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ABSTRACT: Ergothioneine (EGT), a naturally occurring histidine derivative, has been reported
to modulate neurodegenerative diseases; however, the underlying mechanism remains unclear.
This study aimed to investigate the brain-beneficial role of the natural amino acid EGT in NE-4C
nerve cells. In the nerve cells, EGT treatment of >10 μM for 48 h significantly increased the
expression of brain-derived neurotrophic factor (BDNF), as well as the phosphorylation of cAMP
response element-binding protein (CREB), whereas no change was observed in acetylcholine
receptor expression. Additionally, EGT induced an increase in intracellular Ca2+ levels via
stimulation of the inositol 1,4,5-triphosphate receptor (IP3R) in the endoplasmic reticulum; this
increase was abrogated by the inhibition of organic cation transporter 1 (OCTN1). Structure−
activity relationship analysis revealed the importance of the trimethylammonium group in EGT for
intracellular events. In conclusion, EGT incorporated into cells via the OCTN1 route may act as a
nerve transmission stimulator via IP3R-mediated Ca2+-CREB/BDNF activation.

1. INTRODUCTION
Neurodegenerative diseases (NDDs), such as Alzheimer’s
disease (AD) and Parkinson’s disease, are classified as
neurological disorders characterized by the progressive loss
of neurons in the central or peripheral nervous system.1 Brain-
derived neurotrophic factor (BDNF), a neurotrophin, has
generated the most research interest due to its therapeutic
potential for NDDs2 because BDNF can ameliorate neuronal
damage and promoted autophagy in SH-SY5Y cells3 and
BDNF mRNA expression was lower in the brain of AD
patients, compared to individuals with no AD.4 Therefore, the
amelioration of the degraded BDNF signaling cascade is an
alternative and appropriate strategy for the treatment or
prevention of AD via diet because food compounds such as
sulforaphane,5 polyphenols,6 peptides,7 and fish oil8 improved
impaired cognition in animal studies mediated by BDNF
activation.
Ergothioneine (EGT) is a naturally occurring sulfur-

containing amino acid derived from histidine (His),9

commonly found in mushrooms. For example, Boletus edulis
and yellow oyster mushrooms contain EGT at 7.27 mg/g and
7.18 mg/g, respectively.10 To date, EGT has attracted an
increasing research attention owing to its physiological
potential, including antioxidation,11 antidiabetes,12 and car-
diovascular-protection,13 in human studies. In addition to
these health benefits, Song et al.14 clarified that EGT intake in
D-galactose-treated C57BL/6J mice activates the acetylcholine
(ACh) nerve signaling pathways. Other reports also claimed
the brain-health benefits of EGT with antiaging effect15 by
increasing synapsin I expression in hippocampal cells16 and by
eliminating senescent neuronal cells in hippocampus cells.17

The beneficial effect of EGT on the brain can be attributed to

intact transport across the blood−brain barrier (BBB) and
accumulation in the mouse brain (10.66 ng/mg-brain18),
possibly via organic cation transporter 1 (OCTN1).19 In
amyloid β (Aβ)1−40-induced mouse models, brain-accessible
EGT has been shown to prevent Aβ accumulation in the
hippocampus by reducing acetylcholinesterase (AChE)
activity.20 However, the underlying mechanism of brain-
beneficial EGT in the nervous system remains unclear.
In the present study, we explored the potential neuro-

transmission mechanisms of EGT in NE-4C nerve cells that
were derived from the cerebral vesicles of a p53 gene-deficient
mouse embryo21 because the cells possess ACh and BDNF
nerve signaling systems targeted in this study.22 The
structure−activity relationship was also analyzed using EGT
and the analogues. In this study, we used L-hercynine (ERY),
His, and 2-mercapto-L-histidine (mer-His), as depicted in
Figure 1. Although EGT has two tautomeric thiol and
thioketone forms, the predominant EGT under physiological
situation is a thioketone form (Figure 1).23 ERY was selected
because of the lack of a thioketone group in the EGT structure.
Mer-His was also selected because of the lack of the
trimethylammonium moiety in the EGT structure, even
though the thioketone group in EGT was replaced with the
thiol group.
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2. MATERIALS AND METHODS
2.1. Chemicals and Reagents. Eagle’s minimal essential

medium (E-MEM) and retinoic acid (RA; Lot: SKH3179)
were obtained from FUJIFILM Wako Pure Chemical Co.
(Osaka, Japan). Fetal bovine serum (FBS) was purchased from
Corning (Glendale, AZ, USA). L-EGT (Lot: 5-NSR-167-2)
was purchased from Toronto Research Chemicals, Inc.
(Toronto, Ontario, Canada). Poly-L-lysine solution (PLL;
Lot: RNBM2127), ERY (Lot: 0000219037), mer-His (Lot:
B02860979), 2-aminoethyl diphenylborinate (2-APB; Lot:
BCBT7914), and pyrilamine maleate salt (Lot: MKCS9706)
were purchased from Sigma-Aldrich (St. Louis, MO, USA).
His (Lot: M8T1362) was purchased from Nacalai Tesque Co.
(Kyoto, Japan). Dantrolene sodium (Lot: S547802) was
purchased from Selleck Chemical Co. (Tokyo, Japan). An
intracellular Ca2+ determination kit (Calcium Kit II-Fluo 4;
Lot: WQ064) was purchased from DOJINDO Laboratories
(Kumamoto, Japan).

2.2. Cell Culture. The neural stem cell line NE-4C (CRL-
2925, Lot: 70050986) was purchased from the American Type
Culture Collection (Manassas, VA, USA). The stem cells were
cultured in PLL-coated 75 cm2 flasks in E-MEM medium
(containing L-glutamine, phenol red, sodium pyruvate,
nonessential amino acids, and 1500 mg/L sodium bicarbonate)
supplemented with 10% FBS and 1% penicillin/streptomycin
at 37 °C in a 95% air/5% CO2 humidified incubator. The cells
were dissociated using 0.05% trypsin and transferred to new
flasks when the growth confluence reached to 80−90%. Fifth-
passage cells were used for all of the experiments.

2.3. Preparation of NE-4C Cell Lysate for Protein
Expression Assay. NE-4C stem cells (9 × 104 cells) were
seeded in 35 mm PLL-coated dishes, followed by the addition
of 1 μM RA in E-MEM containing 5% FBS for stem cell
differentiation.22 After 4 days incubation, the nerve cells were
rinsed twice with warm phosphate-buffered saline solution and
lysed with ice-cold 1× radioimmunoprecipitation assay (RIPA)
buffer (50 mM Tris−HCl, 150 mM NaCl, 0.5% deoxycholic
acid sodium salt, 0.1% sodium dodecyl sulfate, and 1% NP-40,
pH 8.0) containing a protease (Nacalai Tesque Co.) and
phosphatase (PhosSTOP, Roche, Basel, Switzerland) inhibitor
cocktail tablets. After scraping, the obtained cell lysates were

sonicated using Branson Digital Sonifier SFX 250 (Emerson
Japan Co., Kanagawa, Japan) with an output control of 3 for 30
s at 4 °C, followed by centrifugation at 15,000g for 5 min at 4
°C (KUBOTA 3520, KUBOTA Co., Tokyo, Japan). An
aliquot of the supernatant was used to determine the total
protein concentration using the Pierce Protein Assay Kit (Lot:
YG372899; Thermo Fisher Scientific, Waltham, MA, USA).
The remaining supernatant was used for protein expression
analysis via a Wes assay.

2.4. Measurement of Protein Expression by Wes.
Protein expression levels were measured using a capillary
electrophoresis-based immunoassay Wes instrument (Protein-
Simple Co., San Jose, CA, USA) according to the
manufacturer’s instructions. Briefly, the supernatant was
diluted to 0.5 mg/mL with 0.1× sample buffer and 5×
fluorescent master mix denaturing buffer, followed by
denaturation at 95 °C for 5 min using the PCR Thermal
Cycler (Takara Bio Inc., Shiga, Japan). After denaturation, a
sample solution, biotinylated Wes reagents, and primary
antibodies were loaded onto a microplate, followed by
centrifugation (TOMY AX-511, TOMY Digital Biology Co.,
Tokyo, Japan) at 2500 rpm for 5 min at 25 °C. Wes
measurements were performed using a 12−230 kDa separation
module (8 × 25 mm capillary cartridge, ProteinSimple Co.).
Automatic immunodetection was performed by using a
horseradish-peroxidase-conjugated secondary antibody and a
chemiluminescent substrate. Total protein was detected by
attaching a pentafluorophenyl ester-biotin labeling reagent to
the applied proteins. The operating conditions of the Wes
instrument were as follows: separation time, 28 min; separation
voltage, 375 V; antibody dilution time, 30 min; primary
antibody time, 60 min; and secondary antibody time, 30 min.
The chemiluminescent signal was displayed as a virtual blot-
like image or electropherogram using the Compass for SW
software (ProteinSimple Co.). Protein expression was
normalized to the electropherogram peak area of the
corresponding total protein in each lane, and the data are
expressed as a ratio to the control group. The primary
antibodies used for immunoblotting were as follows: BDNF
(anti-BDNF antibody, rabbit monoclonal antibody, Lot:
1035294-1, 1:50 dilution, Abcam, Cambridge, UK), phos-

Figure 1. Structures of ergothioneine (EGT) and its analogues. (L-hercynine, ERY; L-histidine, His; and 2-mercapto-L-histidine, mer-His.
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pho-cAMP response element-binding protein (CREB)
{pCREB (Ser133) [1B6], mouse monoclonal antibody, Lot:
11, 1:250 dilution, Cell Signaling Technology, Danvers, MA,
USA}, CREB (anti-CREB antibody [D76D11], rabbit
monoclonal antibody, Lot: 7, 1:50 dilution, Cell Signaling

Technology), muscarinic AChR (anti-mAChR M1 antibody,
Lot: 822203059, 1:50 dilution; GeneTex, CA, USA), and
nicotinic AChR (anti-nAChR α4/CHRNA4 antibody, Lot:
GR83312-9, 1:50 dilution; Abcam).

Figure 2. Effect of EGT on BDNF expression and CREB phosphorylation in NE-4C nerve cells. The expression of BDNF (A), ratio of pCREB and
CREB (B), and m/n AChR (C) in NE-4C nerve cells treated with 1, 10, and 100 μM EGT were evaluated using Wes analysis. Protein expression of
BDNF and m/n AChR was normalized using the electropherogram peak area of the total protein in each lane. The chemiluminescent signal was
displayed as a virtual blot-like image, and an electropherogram was generated based on the molecular weight. Values are expressed as the mean ±
SD (n = 3). Statistical analyses were performed using one-way ANOVA followed by Dunnett’s t-test. *p < 0.05, **p < 0.01, ***p < 0.001 vs
control; N.S., no significance at p > 0.05.
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2.5. Measurement of Intracellular Ca2+ Levels in NE-
4C Cells. The intracellular Ca2+ concentration ([Ca2+]i) was
measured using a Flex Station 3 (Molecular Devices Co., San
Jose, CA, USA) according to the manufacturer’s instructions.
Briefly, NE-4C stem cells seeded at a density of 3000 cells/well
in a PLL-coated 96-well plate were used for this study. After
differentiation with 1 μM RA, NE-4C nerve cells were
incubated with a Fluo-4 AM loading buffer (100 μL/well,
DOJINDO Laboratories) for 1 h at 37 °C in the dark. The
loading buffer was formulated as follows: quenching buffer,
Hanks’ HEPES Buffer, 5% Pluronic F-127, 250 mM
probenecid, and 0.9 mM Fluo-4 AM. After recording the
basal fluorescence intensity (F0) for 30 s, the sample solution
containing EGT, ERY, His, or mer-His (20 μL) was added to
each well through a multichannel pipettor of Flex Station 3 and
the fluorescence intensity (arbitrary unit) was measured for 90
s to record the maximum fluorescence (Fmax) signal. Change in
relative Fluo-4 fluorescence or change in [Ca2+]i (RFU, relative
fluorescence unit) was expressed as ΔF= (Fmax − F0). For
inhibitor experiments, [Ca2+]i levels in cells were measured by
adding 100 μM EGT solution containing either 2-APB (an
inhibitor of 1,4,5-triphosphate receptor [IP3R],

24 10 μM) or
dantrolene (an inhibitor of ryanodine receptor [RyR],25 10
μM). To evaluate the involvement of transporters in EGT-
induced [Ca2+]i change, pyrilamine (an antagonist of
OCTN1,26 0.5 mM) or His (a substrate for PHT1 (peptide/
histidine receptor 1), 100 μM) was used for [Ca2+]i
experiments. After the baseline fluorescence (F0) signal was
recorded for 30 s, a sample solution was added to each well
through a multichannel pipet included as a part of the fluidics
module of Flex Station 3.

2.6. Statistical Analysis. Data are expressed as the mean
± standard deviation (SD) of distinct replicates. All analyses
were performed using GraphPad Prism software (version 10.0,
GraphPad; La Jolla, CA, USA). Statistical differences between
multiple groups were evaluated using one-way analysis of
variance (ANOVA), followed by Dunnett’s or Tukey’s post
hoc test. p < 0.05 was considered as a statistically significant
difference.

3. RESULTS
3.1. Effect of EGT on BDNF Expression and CREB

Phosphorylation in NE-4C Nerve Cells. A capillary
electrophoresis-based immunoassay (Wes analysis) was
performed to determine the effect of EGT on BDNF
expression in NE-4C nerve cells. As shown in Figures 2A
and S1, after a 2 day treatment of NE-4C progenitor cells with
EGT, the expression of BDNF in the cells was significantly
increased in a concentration-dependent manner (1−100 μM).
Together with the increase in BDNF expression in NE-4C
nerve cells, the expression of pCREB, an upstream signaling
factor for BDNF generation,27 was also increased by EGT
(Figure 2B). This clearly suggested that EGT has physiological
potential in stimulating CREB-mediated BDNF cascade in NE-
4C nerve cells, similar to the upregulation of cascade by a food
compound α-linolenic acid in PC12 cells.28 Considering that
m/n AChR expression was not affected by EGT (Figure 2C),
the above finding may be due to an intracellular action of EGT
within the cells.

3.2. Effect of EGT on [Ca2+]i in NE-4C Nerve Cells. In
the EGT-induced CREB-BDNF signaling, the mechanism of
signaling activation by EGT remains a mystery. Since West et
al.29 reported that an increasing [Ca2+]i was a trigger for

phosphorylation of CREB in neurons, further experiments in
EGT-treated NE-4C nerve cells focused on the changes in
[Ca2+]i at different concentrations of EGT (1, 10, and 100
μM). As shown in Figure 3, in situ Fluo-4-fluorescence Ca2+

measurements revealed a rapid elevation in [Ca2+]i after EGT
addition in a concentration-dependent manner (1−100 μM).
These findings strongly suggest that EGT directly increases
intracellular Ca2+ levels via extracellular or intracellular events.
Because of a significant (p < 0.0001 vs control) increase in
[Ca2+]i by 100 μM EGT, this concentration was used for
further Ca2+ experiments.

3.3. Structure−Activity Relationship between EGT
and Increase in [Ca2+]i in NE-4C Nerve Cells. To assess the
structural factors responsible for the EGT-induced increase in
[Ca2+]i, EGT and its analogues (ERY, His, and mer-His) were
subjected to [Ca2+]i measurements in NE-4C nerve cells. As
shown in Figure 4, EGT and ERY molecules, both of which
have a trimethylammonium group, evoked a significant
increase in [Ca2+]i, whereas no significant changes in [Ca2+]i
were observed with His or mer-His molecules, both of which
lack this group. Structure−activity relationship analysis also
revealed that the thioketone group in the imidazole moiety did
not contribute to the observed increase in [Ca2+]i by EGT
(Figure 3). CREB phosphorylation and BDNF expression were
also stimulated by EGT and ERY but not by His and mer-His
(Figure S2), indicating that the trimethylammonium group is a
key structural factor for the activation of the BDNF signaling
cascade in NE-4C nerve cells.

3.4. Transport Route of EGT in NE-4C Nerve Cells. The
transport routes of EGT in NE-4C nerve cells were
investigated to clarify the increase in [Ca2+]i via extracellular
or intracellular events as a function of [Ca2+]i, using
pyrilamine, an OCTN1 antagonist, and His, a substrate for
PHT1. As shown in Figure 5, pyrilamine, but not His,
significantly blocked the [Ca2+]i elevation induced by EGT and
ERY. This strongly suggests that the elevation of [Ca2+]i by
EGT (Figure 3), following the activation of CREB/BDNF
signaling (Figure 2A,B), may be due to intracellular EGT being

Figure 3. Effect of EGT on intracellular Ca2+ concentration ([Ca2+]i)
in NE-4C nerve cells. (A) Real-time change of intracellular
fluorescence signals with time in NE-4C nerve cells. The stimulation
of EGT (1, 10, and 100 μM) started after 30 s of monitoring basal
fluorescence intensity. (B) Transient changes of fluorescence from
Fluo-4 after stimulation of EGT (1, 10, and 100 μM) in NE-4C nerve
cells. Calcium kit II�Fluo 4 was used in this study. Transient changes
in [Ca2+]i [relative fluorescence units ,(RFU)] were calculated as the
difference between peak (Fmax) and basal (F0) fluorescence intensity
(ΔF = Fmax − F0) at excitation wavelength of 485 nm, emission
wavelength of 525 nm, and cutoff filter of 515 nm. RFU, relative
fluorescence units. Values are expressed as the mean ± SD (n = 3 or
4). Statistical analyses were performed using one-way ANOVA
followed by Dunnett’s t-test. *p < 0.05, ****p < 0.0001 vs control.
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incorporated into NE-4C nerve cells via the OCTN1 transport
route. This is consistent with a previous report indicating that
EGT was incorporated into human embryonic kidney 293 cells
through the OCTN1 transport route.30

3.5. Mechanism of EGT-Induced Increase in [Ca2+]i in
NE-4C Nerve Cells. Based on the above finding that the
increase in [Ca2+]i resulted from the incorporation of EGT
into the cells, we focused on the release of Ca2+ from the

endoplasmic reticulum (ER), which serves as a main dynamic
Ca2+ storage organelle in cells.31 When the Ca2+ released from
the ER was blocked using inhibitors for IP3R and RyR, which
are intracellular Ca2+ channels,32 inhibition of IP3R by 2-APB
significantly abolished EGT-induced [Ca2+]i elevation; how-
ever, no changes were observed in [Ca2+]i in EGT-treated NE-
4C cells due to RyR inhibitor dantrolene (Figure 6). These
results suggest that EGT and ERY molecules bearing a
trimethylammonium group may act as IP3R-specific stimula-
tors or Ca2+ release promoters, leading to activation of the
CREB/BDNF signaling pathway.

4. DISCUSSION
EGT, a natural amino acid derived from His, has been shown
to exhibit a variety of physiological functions, including NDD
prevention effect, in animals and humans.11−13,20,33−35 Yang et
al.20 reported that the daily intake of EGT (2 mg/kg) in AD
mice for 51 days ameliorated the Aβ1−40-induced loss of
memory and learning abilities by reduced Aβ accumulation in
the hippocampus. Nakamichi et al.35 also provided the
evidence that the oral intake of EGT (50 mg/kg, 2 weeks)
enhances object recognition memory in normal ICR mice via
the promotion of neuronal maturation. However, the
mechanism underlying these effects of EGT is not fully
understood.
This study, for the first time, provided evidence that EGT

activates the CREB/BDNF pathway in NE-4C nerve cells
(Figure 2A,B). Similarly, food compounds, such as sulfor-
aphane,5 α-linolenic acid,28 lycopene,36 and peptides,37 have
been reported as potential candidates for the upregulation of

Figure 4. Structure−activity relationship achieved by contrasting the
effect of EGT and its analogues on [Ca2+]i in NE-4C nerve cells. (A)
Real-time change of intracellular fluorescence signals with time in NE-
4C nerve cells. The stimulation of sample (EGT, ERY, His, and mer-
His) started after 30 s of monitoring basal fluorescence intensity. The
concentration of each sample is 100 μM. (B) Transient changes of the
intracellular fluorescence after sample stimulation in NE-4C nerve
cells. Values are expressed as the mean ± SD (n = 4). Statistical
analyses were performed using one-way ANOVA followed by Tukey−
Kramer’s t-test among multiple groups. Different letters represent the
statistical difference at p < 0.05.

Figure 5. Involvement of OCTN1 and PHT1 in EGT-or ERY-induced Ca2+ release in NE-4C nerve cells. (A) Changes in [Ca2+]i in NE-4C nerve
cells treated with EGT or ERY (100 μM) in the presence or absence of pyrilamine (antagonist of OCTN1, 0.5 mM). (B) Alternations of [Ca2+]i in
NE-4C nerve cells treated with EGT or ERY (100 μM) with or without His (substrate of PHT1, 100 μM). After 30 s of monitoring basal
fluorescence intensity, the prepared samples were added to NE-4C nerve cells. Values are expressed as the mean ± SD (n = 4). Statistical analyses
were performed using one-way ANOVA followed by Tukey−Kramer’s t-test among multiple groups. Different letters represent the statistical
difference at p < 0.05. OCTN1, organic cation transporter 1; PHT1, peptide/histidine transporter 1.
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BDNF cascade. However, except for α-linolenic acid, which
activated the protein kinase A (PKA)/CREB/BDNF signaling
cascade in PC12 cells, the mechanism(s) underlying CREB/
BDNF activation of the above food compounds remained
unascertained. Considering the reported bioavailability18 and a
long stability (half-life, 1 month in rats38) of EGT, the intake
would be a benefit for brain health, compared to the above
neuroprotective compounds. BDNF is upregulated by the
stimulation of transmembrane ACh receptors (m/n AChR) in
the rat hippocampus and cerebral cortex.39,40 However, in this

study, EGT with a trimethylammonium group, such as ACh,
did not affect m/n AChR expression (Figure 2C), suggesting
that EGT-induced activation of the CREB/BDNF pathway
(Figure 2) may be caused by an intracellular event and not
AChR-mediated pathways.
For the stimulation of CREB/BDNF signaling, Ca2+ plays a

crucial role in the activation of Ca2+/calmodulin-dependent
kinase II (CaMKII), p38 mitogen-activated protein kinase
(MAPK)-mediated BDNF cascade,41 and tyrosine receptor
kinase B (TrkB)-mediated signaling pathway. Based on the

Figure 6. Effect of intracellular Ca2+ release channel on EGT-induced increase in [Ca2+]i in NE-4C nerve cells. (A) Effect of 2-APB (inhibitor of
IP3R) on EGT-stimulated [Ca2+]i changes in NE-4C nerve cells. (B) Impact of 2-APB on ERY-induced [Ca2+]i increase in nerve cells. (C) Effect of
dantrolene (inhibitor of RyR) on EGT-stimulated [Ca2+]i upregulation in nerve cells. After 30 s of monitoring basal fluorescence intensity, the
prepared samples were added to NE-4C nerve cells. Values are expressed as the mean ± SD (n = 3 or 4). Statistical analyses were performed using
one-way ANOVA followed by Tukey−Kramer’s t-test among multiple groups. Different letters represent the statistical difference at p < 0.05. 2-
APB, 2-aminoethoxydiphenyl borate; IP3R, inositol 1,4,5-trisphosphate receptor; RyR, ryanodine receptor. 2-APB, 10 μM; EGT, 100 μM; ERY, 100
μM; and dantrolene, 10 μM.
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present findings that the increased BDNF expression was due
to the incorporation of EGT via the OCNT1 route, a reported
EGT transport route30 (Figure 5A), we further aimed to clarify
whether EGT affects intracellular Ca2+ levels. As shown in
Figure 3, EGT significantly increased [Ca2+]i in NE-4C nerve
cells. Zhong et al.42 reported that peoniflorin, a monoterpene
glycoside isolated from herbal medicine, attenuated Aβ-
induced neurotoxicity via maintenance of [Ca2+]i homeostasis
in the rat hippocampus. In addition, gastrodin, a bioactive
compound derived from a Chinese herb, was also found to
ameliorate memory impairment via modulation of the Ca2+/
CaMKII pathway in rats with vascular dementia.43 Although
the involvement of TrkB or p38-MAPK for Ca2+-mediated
CREB/BDNF activation remained unclear, intracellular Ca2+
elevation by the natural compounds including EGT may be a
trigger for the activation of the CREB/BDNF cascade. To
further investigate the structure−activity relationship (Figures
4 and S2) and [Ca2+]i elevation experiments (Figure 6), we
identified, for the first time, that the trimethylammonium
group in EGT is a key structural component responsible for
increasing [Ca2+]i via IP3R stimulation. This is in line with a
report that trimethylamine N-oxide, a metabolic product of
choline, enhances Ca2+ release from platelet stores by
augmenting IP3 signaling pathways.

44 Further studies are in
progress to explore the interaction between the trimethylam-
monium group in EGT and the IP3R protein in the ER using
our previously reported CHARMM-GUI molecular docking
analysis.45

In the current study, even though we provided the first
finding that EGT has potential for the activation of the Ca2+-
CREB/BDNF signaling pathway in NE-4C nerve cells, the
potential translation of these findings into in vivo animal and
human models is an issue that cannot be ignored. Tang et al.18

studied the tissue distribution of EGT after oral administration
in C57BL6J mice (70 mg/kg/day, 28 days) and found that the
concentration of EGT reached 840 μM and 10.66 ng/mg-brain
in the mouse blood and brain tissue, respectively. In addition,
in human administration study of mushroom-extract tablet
containing 5 mg of EGT for 12 weeks, the concentration was
estimated to be 497 μM in blood.33 Taken together, the
current results obtained at >10 μM of EGT would be
acceptable under physiological conditions, but bioavailability
analysis of EGT is still needed for further study. Considering
the limitations of the current NE-4C cell model, the EGT-
stimulated neurotransmission will be further explored in other
neuronal cell models, such as SH-SY5Y cells46 and Neuro-2a
cells,47 and in animal models, such as senescence-accelerated
mouse model.48 Besides, the synergistic effect of EGT with
neuroprotective agents is also a promising and innovative
research direction.
In conclusion, we demonstrated that EGT, a His metabolite

commonly found in mushrooms10 and Aspergillus oryzae-
fermented rice bran,49 stimulates neurotransmission via the
IP3R-mediated Ca2+-CREB/BDNF signaling pathway in NE-
4C nerve cells (Figure 7). The structure−activity studies
revealed that the presence of the trimethylammonium group in
EGT is essential for activity, while the thioketone group does
not affect the activity. Additionally, considering the high
bioavailability of EGT, it would be a brain-beneficial food
compound across the BBB, like Tyr−Pro,50 after oral diet of
EGT or EGT-containing foods.
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BDNF brain-derived neurotrophic factor
CaMKII Ca2+/calmodulin-dependent kinase II
CREB cAMP response element-binding protein
EGT L-ergothioneine
E-MEM Eagle’s minimal essential medium
ER endoplasmic reticulum
ERY L-hercynine
FBS fetal bovine serum
IP3R inositol 1,4,5-triphosphate receptor
MAPK mitogen-activated protein kinase
MCI mild cognitive impairment
mer-His 2-mercapto-L-histidine
NDD neurodegenerative disease
NGF nerve growth factor
NT neurotrophin
OCTN1 organic cation transporter 1
PBS phosphate-buffered saline
PD Parkinson’s disease
PHT1 peptide/histidine transporter 1
PKA protein kinase A
PLL poly L-lysine solution
RA retinoic acid
RIPA radioimmunoprecipitation assay
RyR ryanodine receptor
RFU relative fluorescence unit
TrkB tyrosine receptor kinase B
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