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Abstract

When a massive disaster occurs, to repair the damaged part of lifeline networks, planning is needed to appropriately
allocate tasks to two or more restoration teams and optimize their traveling routes. However, precedence and
synchronization constraints make restoration teams interdependent of one another, and impede a successful solution
by standard local search. In this paper, we propose an indirect local search method using the product set of team-wise
permutations as an auxiliary search space. It is shown that our method successfully avoids the interdependence
problem induced by the precedence and synchronization constraints, and that it has the big advantage of
non-deteriorating perturbations being available for iterated local search.
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1 Introduction
In the wake of the Great East Japan Earthquake, hands-on
research and development is now required to solve con-
crete social problems. When a massive disaster such as an
earthquake or a typhoon occurs, some damage to service
networks is unavoidable (e.g., electricity, water service, gas
and so on). To repair the damage to the networks as fast
as possible, planning is needed to appropriately allocate
tasks to two or more restoration teams and optimize their
traveling routes. Such a scheduling problem is a variant of
the vehicle routing problem (VRP) which designs optimal
delivery or collection routes from one or several depots to
a number of geographically scattered customers. There is
a wide variety of VRPs and a broad literature on this class
of problems.
The first systemic studies of this problem using VRPs in

the context of Japan, appears to be Watanabe et al. [9, 10].
In these case studies, the problem is formulated as a VRP
with time windows (VRPTW) and standard local search
heuristics are then applied. However, Yamashita et al. [11]
point out that establishing scheduling techniques for
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handling precedence and synchronization constraints has
become a very important issue. If electricity is supplied
to spot j via spot i, restoration teams cannot start oper-
ating spot j until the restoration of spot i is completed.
Moreover, several teams may participate in restoring a
damaged spot. The main difficulty in dealing with these
constraints is that restoration teams are not independent
of one another. In other words, a change in one route may
affects other routes and may render all other routes infea-
sible. This is not usually the case in VRPs. This difficulty,
which often impedes a successful solution by standard
local search, is called the interdependence problem. See
Drexl [4] for a complete review of this problem and a com-
prehensive collection of other types of synchronization
constraints imposed in VRPs.
In the literature, Bredström and Rönnqvist [2] as well as

Afifi et al. [1] study a variant of VRPTW in which some
customers require simultaneous visits by two (or more)
vehicles, with motivation to apply to elderly health care
services. In our case, we note that how many teams par-
ticipate in restoration of each spot is not a constraint but
a decision variable for optimizing the whole restoration
schedule.
A good technique several authors propose for overcom-

ing the interdependence situation is the use of indirect
search (Derigs and Döhmer [3], Li et al. [6], Nonobe and
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Ibaraki [7], and others). In indirect search, given an opti-
mization problem, we first define (i) an auxiliary search
space X aux, which is different from the solution space X
of the original problem, (ii) a decoder f : X aux → X ,
and (iii) search techniques and move types operating on
the auxiliary space. Then, a local search procedure is
executed not on X but on X aux with evaluating search
points by the decoder f. Though the computational cost
of the decoder is added, it is known that this approach
is powerful for problems having complicated constraints.
Derigs and Döhmer [3] show that the approach of indi-
rect local search is not only flexible and simple but when
applied to the VRP with pickup and delivery and time
windows (VRPPDTW) it also gives results which are com-
petitive with state-of-the-art VRPPDTW-methods by Li
and Lim [5], as well as Pankratz [8].
In this paper, we propose an enhanced indirect search

method which uses the product set of team-wise per-
mutations as an auxiliary search space, though many
successful indirect search algorithms use permutations
as an auxiliary search space (in the context of VRP, it
is permutations of customers to be served). It is shown
that our method successfully avoids the interdependence
problem induced by the precedence and synchronization
constraints. In addition, when we improve the capability
of our algorithm to escape from local optima by using a
metaheuristic technique called iterated local search, we
have the big advantage of non-deteriorating perturbations
being available.
In Section 2, after describing the main feature of our

problem, we define our notation and formulate themathe-
matical optimization problem.We also summarize the dif-
ficulties with the interdependence problem in our setting.
In Section 3, we develop an enhanced indirect search algo-
rithm that avoids the interdependence problem induced
by the precedence and synchronization constraints. In
Section 4, we perform computational experiments in
a practical setting using a geographic information system
(GIS) and geospatial information. The results obtained
from numerical examples in this study are then described.

2 The case study
2.1 Problem description
We first enumerate the main feature of our problem.

2.1.1 Precedence relation between pairs of damaged spots
If electricity is supplied to spot j via spot i, then it is nec-
essary to restore spot i before restoring spot j. Namely, a
restoration team cannot start operating spot j, but they
may wait at spot j until the restoration of spot i is com-
pleted. We denote this by i ≺ j. Notice that (V ,≺) is
a strictly partially ordered set (or strict poset), where V
is the set of damaged spots. In our application, we can
assume that the Hasse diagram of the poset is a directed

forest (see Fig. 8 in Section 4). Moreover, the whole dam-
aged area is divided into multiple areas in advance, and
each restoration team has their area of responsibility. For
any pair (i, j), i ≺ j implies that spots i and j are located in
the same area.

2.1.2 Areas of responsibility
Each restoration team should give priority to its area of
responsibility. Namely, they cannot move to another area
until their own area is completed. These are interpreted
as team-wise precedence constraints, and compatible with
the precedence constraints. We use i ≺k j to denote that
spot i is in team k’s area of responsibility but spot j is in
another area, and (V ,≺k) is also a strict poset. The num-
ber of restoration teams is greater than the number of
areas. Hence two or more teams may be allocated in a
common area.

2.1.3 Synchronized restoration by two ormore teams
A spot can be repaired by two or more restoration teams
if each team can help decrease the restoration time of the
spot by at least c minutes (otherwise, the spot is repaired
by one team). Each team can join the restoration of a spot
during the restoration. However, they must stay until the
restoration is completed. We set c = 20 in our case study.

2.1.4 Min-max objective
The goal is to ensure that entire restoration process is
completed as quickly as possible. In other words, we min-
imize the time required for the team that takes the longest
time to finish their restoration work and return to the
depot.

2.2 A MILP formulation
To accurately formulate our problem as a mathematical
optimizationproblem, we first need to define our notation.

• Let V ∪ {0} = {0, 1, . . . , |V|} be the set of all spots to
be repaired and a depot. “0” represents the depot.

• Let K = {1, 2, . . . , |K|} denote the set of all
restoration teams.

• Let P be the set of all triplets (i, j, k) such that team k
should respect the precedence constraint between
spots i and j. Namely,

A := {(i, j) | i ≺ j, i, j ∈ V},
Ak := {(i, j) | i ≺k j, i, j ∈ V}, k ∈ K,

P := A×K ∪
⋃

k∈K
{(i, j, k) | (i, j) ∈ Ak}.

• c is the threshold for the synchronized restoration:
Two or more teams can restore the same spot if each
team can help decrease the restoration time of the
spot by at least c minutes.

• dij is the time required to move from spot i to spot j.
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• wi represents the volume of work required to
complete the restoration of spot i.

• xkij denotes the binary integer decision variable that
equals 1 if and only if team k moves directly from
spot i to spot j.

• yki denotes the binary integer decision variable that
equals 1 if and only if team k visits spot i.

• bki represents the time point at which team k begins
to work at spot i. The value of bki is meaningful only if
yki = 1.

• ei denotes the time point at which the restoration of
spot i is completed, where all teams leave the depot
to start the restoration process at e0 = 0.

• t is the time point at which the whole restoration
process is completed.

• M is a real number sufficiently large, which is used in
the so-called big-M method.

Using the above notation, the desired optimization prob-
lem is formulated as a mixed integer linear programming
(MILP) problem.

Minimize t
subject to ei + di0 ≤ t, ∀i ∈ V , (1a)

yki =
∑

j∈V
xkij, ∀i ∈ V ∪ {0}, ∀k ∈ K, (1b)

ykj =
∑

i∈V
xkij, ∀j ∈ V ∪ {0}, ∀k ∈ K, (1c)

ei ≤ bkj + M
(
1 − ykj

)
, ∀(i, j, k) ∈ P ,

(1d)

ei + dij ≤ bkj + M
(
1 − xkij

)
,

∀i, ∀j ∈ V ∪ {0}, ∀k ∈ K, (1e)

bki ≤ ei, ∀i ∈ V , ∀k ∈ K, (1f)

ei − bki ≤ Myki , ∀i ∈ V , ∀k ∈ K, (1g)
∑

k∈K

(
ei − bki

)
= wi, ∀i ∈ V , (1h)

c ×
∑

g∈K\{k}
ygi ≤ ei − bki + M

(
1 − yki

)
,

∀i ∈ V , ∀k ∈ K, (1i)

xkij ∈ {0, 1}, ∀i, ∀j ∈ V ∪ {0}, ∀k ∈ K, (1j)

yki ∈ {0, 1}, ∀i ∈ V ∪ {0}, ∀k ∈ K, (1k)

0 ≤ bki < ∞, ∀i ∈ V ∪ {0}, ∀k ∈ K, (1l)
0 ≤ ei < ∞, ∀i ∈ V ∪ {0}, (1m)
0 ≤ t < ∞. (1n)

From the objective function and constraint (1a), we
minimize the time required for the team that takes the
longest time to finish its restoration work and return to

the depot. Constraints (1b) and (1c) mean that if team k
visits spot i, then team kmust move to spot i from another
exactly once, and must move somewhere from spot i
exactly once. The precedence constraints and the areas of
responsibility are considered in (1d). Travel time is consid-
ered in (1e). If team k visits spot j next to spot i, i.e., xkij = 1,
then time interval dij is required for traveling between
them. Notice that e0 = 0 is automatically satisfied because
of the minimization of the objective function. Constraint
(1f) represents that the time team k starts restoring spot
i is before the time when it is completed. Notice that (1e)
and (1f) eliminate subtours that do not include the depot.
Moreover, if team k does not visit spot i, i.e., yki = 0, it
follows from (1f) and (1g) that ei − bki = 0. Thus, con-
straint (1h) ensures that the restoration of spot i is not
completed until the total working time of the restoration
teams working there exceeds wi. From constraint (1i), we
have

yki = 1,
∑

g∈K\{k}
ygi ≥ 1 =⇒ ei − bki∑

g∈K\{k} y
g
i

≥ c (2)

for every i ∈ V and every k ∈ K. Therefore, constraint (1i)
means that a spot may be served by two or more teams
if each team can help decrease the restoration time by at
least cminutes.
However, the problem has many big-M constraints,

the structure of the traveling salesman problem (TSP),
a min-max objective function, and symmetries between
restoration teams. For this reason, it is thoroughly
intractable to find a solution by using a general-purpose
MIP solver.

2.3 Interdependence problem
Let us examine the interdependence problem in the set-
ting laid out in Table 1.
Team 1’s route, shown as in Fig. 1, does not break the

given precedence constraints in itself. The same applies
to team 2’s route. However, taken as a whole, team 1’s
route and team 2’s route do break the precedence con-
straint 5 ≺ 6. Synchronization at spot 8 is also incomplete,
because it is prohibited to leave there until the restoration
is completed. In other words, whether or not a route is
feasible depends on the other routes.
In case (a), we can render both routes feasible by insert-

ing waiting times into them (see Fig. 2). However, the
modified schedule has a longer total duration. From the

Table 1 An instance with nine spots and two teams

Area 1 Area 2

List of spots {1, 2} {3, 4, . . . , 9}
List of teams {1} {2}
Precedence constraints – 5 ≺ 6, 7 ≺ 9
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Fig. 1 Infeasible schedules

view point of optimization, this is not good. In case (b),
by contrast, inserting waiting times never leads a feasible
schedule.

3 Proposedmethod
In this section, we develop an enhanced indirect search
algorithm that avoids the interdependence problem
induced by the precedence and synchronization con-
straints. Figure 3 illustrates the concept of indirect search.

3.1 Linear extensions and search space
Let (V ,�) be the transitive union of (V ,≺) and (V ,≺k).
Namely,

{(i, j) ∈ V×V | i � j} = A ∪ Ak .

Let Lk denote the set of all linear extensions of (V ,�),
where a linear extension σk ∈ Lk is a permutation of
spots that is compatible with the precedence constraints
and with the team-wise precedence constraints for team
k’s area of responsibility.

Definition 3.1 (linear extension) A linear extension
of a finite poset (Q,≺) is a total ordering σ = σ(1)
σ (2) . . . σ (|Q|) of its elements such that i < j whenever
σ(i) ≺ σ(j).

Now, we define the search space by

X aux :=
∏

k∈K
Lk .

A search point x ∈ X aux is expressed by a |K| × |V|
matrix. The following example is a search point for the
problem shown in Table 1.

x =
(

σ1
σ2

)
=

(
σ1(1) σ1(2) · · · σ1(9)
σ2(1) σ2(2) · · · σ2(9)

)

=
(
1 2 3 5 7 6 8 9 4
3 7 5 6 8 4 9 1 2

) (3)

Since the precedence constraints 5 ≺ 6 and 7 ≺ 9 are
given, 5 and 7 are located to the left of 6 and 9 in either
row, respectively. Moreover, team k should give priority to
their area of responsibility. Hence spot 1 and spot 2 are
located to the left of the other spots in the first row. Con-
versely, they are located to the right of the other spots in
the second row.

Definition 3.2 (topological ordering) A topological
ordering of a directed acyclic graph (DAG) G = (V , E) is
a linear ordering of its vertices such that if there is a path
from u to v, then u appears before v in the ordering.

Wenote that (V ,�) constitutes a DAG G = (V ,A∪Ak).
A linear extension of the poset is the same thing as a
topological ordering of the DAG. We can obtain an initial
search point x ∈ X aux by a topological ordering method.

3.2 Decoder
Let us define a decoder that relates each search point
x ∈ X aux to a feasible schedule f (x) in the following

Fig. 2 Repair of an infeasible schedule by inserting waiting times
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Fig. 3 Indirect search

manner. To determine which spot to visit after complet-
ing a restoration somewhere, team k examines each spot
as a candidate in the order σk(1), σk(2), . . . , σk(|V|). Team
k is permitted to visit spot σk(i) if no team has left for spot
σk(i), or if some team(s) has already left for spot σk(i) but
each team operating spot σk(i) can decrease the restora-
tion time by at least c minutes. Otherwise, team k skips
spot σk(i) and examines spot σk(i + 1). Figure 4 illus-
trates the feasible schedule f (x), derived by repeating this
process, for x shown as in (3). In x, the circled numbers
represent the spots that are actually visited.
To show an implementation of our decoder, we intro-

duce additional variables.
• sk represents the state of team k.

sk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Initial Team k leaves the depot now and begin the whole process
Moving Team k is moving to a spot or the depot
Working Team k is working at a spot
Waiting Team k is waiting at a spot
Completed Team k finished their task and arrived at the depot.

• vk ∈ V ∪ {0} is the location of team k. If sk = Moving,
vk represents the current destination. Otherwise, it
represents the place they are currently at.

• pk is an index variable that points to an element of σk .
• tk represents the time until their current movement

or work is completed.

Fig. 4 Feasible schedule f (x)

Now, our decoder DECODER() can be implemented as
follows:

Function DECODER(parameters: x ∈ X aux)
Initialize t ← 0, K′ ← K;
Initialize w′

i ← wi, Ki ← ∅ for all i ∈ V ;
Initialize sk ← Initial, vk ← 0, pk ← 1, tk ← 0 for
all k ∈ K;
while K′ �= ∅ do

Execute Algorithm 1;
Execute Algorithm 2;

return t;

Two subroutines are shown in Algorithms 1 and 2.

Algorithm 1: Subroutine for determining next action
forall the k ∈ K′ such that tk = 0 do

switch the value of sk do
caseWorking or Initial /* evk = t */

Declare a local integer variable i;
Set i ← vk ;

� while pk ≤ |V|, and VISITABLE(arguments: k, σk(pk))
returns false do

pk ← pk + 1;
if pk ≤ |V| then

vk ← σk(pk), Kvk ← Kvk ∪{k} ; /* ykvk = 1 */

pk ← pk + 1;
else

vk ← 0; /* go back to the depot */

sk ← Moving, tk ← di,vk ; /* xki,vk = 1 */

caseMoving
if vk = 0 then

sk ← Completed, K′ ← K′ \ {k};
else

sk ← Waiting;

caseWaiting or Completed
(Do nothing)

forall the k ∈ K′ such that sk = Waiting do
if the work at spot vk can be started then

/* We can judge this in O(1) time under
the assumption that the Hasse diagram
of (V ,�) is given as a directed forest
*/

sk ← Working; /* bkvk = t */

Algorithm 2: Subroutine for updating tk
forall the k ∈ K′ such that sk = Working do

tk ← w′
vk /nvk , where ni := #{g ∈ Ki | sg = Working};

Declare a local floating-point variable tmin;
tmin ← min{tk | k ∈ K′ such that sk = Moving orWorking};
forall the k ∈ K′ such that sk = Moving orWorking do

tk ← tk − tmin;
if sk = Working then

w′
vk ← w′

vk − tmin;

t ← t + tmin;
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Function VISITABLE(parameters: k ∈ K, j ∈ V)
/* Decide whether team k can join the restoration of spot j. */
if Kj = ∅ then /* no team has left for spot j */

return true;
else

/* Suppose that there is no additional waiting time at spot j due to the
precedence constraints. */

Declare local floating-point variables {τg}g∈Kj∪{k} and set

τg ←
⎧
⎨

⎩

dvk ,j if g = k
0 if g �= k, sg = Waiting orWorking
tg if g �= k, sg = Moving

(4)

for all g ∈ Kj ∪ {k}; /* team g starts operating spot j in τg minutes. */
Sort {τg}g∈Kj∪{k} as τ ′

1, τ ′
2, . . . , τ ′

m in such a way that τ ′
1 ≤ τ ′

2 ≤ · · · ≤ τ ′
m, wherem := |Kj ∪ {k}|;

Declare a local floating-point variable w;
Set w ← w′

j −
∑m−1

g=1 g × (τ ′
g+1 − τ ′

g);
/* w represents the volume of remaining work when the last team arrives.

Notice that each team can help decrease the restoration time by at least
c if and only if the last arriving team can achieve it. */

if w
m−1 − w

m ≥ c then
return true;

else
return false;

In FunctionVISITABLE, we decide whether team k can
join the restoration of spot j under the assumption that
there is no additional waiting time due to the precedence
constraints, which is stricter than the actual constraint
(1i). On the other hand, deciding it accurately with consid-
ering the waiting time is impractical. If there exists a spot
i such that i ≺ j, restoration teams cannot start operating
spot j until the restoration of spot i is completed. Thus, we
should replace (4) into

τg ←
⎧
⎨

⎩

max(ei − t, dvk ,j) if g = k
max(ei − t, 0) if g �= k, sg = Waiting orWorking
max(ei − t, tg) if g �= k, sg = Moving.

In this case, the larger the value of ei is, the more
the last arriving team conceals their traveling time and
helps decrease the restoration time. However, the final
value of ei cannot be found when Function VISITABLE
(arguments: k, j) is called from line � of Algorithm 1,
because it will be improved if another team joins the
restoration of spot i. Therefore, whether the team k can
join the restoration of spot j depends on whether another
team can join the restoration of spot i. In this situation,
one possible way for deciding it accurately is to use a back-
track search method, but it will take an exponential time.
Hence, our decision method assuming ei ≤ t in advance is
more suitable for efficiency.

Theorem 3.1 If we consider the additional constraint
∑

k∈K
yki ≤ 3, ∀i ∈ V ,

then Function DECODER runs in O(|K||V|) time.

Proof Algorithm 2 runs inO(|K|) time.Moreover, under
the additional constraints, we have

∑

i∈V

∑

k∈K
yki ≤ 3|V|.

This implies that the main while loop in Function
DECODER is repeated O(|V|) times. Hence, it takes
O(|K||V|) time to execute the loop of Algorithm 2.
On the other hand, Algorithm 1 does not necessarily
run in O(|K|) time, because Function VISITABLE
may be called repeatedly in line �. However, Function
VISITABLE is called exactly once for each (k, j) ∈ K × V
in the main while roop in Function DECODER. There-
fore, it also takes O(|K||V|) time to execute the loop of
Algorithm 1.

3.3 Neighbourhood
We shall define a move type operating on X aux.

Definition 3.3 (intra-swap and its feasibility) For any
σk = σk(1)σk(2) · · · σk(|V|) ∈ Lk, an intra-swap move is
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a transposition (i j) that swaps σk(i) and σk(j) for some
i, j ∈ {1, 2, . . . , |V|}. Namely,

σk ◦ (i j) = σk(1) · · · σk(j) · · · σk(i) · · · σk(|V|).
An intra-swap move is said to be feasible if σ ′

k := σk ◦
(i j) ∈ Lk.

Lemma 3.1 An intra-swap (i j) operating a linear exten-
sion σk = σk(1)σk(2) · · · σk(|V|) ∈ Lk is feasible if and
only if

⎧
⎨

⎩

σk(i) ⊀ σk(h) i < h ≤ j,
σk(h) ⊀ σk(j) i < h < j,
σk(i) ⊀k σk(j).

Proof The result follows directly from the definition
of Lk .

From Lemma 3.1, we can judge whether an intra-swap
move is feasible or not inO(|V|) time.We define the intra-
swap neighbourhood N : X aux → 2X aux in the following
manner:

N (x) :=
⋃

k∈K

{
x′ = (σ−k , σ ′

k) | σ ′
k = σk ◦ (i j) ∈ Lk ,

i, j = 1, 2, . . . , |V|},
x = (σ1, σ2, . . . , σ|K|) ∈ X ,

where (σ−k , σ ′
k) := (σ1, . . . , σk−1, σ ′

k , σk+1, . . . , σ|K|).
Suppose that x = (σ1, σ2, . . . , σ|K|) ∈ X is the provi-

sional solution. We first choose k ∈ K, select i, j ∈ V , and
check whether the intra-swap (i j) operating σk is feasible.
If it is feasible, then the intra-swap move is applied to x
and the new search point x′ is evaluated by the decoder. If
the objective value of f (x′) is better than that of f (x), then
we update the provisional solution by x ← x′. Figure 5
shows that the schedule is improved from f (x) to f (x′) by
swapping σ2(2) and σ2(6). A procedure for searching for a
better schedule is shown in Function IndirectSearch.

Fig. 5 An example of an improvement from an intra-swap operation

Function INDIRECTSEARCH(parameters: x ∈ X aux)
Declare floating-point variables vmin and v;
vmin ← Call DECODER(arguments: x);

� forall the x′ ∈ N (x) do
v ← Call DECODER(arguments: x′);
if v < vmin then

vmin ← v, x ← x′;
go to Line �;

return x;

3.4 Iterated indirect local search
In this subsection, we improve the capability of our algo-
rithm to escape from local optima by using a meta-
heuristic technique. In multi-start local search, a num-
ber of initial solutions are generated, and local search
procedure is applied to each of them. Finally, the best
solution obtained in the entire search is output. In
iterated local search, which is an effective variant of
multi-start local search, the initial solutions for local
search are generated by perturbating good solutions found
in the previous search. On this point, we have the
big advantage of non-deteriorating perturbations being
available.

Definition 3.4 (value-invariant swap) An intra-swap
move is called to be value-invariant if it converts x ∈ X aux

to x′ ∈ N (x) such that the objective values of f (x) and f (x′)
are the same each other.

Our iterated indirect local search algorithm is summa-
rized as follows.

Function ITERATEDSEARCH(parameters: x ∈ X aux,
m̄ ∈ Z+, n̄ ∈ Z+)
form ← 1 to m̄ do

for n ← 1 to n̄ do
� Choose an value-invariant feasible

intra-swap randomly, and add it to x;
x ← Call INDIRECTSEARCH(arguments: x);

return x;

4 Computational results
To test our algorithms in a practical setting, we generate
a virtual instance on a real map. A depot and 57 damaged
spots are located in Minami ward, Fukuoka city, Fukuoka
prefecture, Japan. The authors depict them in Fig. 6. The
volumes of work {wi} and their precedence constraints
are depicted in Fig. 7 and in Fig. 8, respectively. We
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Fig. 6 Locations of damage spots

Fig. 7 The volumes of work {wi}
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Fig. 8 Hasse diagram of (V ,≺)

suppose that there are eight restoration teams in total, and
that their areas of responsibility are the whole damaged area.
In other words, we do not consider team-wise precedence
constraints1. For each pair (i, j) in (V ∪ {0}) × (V ∪ {0}),
we set dij to be the minimum travel time (min) from i
to j along the real road network. The regulations of traf-
fic such as one-way roads and restricted turns are also
taken into consideration. To do this, we solve the shortest
path problem, in advance, by using GIS software ArcGIS
for Desktop ver. 10.4 (Esri Inc., USA) and ArcGIS Data
Collection Road Network 2015 (Esri Japan Corporation).
In our computational experiments, we first generate a

topological ordering σ of the Hasse diagram of (V ,≺),
and use x0 = (σ , σ , . . . , σ) ∈ X aux as an initial search
point. Then we execute Function IteratedSearch with
arguments: (x, m̄, n̄) = (x0, 1000, 1000) repeatedly with

changing the seed for random numbers used in line �

of the function. We implemented the algorithm using
C++ Language and executed it on a desktop PC with
Intel® Core™ i7-3770K processor of 3.4 GHz and 16 GB
memory installed. The results are shown in Table 2 and
Fig. 9. Routes 1 to 8 output by trial C are depicted in
Figs. 10, 11, 12, 13, 14, 15, 16 and 17, respectively. The
spots that are served by two ormore teams are highlighted
in yellow.
We note that our auxiliary search space, the product

set of team-wise permutations (linear extensions) is larger
than the set of permutations that is used in the usual
indirect search. Therefore, it seems reasonable that our
algorithm should be able to find a good sub-optimal solu-
tion. Estimating the optimization gap is quite hard in our
challenging problem, but Fig. 9 clearly shows that our

Table 2 Computational results

Objective value (min) CPU time (sec) [# of calls to Function DECODER ]

Seed Initial sol. Final sol. 1st iteration 1000 iterations Final update

A 655.889 452.000 0.298 [11,691] 71.739 [8,253,466] 33.754 [3,853,235]

B ↓ 451.000 0.678 [40,122] 75.119 [8,397,206] 61.158 [6,799,271]

C ↓ 449.000 0.187 [ 7,199] 74.202 [8,312,991] 45.523 [5,110,908]
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Fig. 9 Effect of the iterated local search

indirect search has a high local search ability and that its
iteration with non-deteriorating perturbations is useful to
escape from local optima. The final solution, found in trial
C, achieved a 13% decrease of the objective value, com-
pared with the output by an existing solver developed in
Fujitsu group2.
In each trial, 1000 iterations are finished in about 75 s,

and FunctionDECODER is calledmore than eightmillion
times. This computational efficiency is mainly because of
theO(|K||V||) implementation of the decoder. It would be
able to quickly present the most recent plan that responds
to changing conditions, including the extent of an area
affected by a disaster and the pace of recovery work.
The authors think that the large auxiliary search space,

the linear time implementation of the decoder, the iterated

local search using non-deteriorating perturbations are
responsible for the successful results.

5 Conclusion and future work
Based on the concept of the indirect search, we have
proposed a simple local search method using the prod-
uct set of team-wise permutations as an auxiliary search
space. We have demonstrated that this new method
successfully avoids the interdependence problem induced
by the precedence and synchronization constraints, and
that it has the big advantage of non-deteriorating per-
turbations being available for iterated local search. The
authors believe that this approach will also be useful for
other scheduling problems. We would like to investigate
applications to other problems as challenges in the future.
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Fig. 10 Route 1

Fig. 11 Route 2
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Fig. 12 Route 3

Fig. 13 Route 4
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Fig. 14 Route 5

Fig. 15 Route 6
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Fig. 16 Route 7

Fig. 17 Route 8
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Endnotes
1 Rather, this situation is computationally harder for

our algorithm, because team-wise precedence constraints
reduce the size ofN (x) for every x ∈ X aux.

2 This existing method is a greedy construction method,
though the detail cannot be publishable due to business
secret.
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