the structure of the DNN models can be rather flexible, while the suitably optimized
models share the same features; therefore, a common mechanism from the RC can be extracted.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0252631
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I. INTRODUCTION

The transition state (TS) plays a fundamental role in chemi-
cal reactions and enzyme catalysis.' ~ While reactions in a simple
model system can be well characterized using a few TSs, the reactions
in solution and biomolecules involve numerous intermediates and
TSs on the high-dimensional potential energy surface.” " It is thus
indispensable to describe the reactions on the low-dimensional free
energy surface (FES) described by a few collective variables (CVs),

and it has been of great interest to determine the optimal CV's from
a number of possible CV candidates that can adequately describe the
FES and TS. In a representative case of alanine dipeptide, the confor-
mational transitions have been successfully characterized with the
FES using two dihedral angles, ¢ and y, known as the Ramachandran
plot'' (Fig. 1).

From a kinetic perspective, TS is considered a point in the
potential or free energy surface having an equal probability of reach-
ing the reactant and product states.” " The committor pj(x),
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FIG. 1. Alanine dipeptide with atom indices. The three key dihedral angles, i.e.,
¢, v, and 6, the dihedral angles about the C5—N7, N7—Cq, and Cg—C45 bonds,
respectively, are also shown. Dihedral angles used in the text are expressed in
degrees.

defined as the probability of reaching the state B from the config-
uration denoted by x without returning to state A, changes mono-
tonically from 0 to 1 along an ideal RC and becomes 0.5 at the TS.
Ppyg thus serves as a good measure to evaluate the quality of a RC and
have been used to optimize the RCs from a large number of candi-
date CVs."””* These studies of RCs have led to the realization that
an adequate RC that satisfies the p; ~ 0.5 condition is often much
more complicated than typical CVs used to build the FESs.'””*" For
instance, in the case of alanine dipeptide, the Ceq—Cax transition in
vacuum required another dihedral angle 8 (Fig. 1),"” and the reaction
in water is even more complex and challenging,'”"” In particular,
the RC in water has only been characterized successfully with an
elaborated reaction coordinate, i.e., the solvent-derived electrostatic
torque around one of the main-chain bonds, showing the challenge
in identifying the RC coordinate when the solvent is present.'’

Machine learning (ML) approaches have recently been actively
applied to identify the CVs and RCs from the molecular dynamics
(MD) simulation trajectories.'””' ™ In particular, Ma and Dinner'”
have developed an automatic CV search algorithm by combining
the genetic algorithm to identify the RC for the alanine dipeptide
isomerization. Along this line, we have recently combined the deep
neural network (DNN) approach with the cross-entropy minimiza-
tion method”"” to optimize the RC from many CV candidates
using the committor distribution as a measure.”””" Qur study high-
lighted the effectiveness of the explainable AI (XAI) method in
characterizing the CVs that contribute to the RC.

While the DNN approach can be very powerful in describ-
ing the non-linear contributions of CVs to RC, the structure of
the DNN model, characterized by the hyperparameters, e.g., the
number of layers and nodes per layer, is highly flexible and is
often chosen intuitively. Yet, the adequacy of the hyperparameters
remains ambiguous. In this regard, Neumann and Schwierz'* have
recently applied the Keras Tuner random search hyperparameter
optimization to automatically determine the DNN model that can
describe the committor of the magnesium binding to RNA. Never-
theless, how the choice of hyperparameters affects the quality of the
DNN model and the outcome remains unclear. The applications of

pubs.aip.org/aip/aml

DNN models thus suffer from determining the appropriate hyper-
parameters, which remains to be a highly tedious and non-trivial
task.

In this work, we developed a hyperparameter tuning proto-
col that utilizes the Bayesian optimization method with a Gaussian
process’” to determine the DNN model for RC optimization. The
method takes the committors and a large number of candidate
CVs as the input without pre-determined hyperparameters for
the DNN model and automatically determines the appropriate
DNN model for the RC. The RC for the isomerization of alanine
dipeptide in vacuum and in water is studied. The diversity in the
optimized hyperparameters and its effect on the RCs are explored,
and the character of the RC for each model is analyzed by applying
the XAI methods. Furthermore, we show that the reaction in solu-
tion can be characterized using a more straightforward set of CVs
while the complexity in the RC can be taken into account through
the DNN framework.

Il. METHODS
A. Committor and cross entropy function

Committor py(x) describes the probability of a trajectory gen-
erated from x to reach the product state B. Along a RC g, p is
expected to change smoothly from 0 to 1 and become 0.5 at the
transition state. The ideal committor value at g, fz(q), can thus be
described by a sigmoidal function, fz(q) = (1 + tanh (q))/2.

When the data point k is characterized by the collective vari-
ables (CVs) x® and committor p]gk), the discrepancy between the
ideal value and raw committor data can be described by the
cross-entropy function,“’ZS

Hlg) = -3 pi? log fo(q™) - ) (1-p§”)10g {1~ £3(a™) },
(1)

where k denotes the data points and g® is the RC as a function
of x¥. Equation (1) is derived from the Kullback-Leibler diver-
gence,”* which quantifies the mismatch between the distribution of
the raw (pék)) and expected (f3(q®)) committors. It is also noted
that Eq. (1) is a generalization of the maximum-likelihood function
used with the aimless shooting algorithm.'*

By minimizing Eq. (1), one can optimize q(k) to minimize
the difference between p; and f2(q®). In practice, we employ the
L; regularization function to suppress overfitting and, therefore, the
loss function is defined as a sum of H and the penalty term.”" The
regularization parameter A is set separately for each layer (see below).

B. Deep neural network model

The DNN function converts the CVs x* into a RC ¢ in a non-
linear manner. Here, we adopt the multilayer perceptron model,
which consists of the input layer ¥, multiple hidden layers with dif-
ferent numbers of nodes, and the output layer ¢¥ (Fig. 2). The CVs
are standardized prior to constructing x¥. The leaky rectified linear
unit (Leaky ReLU) with a leaky parameter set of 0.01 was used for
the activation function. The L, regularization was employed, where
A was varied in the hyperparameter tuning step. Note that different
A was used for each layer. The numbers of hidden layers and nodes
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FIG. 2. Overview of the multilayer perception model used in this work. The input
CVs (x;) are converted to the output (g) with a DNN model of Niayer consist-
ing of Nnoge. & is the predicted pg value at q described by a sigmoidal function

(8(q) = (1 +tanh(q))/2).

in each layer, Niayer and Npode, respectively, are also the hyperpa-
rameters that are left to be explored. Optimization was performed
using AdaMax. The learning rate Ir and two decay factors 3, and 8,
were set to the default values 0f 0.001, 0.9, and 0.99, respectively. The
TensorFlow™ library was used to implement the DNN model.

C. Hyperparameter tuning and DNN model
optimization

The hyperparameters in the current DNN, Niayer, Npode, and
A, are not unique and can strongly affect the performance of the
DNN model. Here, we employ the hyperparameter tuning approach
using the Bayesian optimization method with a Gaussian process™
to determine these parameters in an automatic manner.

The hyperparameter tuning and DNN model optimization are
performed in two stages. First, the data are divided into a train-
ing and validation set at a ratio of 8:2. Ny is searched between
2 and 5, and N4, are explored separately for each layer, which are
chosen within the range from 100 to 5000 in 100 increments. A is
explored between 0.0001 and 0.100 with 20 points equally spaced
in a logarithmic scale. The initial values for these parameters are
chosen randomly within the exploration range. Bayesian optimiza-
tion was performed for 150 trials unless otherwise noted, where the
DNN model for each hyperparameter was trained for a maximum of
1000 epochs using Eq. (1). Early stopping was applied when the value
of the loss function for the validation set did not improve for five
consecutive steps. The performance of the model at each step was
evaluated using the root-mean-square error (RMSE) for the valida-
tion set, calculated as a difference between the predicted and refer-
ence py,. After the optimal choice of the parameters is determined,
the data are unified and re-partitioned into training, validation, and
test sets at a ratio of 5:1:4, and the DNN model is optimized for 1000
epochs with the same criteria for early stopping. The Keras Tuner™
library was used to implement the hyperparameter tuning with a
Gaussian process.

D. DNN model interpretation with LIME and SHAP

To interpret the DNN model, the Local Interpretable Model-
agnostic Explanation (LIME)™ and SHapley Additive exPlanations

pubs.aip.org/aip/aml

(SHAP)*° methods were applied to the data. In brief, LIME builds a
linear regression function to explain the local behavior of the tar-
get data from the perturbation of input variables, whereas SHAP
employs an additive feature attribution method that ensures fair
distribution of predictions among input features in accordance
with the game-theory-based Shapley value. LimeTabularExplainer
for LIME and DeepExplainer for SHAP were employed, using
the packages obtained from https://github.com/marcotcr/lime and
https://github.com/slundberg/shap, respectively.

E. Conformational sampling of alanine dipeptide

The initial structures of alanine dipeptide in vacuum and water
were generated using AmberTools21.°” In the case of water, ala-
nine dipeptide was solvated in a rectangular parallelepiped box with
1683 water molecules. Alanine dipeptide and water were treated
with the Amber14SB force field and TIP3P model, respectively.
The system was energy minimized for 3000 steps and heated up to
300 K in 50 ps. MD simulations under NPT and NVT conditions
were then performed for 100 and 1000 ps, respectively, to complete
equilibration.

Umbrella sampling (US) and transition path sampling (TPS)
were combined to collect broad conformations about the transition
path of alanine dipeptide in vacuum and water as follows: First, the
transition state region (i.e., ¢ ~ 0) was sampled using the US along
¢ with a force constant of 100.0 kcal mol™ rad™* while restrain-
ing y-y < 0 with a half-harmonic potential with a force constant
of 10.0 kcal mol™ rad™ (see Fig. 1 for definitions of ¢ and v).
100 conformations from the 10 ns-long trajectory with the har-
monic restraint centered at ¢ = 0.0 were then evenly collected. From
each conformation, ten trajectories of 2 ps long were generated by
sampling the initial velocity from the Maxwell-Boltzmann distribu-
tion at 300 K and propagating the trajectory for 1 ps forward and
backward in time under the NVE condition. States A and B were
defined as ¢ < —30 and ¢ > 30, respectively. It is noted that while
the previous studies'™” have often studied the Creq = ar transi-
tions in solution, which have lower energy barriers,’® here we focus
on the isomerization about ¢ to compare the results in vacuum and
water.

From the successful transition trajectories that connect states
A and B, new points were generated by extracting snapshots within
0.1 ps from the time origin of each trajectory. The velocity for each
point was sampled from the Maxwell-Boltzmann distribution at
300 K, and a new ensemble of 2 ps-long trajectories was generated
following the same procedure as above. Roughly 33% and 42% of
the trial trajectories were accepted throughout the TPS of alanine
dipeptide in vacuum and water, respectively. After the 3rd round,
3714 and 4590 points were generated for the following committor
calculations in vacuum and in water.

From each data point after the final round of TPS, 2 ps-long
trajectories were generated 100 times per point with velocities ran-
domly sampled from the Maxwell-Boltzmann distribution at 300 K.
Py Was calculated by p, = ng/(na + ng), where n; denotes the num-
ber of trajectories that are at state I at the end of the trajectory. The
data points projected on the (¢, y) plane, with colors describing the
Py Vvalue, are shown in Fig. 3. We note that the data points were
obtained over a broader range of ¢ compared to those sampled with
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FIG. 3. Distributions of the data points in (¢, y) space from the trajectories in
(a) vacuum and (b) water. Colors represent the calculated pg data at each point.
The insets in (a) and (b) show the committor distributions for all the data points in
vacuum and water, respectively.

the aimless shooting algorithm.” As a consequence, the p;, distribu-
tions were not even, especially in a vacuum, where roughly half of
the points were found in either p; < 0.1 or py > 0.9. Here we note
that the minima on the ¢ < 0 side in water, corresponding to the
ar state, is located at y < 0.°% The transition path in water is thus
also located on the y < 0 side compared to that in a vacuum.

The collective variables (CVs) are listed in supplementary
material, Table S1, and the atom indices are given in Fig. 1. All
MD simulations were performed using the Amber 20 software
package.””’

Ill. RESULTS AND DISCUSSION
A. Convergence of optimal hyperparameters

We first compare the results of hyperparameter tuning for the
isomerization of alanine dipeptide in a vacuum. Ten models were

pubs.aip.org/aip/aml
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FIG. 4. Training process of the loss function as a sum of the cross-entropy function
and the L, regularization term in (a) vacuum and (b) water. Full and dashed lines
show the values for training and validation data along the training process, and
colors denote results for different models. Note that the training and datasets in
each model are different due to different initial seeds for data partitioning.

constructed using different initial seeds, including data partition-
ing. The CV candidates consist of 45 dihedral angles in cosine and
sine forms, i.e., 90 variables, which follow our previous studies.””**
The convergence of the loss function, given in Fig. 4, shows that
the optimizations are converged within 60-100 epochs. Since fur-
ther extending the number of epochs leads to a slightly decreased
loss function for the training data but an increase in that for the
validation data, we find that these epoch numbers are sufficient for
suppressing overfitting and maximizing predictability. The obtained
hyperparameters are summarized in Table . Surprisingly, the num-
ber of layers (Nyer) and nodes (Npode) differ remarkably between
the models. N4 often converged to the maximum (5000) or to the
minimum (100), and Np,¢e = 5 was most frequently selected (5 out of
10 models). A was often found to be at the minimum (0.0001), espe-
cially in the first layer, but can be up to 0.0695 and varied between
the layers. We note that before converging to these values, different
regions of the hyperparameter space have been explored before con-
verging to the optimal values in each model (Fig. S1). Overall, no
apparent unique optimal model was obtained.

To compare the accuracy of the coordinates from the per-
spective of p,-predictability, the RMSE between the predicted and
reference p, for the training and test data are shown in Fig. 5
for the ten models. The RMSEs were within 0.005 and around
0.005 for the training and test sets, respectively. Even the RMSEs for
the data points about the TS (0.2 < g; < 0.2) are within 0.007 and
0.009 for the training and test data. These results indicate that while
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TABLE I. Optimized hyperparameters in vacuum. g; denotes the RC obtained for the ith model.
1
9, 1, q3 4 s 9s 97 qs 99 910
Niayer 5 2 3 5 5 3 5 4 2 5
N(:’ze 5000 4000 4000 3500 5000 1400 5000 4100 2700 5000
/\(ll]) 0.0001 0.0001 0.0001 0.1000 0.0001 0.0001 0.0001 0.0009 0.0001 0.0001
NGO 5000 5000 2500 5000 5000 5000 5000 2700 100 2100
/\(121) 0.0001 0.0113 0.0026 0.0001 0.1000 0.0001 0.0013 0.0018 0.0009 0.1000
N& 5000 2900 100 4300 100 5000 3600 5000
/\(5‘) 0.0695 0.0001 0.0001 0.0001 0.0001 0.0001 0.0006 0.0026
W 3600 2400 100 5000 900 100
A 0.1000 0.0002 0.0001 0.1000 0.0002 0.0001
NG 100 5000 5000 2000 5000
/\(Isl) 0.0001 0.0001 0.0001 0.0001 0.0001
. ® 10
0.03F o+ T 7 ' o
- o 0.8 | validation
X s
o s 0.6
o s @
s g ° oo 7 < 0.4
£0.02; L L e 0.2
© s ’
B e 0.0
Q p -4 =2 0 2 4 3
7/ q _g
0.01F . (b) g
2, o 5
) 100 5
LR validation 8
L vacuum / water - R
= N
0.01 0.02 0.03 g 50
training data

FIG. 5. Scatter plot for RMSEs between the predicted and reference pg for the
training and test datasets. Filled and open circles indicate the RMSEs using full
points and those at about the TS (—0.2 < g; < 0.2), respectively. Blue and red
colors are the results in vacuum and water.

the optimized DNN models are not unique, the RCs show very simi-
lar quality, i.e., able to predict p, with similar accuracy. This implies
that the hyperparameter space for the current DNN model is likely
multimodal.

Figure 6 summarizes the change of p, along the first RC (g, ).
Figure 6(a) shows that both training and test data closely follow the
ideal sigmoidal line. The histogram of p; about the transition state
[Fig. 6(b)] indicates that both the training and test datasets show a
sharp peak at p, ~ 0.5. These result implies that g, serves as a good
RC and can clearly characterize the transition state. We note that
similar results are obtained for the other RCs (Figs. S2 and S3).

Figure 7 summarizes the features that contribute to RC at about
the TS extracted from LIME and SHAP. The extracted features are
found to be very similar between the ten RCs. CVs;, CVsg, and
CVs4, corresponding to the sine form of ¢, ¢, and 6, respectively,
are the three major CVs in LIME analysis. The contribution of 0 is
increased in the SHAP analysis, but the key CVs are unchanged from

0
0.0 0.2 0.4 0.6 0.8 1.0
Ps

FIG. 6. (a) Scatter plots of the optimized coordinate (q) and committor (pg) for
@4 in vacuum. (b) Distribution of pg for the points within —0.2 < g, < 0.2. Orange,
green, and blue in (a) and (b) denote the results from the training, validation, and
test datasets, respectively.

those found in LIME. The result is consistent with the previous stud-
ies, which showed that 8 becomes important at about the transition
state.'”””"” On the other hand, the order as well as the magnitude
of the contributions are slightly different from those obtained in
the previous XAl analysis.”> This may be due to the differences in
the distribution of the data points, where the current points are
distributed over a broader range along ¢ (Fig. 3).

We also directly compared the RCs obtained from differ-
ent DNN models in the scatter plots and correlation coefficients
(Fig. S4). The result shows that every pair of RCs is highly correlated,
and the correlation coefficient is >0.99, indicating that despite the
difference in the hyperparameters, the obtained RCs are very simi-
lar. It is noted that the points at the negative and positive ends of the
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(@ 0.10 = model, each DNN model produces equally accurate RCs with similar
o ss predictability of p, and common features that describe the TS.
0.08 . . . .
B. Characterization of solvation coordinates
% 006 . using DNN
T s Next, we apply the current approach to the isomerization of
g alanine dipeptide in water. Compared to the case in a vacuum, the
= 0.04 V reaction in water has been a challenging task due to the contribution
from the numerous waters surrounding the solute.'” Previously, a
0.02 Lu/\'\w complex CV involving the solvent-derived electrostatic torque has
been proposed to be important for the Creq — ar transition.'” Here,
0.00 we attempt to adopt more intuitive CVs to describe the solvent
0 20 40 6 80 contribution and account for the complex non-linear contribution
(b Index through the DNN model. To this end, the electrostatic and van
der Waals interactions from the waters to the atoms in the alanine
0.06 dipeptide were used as the CVs in addition to the internal coordi-
0.05 nates of the alanine dipeptide (i.e., dihedral angles). Optimizations of
’ the hyperparameters and DNN models were performed in the same
2 004 manner as those in vacuum.
© As is the case in a vacuum, the optimized DNN models for
% 0.03 the RCs in water were found to converge to different parameter
& sets (Table II). Njayer = 3 most frequently appeared, and Npog. Was
0.02 on average slightly smaller than those in vacuum. For instance, in
the case of q,, the hyperparameter space was found to be explored
0.01 quickly before converging to the optimal value (Fig. S5); the larger
number of layers was explored, but only for a short period in g;;
0'000 20 40 60 80 in the latter exploration stage, the Ny, = 3 was most intensely

Index searched, and Niayer of 3 was found to be optimal. On the other hand,
A was found to become larger than those in a vacuum. These trends

FIG. 7. Contributions of CVs to the RCs in vacuum extracted using (a) LIME and
g (@) indicate that the increase in the number of CVs in water resulted

(b) SHAP in absolute values. Blue lines and gray shades denote the average and

variance calculated from the ten RCs.

RCs, where p;, is 0 and 1, respectively, show slight deviations from
the diagonal line in some of the plots. This is because py is insen-
sitive to the changes in the RCs at these ranges and, therefore, these
points are not further optimized. The current results show that while
the optimization of DNN hyperparameters does not lead to a unique

in a slightly more compact model but with a higher regularization
penalty to suppress overfitting.

The RMSEs between the calculated and reference pys, plotted
in Fig. 5, show that the RMSEs for the training data are mostly dis-
tributed between 0.006 and 0.015 whereas those for the test data are
found at around 0.02. Only in one case do we find a slight sign of
overfitting, where the RMSE for the training and test data are 0.002
and 0.026, respectively. The RMSE:s for the data about the transition

1€:1.2:90 G20z Idy 81

TABLE II. Optimized hyperparameters in water. g; denotes the RC obtained for the ith model.

4 P q; 44 s 96 q; qs 99 d10

Niayer 3 5 3 3 5 2 3 2 3 5
NG 100 4400 3800 2900 5000 1700 1300 2900 2300 5000
/\(Ill) 0.0001 0.0004 0.0013 0.0001 0.0001 0.0026 0.0009 0.0018 0.0001 0.0001
N 1200 1700 1600 5000 5000 100 800 100 5000 5000
i 0.1000 0.0162 0.0483 0.0079 0.0079 0.0018 0.1000 0.0234 0.0483 0.0055
N& 3100 3800 1400 100 2000 o 3000 o 400 2500
/\(g) 0.0055 0.0004 0.0336 0.1000 0.1000 0.0018 0.0234 0.1000
N(‘éze 800 5000 2000
/\(fb cee 0.0003 0.1000 0.1000
N(it):le 600 100 3700
/\(‘5‘) s 0.0009 0.0001 0.0055
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state (—0.2 < g, < 0.2) show a similar trend. These results indicate (a) 007 ol
that while the RMSEs for the data in water are larger than those in 0.06 58
- A : 54
a vacuum for both the training and test data, the optimized RCs can ‘
satisfactorily predict pgs. 0.05 125
The change of p; along g, in water is summarized in Fig. 8. E
The results for other RCs are illustrated in Figs. S6 and S7. The g 004 :
distribution of py [Fig. 8(a)] is broader than the case in a vacuum = 0.03 105 119
'

but follows a sigmoidal curve as a function of g,. The histogram of
pg near the TS [Fig. 8(b)] shows a peak at p; ~0.5 with the width 0.02 O
of the histograms broader than those in vacuum. The results for the b

other optimized coordinates in Fig. S6 are mostly consistent with g, . o0t
We note that only in the case of g,, the histogram for the training 0.00 ¢ 0 20 - 20 100 1o0 140
data is sharply peaked while that for the test data is broad, implying Index
that overfitting to the training data has occurred. This is consistent ®
with the loss function values and RMSE results [Figs. 4(b) and 5(b), 0.04
respectively].
Figure 9 shows the contributions of CV's to the RCs at about the 0.03

TS extracted by LIME and SHAP. Note that these analyses include
q,> because excluding g, only slightly changed the result (Fig. S8).
Similarly to the case in vacuum, CVg;, CVsg, and CVs4, correspond-
ing to ¢, ¢, and 6, respectively, are found to be the three major CVs.
Apart from these three CVs, CV 35, the electrostatic potential from

SHAP value
o
o
N

the water on Hyg (Vee(His)) (Fig. 1), shows up as a key feature from 0.01

the solvent. In addition, CV19s and CV119, which are the electrostatic M
potential on Hg and C;s, respectively, show notable contributions to 0.00

the RC. The same trend is found in the SHAP result, though the rela- o 20 40 60 80 100 120 140

tive balance is somewhat changed. The scatter plots of Ve (Hig) and Index

¢ or 0, given in Figs. 10(2) and 10(b), respectively, do not show a FIG. 9. Contributions of CVs to the RCs in water extracted using (a) LIME and
clear correlation between the changes of CVs and py or any appar- (b) SHAP in absolute values. Blue lines and gray shades denote the average and
ent separatrix. On the other hand, the plot as a function of the three variance calculated from the ten RCs.

variables [Fig. 10(c)] shows that there is a weak correlation between

Vee(Hig) and p, near the separatrix in the (¢, 0) space. Therefore,

the solvation coordinate V.(H;s) is contributing to the RC in a
cte(Fe) § nontrivial manner. Interestingly, the importance of the solvent effect

on Hi; has also been indicated by Ma and Dinner'” for the Creq = ar
transition through the torque coordinate as mentioned earlier. The
structures about the TS for g, are also summarized in Fig. S1I.
The figure shows that the position of Hig strongly depends on v,
which ranges between —123 < ¢ < —50. A water molecule is fre-
quently placed near H;s but without clear orientation. This confirms
that the solvent contributes to the reaction coordinate in a collective
manner.

Finally, the RCs in water are directly compared in Fig. S9.
Compared to the vacuum results (Fig. S4), the deviation from the
diagonal line is slightly larger even at g, ~ 0 (i.e., near TS). Nev-
ertheless, the overall correlation between the RCs is very high and
found to be above 0.96, except for - Furthermore, the correlation
between g,, which was indicated to be slightly overfitted, and other

60  validation

validation

8 06 CVsis still above 0.94. Therefore, the current hyperparameter tuning
0.4 framework successfully obtained the RC for the alanine dipeptide
0.2 isomerization in water, where the DNN models can differ but the

0.0 : important features remain very similar.

-4 -2 0 2 4
a C. On the efficiency of hyperparameter tuning

FIG. 8. (a) Scatter plots of the optimized coordinate (q) and committor (pg) for Since the hyperparameter space defined in the current setup
g, in water. (b) Distribution of pg for the points within —0.2 < g, < 0.2. Orange, is large, ie., the number of grids in the nodes and the regular-
green, and blue in (a) and (b) denote the results from the training, validation, and ization parameter per node are 50 and 20, respectively, 150 cycles

test datasets, respectively. in the Bayesian optimization cannot explore the whole space. It
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FIG. 10. Correlations between the changes in CVs and pg in water from the scatter plots in the spaces of (a) CVg1 (¢) and CV1zs (Veie(H1g)), (b) CVsg (6) and CVyz5, and

(c) CVe1, CVsg, and CV4ys. Color range denotes the calculated pg at each point.

can thus be anticipated that the diversity in the model is a conse-
quence of insufficient sampling despite each model shows a similar
performance.

To this end, we more intensely explored the hyperparame-
ter space for the RCs in water using a fixed number of layers and

0.03
o'.. /
LY . ® o
08,0 [ o
5002 R
<
o
8
0.01+¢
0x .
0 0.01 0.02

training data

FIG. 11. Scatter plot for RMSEs between the predicted and reference pg for the
training and test datasets where the number of layers is fixed during hyperparam-
eter tuning. Blue, red, yellow, and purple points are from the DNN model with Njayer
fixed to 2, 3, 4, and 5, respectively.

500 Bayesian optimization cycles. The optimized hyperparameters
for different numbers of fixed layers are summarized in Fig. S10, and
the RMSE:s for these models are given in Fig. 11. Figure S10 shows
that even when the exploration space is restricted and more care-
fully investigated, the hyperparameters do not converge to a unique
value, which confirms that the hyperparameter space is indeed mul-
timodal. The RMSEs for different Ny in Fig. 11 indicate that
the RMSE for the training data tends to improve when the num-
ber of layers is increased, whereas the predictability (i.e., RMSE
for the test data) does not improve. This may be the reason that
Niayer Was somewhat smaller in the case of water compared to that in
a vacuum. Importantly, the RMSEs in Fig. 11 do not show apparent
improvement compared to that with a smaller number of Bayesian
trials (Fig. 5). These results show that the current Bayesian opti-
mization of 150 cycles was effective in obtaining the optimal DNN
model for the RC from the large number of hyperparameter candi-
dates. The result also highlights that the balance between accuracy
(RMSE for training data) and predictability (RMSE for test data) is
delicate.

IV. SUMMARY

Machine learning approaches have become a powerful tool in
determining the RCs from many CV candidates for the reactions
in complex environments. DNN is widely used for its effectiveness
in taking account of the non-linear contribution of the CVs to the
RC, and XAI tools serve as a complement to understand the fea-
tures that characterize RC, which is otherwise hidden in the complex
DNN structure. On the other hand, the structure of the DNN model
can be highly flexible, and the hyperparameters that determine the
structure are often determined in a non-trivial manner and remain
to be a tedious task. Here, we developed the hyperparameter tuning
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approach by utilizing the Bayesian optimization method to deter-
mine the DNN models for the RC. The DNN model was optimized
so as to obtain a RC that can predict the changes of committors from
the reactant to product via cross-entropy minimization.

The current approach was first applied to analyze the isomer-
ization of alanine dipeptide in a vacuum. The RC was successfully
obtained from ten different initial conditions, where the RMSE of
pp between the prediction from the RC and the actual data was
about 0.005. The correlations between the ten RCs were also very
high (>0.99). On the other hand, the structure of the optimized
DNN model, i.e., the hyperparameters, varied notably between the
RCs. By applying the LIME and SHAP methods, all RCs were found
to have the same key features, i.e., ¢ and 6. Therefore, despite the
apparent differences in the DNN models, all RCs share a com-
mon physical mechanism for the reaction in a vacuum with similar
accuracy.

This approach was further applied to the isomerization in
water. The RC for the reaction in solution was successfully obtained
in most cases (9 out of 10), where the RMSEs between the predicted
and calculated py, for the test data were about 0.02. In one case (g, ),
we found a slight sign of overfitting, where the committor probabil-
ity distribution and RMSE:s for training and test datasets showed a
discrepancy of ~0.02 in p,. Similarly to the case in a vacuum, the
hyperparameters were found to vary notably, but the successfully
optimized RCs showed similar pj-predictability and high correla-
tion (>0.96). By analyzing the RCs using the XAI methods, the
RCs were found to have common key features, i.e., ¢, 0, and the elec-
trostatic potential from the water on Hjs. We note that this solvent
contribution to the hydrogen was also found in the torque coor-
dinate proposed previously for the different transition path of the
same system.!” The current RC was able to describe this from a
rather simple set of CV candidates while the complex non-linear
contribution is taken into account through the DNN model struc-
ture. We note that choosing the good CV candidates is important for
improving the quality of the RC, such as utilizing the graph neural
networks.

The hyperparameter tuning framework was shown to be appli-
cable to explore the RC for reactions in different systems straightfor-
wardly. It is noted that here the RCs were optimized using slightly
different datasets, i.e., the same data were partitioned into slightly
different training, validation, and test groups due to different ran-
dom seeds. Even when the same dataset was used, the optimization
converged to different optimal when different initial hyperparame-
ters were used (not shown). Therefore, the hyperparameter space of
the DNN model for the RC is likely multimodal, and optimization
of the hyperparameters can converge to different models with simi-
larly accurate RC depending on the initial conditions. On the other
hand, the application of the XAI tools to these different DNN mod-
els indicates that suitably optimized DNN models share the same
features; therefore, the same mechanism can be extracted from the
apparently different DNN models when the hyperparameters are
optimized adequately.

SUPPLEMENTARY MATERIAL

The supplementary material encompasses a full list of col-
lective variables in vacuum and in water (Table S1), a history of

pubs.aip.org/aip/aml

hyperparameters searched in vacuum (Fig. S1), results for all opti-
mized coordinates in vacuum (Figs. S2-S4), a history of hyper-
parameters searched in water (Fig. S5), results for all optimized
coordinates in water (Figs. S6, S7, and S9), LIME and SHAP analyses
without g, in water (Fig. S8), a history of hyperparameters searched
with a fixed number of layers (Fig. S10), and the structures at about
the TS in water (Fig. S11).

ACKNOWLEDGMENTS

This work was supported by Grant-in-Aid for Scientific
Research (Grant Nos. JP22H02035, JP23K23303, JP23KK0254,
JP24K21756, JP22H02595, JP22K03550, JP23H02622, JP23K23858,
JP23K27313, and JP24HO01719) from JSPS. The calculations were
partially carried out at the Research Center for Computational
Sciences in Okazaki (Grant Nos. 23-IMS-C111, 24-IMS-C051,
24-IMS-C105, and 24-IMS-C198) and using MCRP-M at the
Center for Computational Sciences, University of Tsukuba. T.M.
also acknowledges the support from the Pan-Omics Data-Driven
Research Innovation Center, Kyushu University.

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts of interest to disclose.

Author Contributions

Kyohei Kawashima: Data curation (lead); Formal analysis (lead);
Investigation (equal); Methodology (lead); Software (lead);
Writing - original draft (lead); Writing - review & editing (equal).
Takumi Sato: Data curation (equal); Investigation (equal); Software
(equal); Writing - review & editing (equal). Kei-ichi Okazaki:
Funding acquisition (equal); Writing - review & editing (equal).
Kang Kim: Conceptualization (equal); Funding acquisition (equal);
Writing - review & editing (equal). Nobuyuki Matubayasi: Funding
acquisition (equal); Writing — review & editing (equal). Toshifumi
Mori: Conceptualization (lead); Funding acquisition (lead); Inves-
tigation (lead); Methodology (lead); Project administration (lead);
Software (equal); Writing — original draft (lead); Writing - review &
editing (lead).

DATA AVAILABILITY

The data that support the findings of this study are openly
available in Zenodo at https://doi.org/10.5281/zenodo.14378447.

REFERENCES

L. Pauling, “Nature of forces between large molecules of biological interest,”
Nature 161, 707-709 (1948).

2ZR. Wolfenden, “Transition state analogues for enzyme catalysis,” Nature 223,
704-705 (1969).

3V. L. Schramm, “Enzymatic transition state theory and transition state analogue
design,” J. Biol. Chem. 282, 28297-28300 (2007).

“L.Jiang, E. A. Althoff, F. R. Clemente, L. Doyle, D. Rothlisberger, A. Zanghellini,
J. L. Gallaher, J. L. Betker, F. Tanaka, C. F. Barbas, D. Hilvert, K. N. Houk,

APL Mach. Learn. 3, 016113 (2025); doi: 10.1063/5.0252631
© Author(s) 2025

3,016113-9

1€:1.2:90 G20z Idy 81


https://pubs.aip.org/aip/aml
https://doi.org/10.60893/figshare.aml.c.7667987
https://doi.org/10.5281/zenodo.14378447
https://doi.org/10.1038/161707a0
https://doi.org/10.1038/223704a0
https://doi.org/10.1074/jbc.r700018200

APL Machine Learning

B. L. Stoddard, and D. Baker, “De novo computational design of Retro-Aldol
enzymes,” Science 319, 1387-1391 (2008).

SB. Peters, Reaction Rate Theory and Rare Events (Elsevier, 2017).

8T. C. Bruice, “A view at the millennium: The efficiency of enzymatic catalysis,”
Acc. Chem. Res. 35, 139-148 (2002).

7M. Garcia-Viloca, J. Gao, M. Karplus, and D. G. Truhlar, “How enzymes work:
Analysis by modern rate theory and computer simulations,” Science 303, 186-195
(2004).

8T. Ishida and S. Kato, “Theoretical perspectives on the reaction mechanism of
serine proteases: The reaction free energy profiles of the acylation process,” J. Am.
Chem. Soc. 125, 12035-12048 (2003).

9. Hayashi, H. Ueno, A. R. Shaikh, M. Umemura, M. Kamiya, Y. Ito, M. Ikeguchi,
Y. Komoriya, R. Iino, and H. Noji, “Molecular mechanism of ATP hydrolysis in
F;-ATPase revealed by molecular simulations and single-molecule observations,”
J. Am. Chem. Soc. 134, 8447-8454 (2012).

9L, Masgrau and D. G. Truhlar, “The importance of ensemble averaging in
enzyme kinetics,” Acc. Chem. Res. 48, 431-438 (2015).

"G. Ramachandran and V. Sasisekharan, “Conformation of Polypeptides and
Proteins,” Adv. Prot. Chem. 23, 283-437 (1968).

2p, L. Geissler, C. Dellago, and D. Chandler, “Kinetic pathways of ion pair
dissociation in water,” |. Phys. Chem. B 103, 3706-3710 (1999).

'3G. Hummer, “From transition paths to transition states and rate coefficients,”
J. Chem. Phys. 120, 516-523 (2004).

4B, Peters, “Reaction coordinates and mechanistic hypothesis tests,” Annu. Rev.
Phys. Chem. 67, 669-690 (2016).

'SP, G. Bolhuis, C. Dellago, and D. Chandler, “Reaction coordinates of
biomolecular isomerization,” Proc. Natl. Acad. Sci. U. S. A. 97, 5877-5882
(2000).

'6Y. M. Rhee and V. S. Pande, “One-dimensional reaction coordinate and the cor-
responding potential of mean force from commitment probability distribution,”
J. Phys. Chem. B 109, 6780-6786 (2005).

"7A. Ma and A. R Dinner, “Automatic method for identifying reac-
tion coordinates in complex systems,” J. Phys. Chem. B 109, 6769-6779
(2005).

8p, Peters, G. T. Beckham, and B. L. Trout, “Extensions to the likelihood maxi-
mization approach for finding reaction coordinates,” J. Chem. Phys. 127, 034109
(2007).

'""H. Jung, R. Covino, A. Arjun, C. Leitold, C. Dellago, P. G. Bolhuis, and G.
Hummer, “Machine-guided path sampling to discover mechanisms of molecular
self-organization,” Nat. Comput. Sci. 3, 334-345 (2023).

205, L. Quaytman and S. D. Schwartz, “Reaction coordinate of an enzymatic reac-
tion revealed by transition path sampling,” Proc. Natl. Acad. Sci. U. S. A. 104,
12253-12258 (2007).

21D, Branduardi, F. L. Gervasio, and M. Parrinello, “From A to B in free energy
space,” ]. Chem. Phys. 126, 054103 (2007).

22R. G. Mullen, J.-E. Shea, and B. Peters, “Transmission coefficients, committors,
and solvent coordinates in ion-pair dissociation,” J. Chem. Theory Comput. 10,
659-667 (2014).

23K.-1. Okazaki, D. Wohlert, J. Warnau, H. Jung, O. Yildiz, W. Kithlbrandt, and
G. Hummer, “Mechanism of the electroneutral sodium/proton antiporter PaNhaP
from transition-path shooting,” Nat. Commun. 10, 1742 (2019).

24T, Mori and S. Saito, “Dissecting the dynamics during enzyme catalysis: A case
study of Pin1 peptidyl-prolyl isomerase,” ]. Chem. Theory Comput. 16, 3396-3407
(2020).

25Y. Mori, K.-i. Okazaki, T. Mori, K. Kim, and N. Matubayasi, “Learning reaction
coordinates via cross-entropy minimization: Application to alanine dipeptide,”
J. Chem. Phys. 153, 054115 (2020).

265, Wu, H. Li, and A. Ma, “A rigorous method for identifying a one-dimensional
reaction coordinate in complex molecules,” . Chem. Theory Comput. 18,
2836-2844 (2022).

275, Wu, H. Li, and A. Ma, “Exact reaction coordinates for flap opening in HIV-1
protease,” Proc. Natl. Acad. Sci. U. S. A. 119, €2214906119 (2022).

28F, Manuchehrfar, H. Li, W. Tian, A. Ma, and J. Liang, “Exact topology of
the dynamic probability surface of an activated process by persistent homology,”
J. Phys. Chem. B 125, 4667-4680 (2021).

ARTICLE pubs.aip.org/aip/aml

9], Zhang, O. Zhang, L. Bonati, and T. Hou, “Combining transition path sam-
pling with data-driven collective variables through a reactivity-biased shooting
algorithm,” J. Chem. Theory Comput. 20, 4523-4532 (2024).

30T, Mori, R. J. Hamers, J. A. Pedersen, and Q. Cui, “An explicit consideration of
desolvation is critical to binding free energy calculations of charged molecules at
ionic surfaces,” ]. Chem. Theory Comput. 9, 5059-5069 (2013).

51 A. Mardt, L. Pasquali, H. Wu, and F. Noé, “VAMPnets for deep learning of
molecular kinetics,” Nat. Commun. 9, 5 (2018).

32W. Chen and A. L. Ferguson, “Molecular enhanced sampling with autoen-
coders: On-the-fly collective variable discovery and accelerated free energy
landscape exploration,” |. Comput. Chem. 39, 2079-2102 (2018).

33M. M. Sultan and V. S. Pande, “Automated design of collective variables using
supervised machine learning,” J. Chem. Phys. 149, 094106 (2018).

347, M. L. Ribeiro, P. Bravo, Y. Wang, and P. Tiwary, “Reweighted autoencoded
variational Bayes for enhanced sampling (RAVE),” J. Chem. Phys. 149, 072301
(2018).

35]. Rogal, E. Schneider, and M. E. Tuckerman, “Neural-network-based path col-
lective variables for enhanced sampling of phase transformations,” Phys. Rev. Lett.
123, 245701 (2019).

€Y. Wang, J. M. L. Ribeiro, and P. Tiwary, “Machine learning approaches for
analyzing and enhancing molecular dynamics simulations,” Curr. Opin. Struct.
Biol. 61, 139-145 (2020).

57L. Bonati, V. Rizzi, and M. Parrinello, “Data-driven collective variables for
enhanced sampling,” J. Phys. Chem. Lett. 11, 2998-3004 (2020).

387, Belkacemi, P. Gkeka, T. Lelievre, and G. Stoltz, “Chasing collective variables
using autoencoders and biased trajectories,” ]. Chem. Theory Comput. 18, 59-78
(2021).

391, Bonati, G. Piccini, and M. Parrinello, “Deep learning the slow modes
for rare events sampling,” Proc. Natl. Acad. Sci. U. S. A. 118, €2113533118
(2021).

“OF, Hooft, A. Pérez de Alba Ortiz, and B. Ensing, “Discovering collective variables
of molecular transitions via genetic algorithms and neural networks,” J. Chem.
Theory Comput. 17, 2294-2306 (2021).

“TM. Frassek, A. Arjun, and P. G. Bolhuis, “An extended autoencoder model
for reaction coordinate discovery in rare event molecular dynamics datasets,”
J. Chem. Phys. 155, 064103 (2021).

42y, Zhang, Y.-K. Lei, Z. Zhang, X. Han, M. Li, L. Yang, Y. I. Yang, and Y. Q. Gao,
“Deep reinforcement learning of transition states,” Phys. Chem. Chem. Phys. 23,
6888-6895 (2021).

43T, Kikutsuji, Y. Mori, K.-i. Okazaki, T. Mori, K. Kim, and N. Matubayasi,
“Explaining reaction coordinates of alanine dipeptide isomerization obtained
from deep neural networks using Explainable Artificial Intelligence (XAI),”
J. Chem. Phys. 156, 154108 (2022).

#4]. Neumann and N. Schwierz, “Artificial intelligence resolves kinetic path-
ways of magnesium binding to RNA,” J. Chem. Theory Comput. 18, 1202-1212
(2022).

“3S. Liang, A. N. Singh, Y. Zhu, D. T. Limmer, and C. Yang, “Probing reac-
tion channels via reinforcement learning,” Mach. Learn.: Sci. Technol. 4, 045003
(2023).

“®G. Lazzeri, H. Jung, P. G. Bolhuis, and R. Covino, “Molecular free energies, rates,
and mechanisms from data-efficient path sampling simulations,” ]. Chem. Theory
Comput. 19, 9060-9076 (2023).

“TA. N. Singh and D. T. Limmer, “Variational deep learning of equilibrium
transition path ensembles,” ]. Chem. Phys. 159, 024124 (2023).

“8D. Ray, E. Trizio, and M. Parrinello, “Deep learning collective variables from
transition path ensemble,” J. Chem. Phys. 158, 204102 (2023).

“9N. Naleem, C. R. A. Abreu, K. Warmuz, M. Tong, S. Kirmizialtin, and M. E.
Tuckerman, “An exploration of machine learning models for the determination of
reaction coordinates associated with conformational transitions,” J. Chem. Phys.
159, 034102 (2023).

50 A. Majumder and J. E. Straub, “Machine learning derived collective variables for
the study of protein homodimerization in membrane,” J. Chem. Theory Comput.
20, 5774-5783 (2024).

5'K. Okada, T. Kikutsuji, K.-I. Okazaki, T. Mori, K. Kim, and N. Matubayasi,
“Unveiling interatomic distances influencing the reaction coordinates in alanine

APL Mach. Learn. 3, 016113 (2025); doi: 10.1063/5.0252631
© Author(s) 2025

3,016113-10

1€:1.2:90 G20z Idy 81


https://pubs.aip.org/aip/aml
https://doi.org/10.1126/science.1152692
https://doi.org/10.1021/ar0001665
https://doi.org/10.1126/science.1088172
https://doi.org/10.1021/ja021369m
https://doi.org/10.1021/ja021369m
https://doi.org/10.1021/ja211027m
https://doi.org/10.1021/ar500319e
https://doi.org/10.1016/S0065-3233(08)60402-7
https://doi.org/10.1021/jp984837g
https://doi.org/10.1063/1.1630572
https://doi.org/10.1146/annurev-physchem-040215-112215
https://doi.org/10.1146/annurev-physchem-040215-112215
https://doi.org/10.1073/pnas.100127697
https://doi.org/10.1021/jp045544s
https://doi.org/10.1021/jp045546c
https://doi.org/10.1063/1.2748396
https://doi.org/10.1038/s43588-023-00428-z
https://doi.org/10.1073/pnas.0704304104
https://doi.org/10.1063/1.2432340
https://doi.org/10.1021/ct4009798
https://doi.org/10.1038/s41467-019-09739-0
https://doi.org/10.1021/acs.jctc.9b01279
https://doi.org/10.1063/5.0009066
https://doi.org/10.1021/acs.jctc.2c00132
https://doi.org/10.1073/pnas.2214906119
https://doi.org/10.1021/acs.jpcb.1c00904
https://doi.org/10.1021/acs.jctc.4c00423
https://doi.org/10.1021/ct400487e
https://doi.org/10.1038/s41467-017-02388-1
https://doi.org/10.1002/jcc.25520
https://doi.org/10.1063/1.5029972
https://doi.org/10.1063/1.5025487
https://doi.org/10.1103/physrevlett.123.245701
https://doi.org/10.1016/j.sbi.2019.12.016
https://doi.org/10.1016/j.sbi.2019.12.016
https://doi.org/10.1021/acs.jpclett.0c00535
https://doi.org/10.1021/acs.jctc.1c00415
https://doi.org/10.1073/pnas.2113533118
https://doi.org/10.1021/acs.jctc.0c00981
https://doi.org/10.1021/acs.jctc.0c00981
https://doi.org/10.1063/5.0058639
https://doi.org/10.1039/d0cp06184k
https://doi.org/10.1063/5.0087310
https://doi.org/10.1021/acs.jctc.1c00752
https://doi.org/10.1088/2632-2153/acfc33
https://doi.org/10.1021/acs.jctc.3c00821
https://doi.org/10.1021/acs.jctc.3c00821
https://doi.org/10.1063/5.0150278
https://doi.org/10.1063/5.0148872
https://doi.org/10.1063/5.0147597
https://doi.org/10.1021/acs.jctc.4c00454

APL Machine Learning

dipeptide isomerization: An explainable deep learning approach,” J. Chem. Phys.
160, 174110 (2024).

52J, Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, and S.-H. Deng,
“Hyperparameter optimization for machine learning models based on Bayesian
optimization,” J. Elec. Sci. Technol. 17, 26-40 (2019).

53M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M.
Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.
Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems” (2015), https://www.tensorflow.org.
S4T, O’Malley, E. Bursztein, J. Long, F. Chollet, H. Jin, L. Invernizzi et al. (2019),
“Kerastuner,” v.1.4.6, https://github.com/keras-team/keras-tuner.

ARTICLE pubs.aip.org/aip/aml

S5M. T. Ribeiro and S. Singh, in KDD’16: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2016.

565, M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in Advances in Neural Information Processing Systems, 30 (Curran
Associates, Inc, 2017).

57D. A. Case, K. Belfon, I. Y. Ben-Shalom, S. R. Brozell, D. S. Cerutti, V. W. D.
Cruzeiro, T. A. Darden, R. E. Duke, and G. Giambasu, “Amber20” (2020).

58A. G. Anderson and J. Hermans, “Microfolding: Conformational probability
map for the alanine dipeptide in water from molecular dynamics simulations,”
Proteins: Struct., Funct., Bioinf. 3, 262-265 (1988).

9R. Salomoén-Ferrer, A. W. Gétz, D. Poole, S. Le Grand, and R. C. Walker,
“Routine microsecond molecular dynamics simulations with AMBER on GPUs.
2. Explicit solvent particle Mesh Ewald,” ]. Chem. Theory Comput. 9, 3878-3888
(2013).

APL Mach. Learn. 3, 016113 (2025): doi: 10.1063/5.0252631
© Author(s) 2025

3, 016113-11

1€:1.2:90 G20z Idy 81


https://pubs.aip.org/aip/aml
https://doi.org/10.1063/5.0203346
https://doi.org/10.11989/JEST.1674-862X.80904120
https://www.tensorflow.org
https://github.com/keras-team/keras-tuner
https://doi.org/10.1002/prot.340030408
https://doi.org/10.1021/ct400314y

