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Abstract: There have been many empirical equations in studies on flow over Piano Key 

Weir (PKW), but these equations are only suitable for each research model. Thus, there cannot 

be a correct general equation for all cases. Additionally, machine learning is a research method 

that can gather all the data to build a training model. The more data, the more accurate the 

prediction. Moreover, it is also a solution that tends to suit current developments. Currently, 

there are many machine learning algorithms, each with advantages and disadvantages. In 

particular, the Support Vector Machine (SVM) algorithm is also a regression algorithm with 

high prediction performance. This study analyzed the factors affecting the flow over type-A 

PKW according to Pi theory. From there, it established the prediction objective function in 

machine learning and then applied the SVM algorithm for prediction. The results indicated that 

the Medium Gaussian SVM model has good predicting performance, comparing the predicted 

values and the measured values showed a very high correlation coefficient (R2  0.97), other 

statistical indicators were very close to the ideal point (MSE = 0.001; RMSE = 0.033; MAE = 

0.025). Furthermore, the largest percentage error was only 8.7%. This demonstrated that the 

SVM algorithm is suitable for studying and predicting flow characteristics over type-A PKW. 

 

Keywords: PKW; Machine learning; SVM; discharge coefficient; Buckingham 

1. Introduction 

Increasing the ability to release water over dams with 

limited space and at the same time can well control the 

flow downstream. Therefore, the Piano Key Weir (PKW) 

was proposed, as it increases the discharge capacity 

compared to a conventional dam (the straight dam crest) 

from four to five times1,2).  

 

 
Fig. 1: Dak Mi 3 hydropower plant - quang nam province, 

vietnam3). 

 

The surveys showed that the Galours dam in France is 

a type-A PKW built in 20064), it is one of the PKWs that 

it It was the earliest built in the world. Then, PKW 

proposals and improvements have expanded its 

application to many countries, such as India, Australia, 

and Switzerland, etc. In Vietnam, this type of dam is also 

widely applied (Fig. 1), such as the Van Phong dam 

(2015), Dak Mi 3 dam (2017), Phu Phong dam (2024) and 

so on. Currently, PKW is classified into four types (A, B, 

C, and D). The evaluation demonstrated that type-A PKW 

is widely applied in Vietnam (Fig. 1)5), so this research 

focuses on predicting discharge over type-A PKW. 

According to studies on type-A PKW (Fig. 2 and 3), 

the dam structure has approximately 20 typical factors. It 

is identified through factors such as the total width of the 

PKW (W), total crest length (L), developed length of one 

PKW unit (Lu), width of outlet key (Wo), width of inlet 

key (Wi), width of a PKW unit  (Wu), weir height (P), 

upstream-downstream length of PKW (B), overhang 

length of inlet key (Bi), overhang length of outlet key (Bo), 

weir base length (Bb), sidewall thickness (Ts), and slope 

of the inlet/outlet key apron (Si) and characteristics that 
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affect flow including PKW discharge (Q), specific 

discharge (q), total head (Ho), discharge coefficient (Cd)6-

8), etc. 

 

 
Fig. 2: Structure of the 3D model of type-A PKW6). 

 

The dimensions of the type-A PKW structure are 

shown as follows5,6,9,10), 

 
Wu = Wi + Wo + 2Ts    (1) 

Lu = 2B + 2Ts + Wi + Wo     (2) 

B = Bb + Bo + Bi     (3) 

 

 
Fig. 3: Structure of the side view of the type-A PKW5). 

 

Studies on PKW primarily established empirical 

equations for determining discharge coefficient (Cd). 

Each study will have different influencing factors that 

affect the discharge coefficient, this is due to differences 

in research objectives and research data is often collected 

from only one or two physical models. The influencing 

factors considered are L/W, B/P, Bo/B, L/W, Wo/Wi and 

Pi/ Po, Ho/P, Ho/Lu, and Ho/Wu6-8,11-14). Each study has 

its meaning and scope of research; therefore, different 

equations will give different calculation results for the 

same research case. Hence, proposing a correct general 

equation for all research cases is challenging. 

Meanwhile, machine learning is a tool with many 

advantages in analyzing statistical data, especially in 

research focused on predicting convergent factors. 

Machine learning algorithms perform well and have high 

accuracy in predicting. These algorithms include 

Artificial Neural Networks (ANN) and Adaptive Neuro 

Fuzzy Inference System (ANFIS) for the research and 

analysis of discharge15-18); Gene Expression 

Programming (GEP) and Extreme Gradient Boosting 

(XGBoost) algorithms for analyzing the energy of the 

flow over a type-C  PKW19); GEP for predicting energy 

consumption of type-A PKWs20). The Tree and Random 

Forest algorithms are used to predict the discharge over 

PKW with rectangular and trapezoidal keys21). Besides, 

the SVM and the Firefly optimization-based Support 

Vector Regression (SVR-FA) have also been used to 

predict the discharge coefficient of the labyrinth dams22). 

In addition, the SVM regression algorithm has been 

applied to predict many hydraulic factors, such as 

predicting hydraulic characteristics of open flow in 

channels23,24). 

This shows that the SVM algorithm has not yet fully 

considered its applicability and suitability for studying 

hydraulic characteristics. Meanwhile, there are currently 

no complete studies on applying machine learning 

algorithms in flow forecasting for type-A PKW, which 

limits the connection of research data. Research has not 

been generalized to ensure effective flow forecasting 

through PKW in water resource control. Therefore, type-

A PKW was introduced in this study with hydraulic 

characteristics observed on the physical model. 

Buckingham’s Pi theory was used to establish the 

relationship between the discharge coefficient and the 

influencing factors. Then, the study’s influencing 

variables and target variables were established by 

applying the SVM algorithm to predict the discharge 

coefficient (Cd), which serves the process of calculating 

the flow over the type-A PKW. 

 

2. Study method 

Applying machine learning algorithms to factor 

prediction research includes two basic stages: training 

and forecasting, each stage corresponding to a set of 

research data25). A suitable research algorithm is needed 

to identify the influencing factors in datasets. In studying 

the hydraulic problem, Buckingham’s Pi theory has been 

applied to examine influencing factors26). Subsequently, 

the input data of the SVM algorithm were determined. 

Additionally, data from observations on physical models 

was collected. Finally, we developed steps to apply 

machine learning algorithms to research hydraulic 

characteristics. 

 

2.1 Objective function 

The objective function equation for determining the 

factors affecting the flow through the type A PKW is 

described in equation (4) as follows, 

 

 =u u u i of Q ,  W ,  B,   L ,  P,  S , ,  H ) (  0       (4) 

 

P 

B 

P 
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In addition, the discharge of a free-flowing type-A 

PKW for a unit is determined according to a common 

equation9), 

 

=
3
2

u d u oQ C W 2gH       (5) 

So: 

=
3
2

u
d

u o

Q
C

W 2gH
    (6) 

 

The natural flow was studied so downstream factors do 

not affect the flow. Duplicate factors were eliminated: 

factors without effect on the predictive value to be studied 

or the interconnected factors. By applying Buckingham’s 

Pi theory, the following was obtained, 

 

 
= 

 

o o o
d

u u

H H H
f C , , , , Re 0

W L P
   (7) 

 

The Reynolds number (Re) is not considered, because 

the flow in experimental models and flows in reality are 

alway turbulent. From this, it can conclude, 

 

o o o
d

u u

H H H
C , ,

W L P

 
=  

 
     (8) 

 

The discharge coefficient (Cd) is related to the data 

system of the Ho, Lu, Wu, and P factors. This is similar 

to previous studies1,5,28-30). 

In machine learning, the data fields were defined as 

follows, 

 

+ Variable target: Cd 

+ Variable influences: o o o

u u

H H H
, ,

W L P
 

 

2.2 SVM algorithm 

SVMs are effective machine learning models to solve 

classification, regression, and individual element 

detection problems. The SVM algorithm is a solution to 

find the optimal “Hyperplane” determined by the support 

vector and the margin (Fig. 4). The principle of SVM is 

to separate a dataset with n points in space, and each point 

belongs to a class denoted (+) or (-)22-24,35). Thus, the data 

were divided into two classes and an optimal “hyperplane” 

(H) was determined to separate two classes (+ and -).  

 

 
Fig. 4: Structure of SVM algorithm31-33). 

 

Determining the optimal “superplane” will be based on 

the characteristics of the algorithm structure. This study 

analyzed six different algorithms. Each algorithm had 

functions to determine different “hyperplanes” (Linear, 

Quadratic, Cubic, Fine Gaussain, Medium Gaussain, and 

Coarse Gaussain)21,27,31-34). In this study, SVM algorithms 

are studied in Matlab R2022b software. 

 

2.3 Steps to apply the SVM algorithm 

A study on applying machine learning algorithms to 

predict the discharge coefficient of the flow over PKW is 

conducted according to the following steps:  

+ Step 1: Set up the objective function equation (this 

study uses equation 8). 

+ Step 2: Screen input data (removing data with large 

mutations, the depth values less than 3 mm to avoid the 

effects of surface tension, etc.5)). 

+ Step 3: Identify the influencing variables and the 

target variables 

+ Step 4: Set up training and testing datasets. 

+ Step 5: Set up the training model according to SVM 

algorithms. 

+ Step 6: Test the SVM model with test data and use 

statistical indicators for evaluation (R2, MSE, RMSE, 

MAE, and MAPE5,26,34). 

With the above six steps, a data control model will be 

built and applied to analyze and predict hydraulic 

characteristics for actual projects. A data control model 

will be built and applied to analyze and predict hydraulic 

characteristics for real projects. Interpretation of the 

research process is simulated according to the diagram in 

Fig. 5 as follows, 
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Fig. 5: Process chart for identifying machine learning 

models with high predictive performance. 

 

3. Collecting experimental data 

This study collected data from various sources on flow 

experiments over type-A PKW. The data was classified 

and the data structure in SVM models was established. 

The experimental model structures are shown in Table 1. 

 

Table 1. Physical characteristics of type-A PKW models. 

Ref. L/W P/Wu Wi/Wo B/P 

Đ.T.M. Yen29,30) 5.0 0.5÷ 1.1 1.30 
1.87 ÷ 

4.52 

N. T. Hai et  al.36) 4.3÷ 8.2 0.3÷ 2.4 1.2 1.5 ÷ 4.5 

O.Machiels et al.37) 5.0 
0.33÷ 

2.0 
1.5 1.0 ÷ 6.0 

A.Noui  et al.10) 5.9 0.9 
0.96÷ 

1.53 
2.73 

A. Kabiri-Samani 

et al.38) 
6.0÷8.1 

0.63÷ 

1.79 

0.33÷ 

1.67 
2.0 

 

As it is displayed in Table 1, there are fire different 

type-A PKW models. These physical models were 

established to study the flow over the PKW. 

The data collected from the physical models were 

processed and analyzed into dimensionless quantities. 

The hydraulic characteristics from the experiments are 

described in Table 2 as follows. 

Table 2. Experimental data of physical models. 

Ref. 
q  

(m3/s/m) 
H0/P H0/Wo Ho/Wu 

Type of 

PKW 

Đ.T.M. Yen29)-

30) 

0.03 ÷ 

0.32 

0.17 ÷ 

2.09 

0.31 ÷ 

2.08 

0.136 ÷ 

0.920 
A 

N. T. Hai et  

al.36) 

0.03 ÷ 

0.31 

0.13 ÷ 

2.15 

0.23 ÷ 

3.16 

0.105 ÷ 

1.355 
A 

O.Machiels et 

al.37) 

0.04 ÷ 

0.41 

0.06 ÷ 

2.68 

0.26 ÷ 

2.45 

0.207 ÷ 

0.810 
A 

A.Noui  et al.10) 
0.05 ÷ 

0.17 

0.15 ÷ 

0.95 

0.26 ÷ 

2.05 

0.105 ÷ 

0.980 
A 

A. Kabiri-

Samani et al.38) 

0.05 ÷ 

0.20 

0.13 ÷ 

0.56 

0.16 ÷ 

1.87 

0.150 ÷ 

1.00 
A 

 

 
Fig. 6: Relationship between Cd and Ho/P according to all 

study data. 

 

The research data were surveyed on six published 

studies on experimental research for the type-A PKW 

(Tables 1 and 2 and Fig. 6). A total of 320 datasets were 

identified and divided into training data and test data as 

follows, 

+ Training data include 265 datasets (Table 3). 

+ Test data include 55 datasets (equivalent to 20% of 

training data; this proportion of test data ensures 

objectivity in predicting and eliminates overfitting errors 

in predicting32)). The data characteristics are shown in 

Table 3. 

 

Table 3. Training data of the machine learning model. 

Values Ho/P Ho/Wu Ho/Lu Cd 

Min 0.06 0.105 0.02 0.534 

Max 2.68 1.355 0.22 1.975 

 

The relationship between Cd and hydraulic factors is shown 

in Fig. 6. These relationships represent the physical law 

between hydraulic factors of the flow over the type-A PKW. 
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Fig. 7: Relationship between Cd and factors according to 

training data. 

 

Table 3 and Figure 7 show that the relationship 

between Cd and Ho/P is tight (R2 = 0.95). However, the 

correlation points are scattered around the average value, 

so if this relationship is used to predict Cd coefficients, 

there will be large errors. Therefore, it is necessary to 

consider many relationships to determine the Cd value 

accurately. 
 

Table 4. Test data of the machine learning model. 

Values Ho/P Ho/Wu Ho/Lu Cd 

Min 0.24 0.106 0.03 0.558 

Max 2.2 1.222 0.20 1.355 

 

 
Fig. 8: Relationship between Cd and influencing factors 

according to test data. 

 

The test data (Table 4) were used commonly for all 

machine learning models; the prediction results of the test 

data were employed to evaluate the suitability of the 

research according to each machine learning model. 

From Figures 7 and 8, the relationship between Cd and 

influencing factors had correlation coefficients from 0.65 

to 0.95, showing the ability to establish regression 

relationships. 

 

4. Results and discussions 

Study on applying SVM algorithm in machine learning 

for predicting the discharge coefficient, including six 

structural algorithms about the hyperplane (H) in Matlab 

software. The training data in Table 3 were used to 

implement training models according to SVM algorithms. 

The trained models were evaluated using statistical 

indicators to determine whether the prediction model 

performs well. 

Evaluation of SVM algorithms is carried out based on 

statistical indicators between predicted values and 

measured values. These statistical indicators are analyzed 

directly in Matlab software and these indicators are 

shown in Table 5. 

 

Table 5. Statistical indicators after training by svm models. 

Models RMSE MSE R2 MAE 

Linear SVM 0.164 0.027 0.742 0.121 

Quadratic SVM 0.091 0.008 0.920 0.062 

Cubic SVM 0.062 0.004 0.963 0.044 

Fine Gaussain 

SVM 
0.048 0.002 0.978 0.036 

Medium Gaussain 

SVM 
0.059 0.004 0.966 0.038 

Coarse Gaussain 

SVM 
0.107 0.011 0.891 0.072 

 

From Table 5, the statistical indicators will be 

illustrated differently in Fig. 9. 

 

 
Fig. 9: Characteristics of statistical indicators according to 

training models. 

 

Table 5 and Figure 9 describe the prediction 

effectiveness of the SVM model by statistical indicators. 

It was found that the Cubic SVM, Fine Gaussian SVM, 
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and Medium Gaussian SVM models have the best 

training efficiency shown at R2 > 0.96 and other statistical 

indicators (RMSE, MSE, and MAE) are also close to the 

ideal point (zero). The study selected three models with 

good statistical indicators to evaluate and test with the test 

data in Table 4. 

After setting up the training model according to SVM 

algorithms, the models were tested against the test data to 

evaluate the prediction effectiveness of SVM models. 

 

Table 6. Statistical indicators of the proposed svm models 

according to the test data. 

Models RMSE MSE R2 MAE 

Cubic SVM 0.044 0.002 0.951 0.036 

Fine Gaussain 

SVM 
0.036 0.001 0.968 0.029 

Medium Gaussain 

SVM 
0.033 0.001 0.973 0.025 

 

Table 6 shows that the Medium Gaussian SVM model 

has the best performance, demonstrated in indices such as 

R2 = 0.97 and other statistical indicators close to zero. 

 
Table 7. Prediction results of Cd according to the proposed 

SVM models. 

Values 

Models 

Fine Gaussain SVM Medium Gaussian SVM 

Cd  (%) Cd  (%) 

Min 0.617 0.0 0.593 0.1 

Max 1.459 12.9 1.457 8.7 

 

Tables 6 and 7 reveal that the Medium Gaussian SVM 

model performs better with the test data, in which the 

statistical indicators are close to the ideal point. 

Conversely, the largest error is only 8.7%, which is 

smaller than the Fine Gaussian SVM model (12.9%). 

By studying the Medium Gaussian SVM model, the 

comparison results between the measured values and 

predicted values were analyzed and the forecast 

effectiveness was examined as follows. 

 

 
Fig. 10: Residuals of the measured values compared with 

the predicted values according to the medium gaussian SVM 

model. 

From Fig. 10, the forecast results according to the test 

data of the Medium Gaussian SVM model have very 

convergent real measured and predicted values and the 

largest residual error is 0.085 (error 6.8%). 

 

 
Fig. 11: Comparison between measured and predicted 

values according to test data. 

 

Figure 11 shows the evaluation of the measured and 

predicted data using the Medium Gaussian SVM model 

demonstrated that the predicted values have ± 5% 

difference with the measured value. The percentage 

errors have an error greater than 5%, which accounts for 

16.3% of the data (equivalent to a ratio of 9/55 datasets). 

Comparing with other traditional methods, the study 

analyzed the test data according to the empirical 

equations of N.M. Ngoc et al.5), 

 

+ If H0/Wo < 0.5 

0
d

0

u

C 1.856 1.729 – 0.9
H

P
2

H

L
= −  (9) 

+ If H0/Wo ≥ 0.5 
0.294 0.148

u
d 0.442

o

P .W
C 0.694

H
=   (10) 

 

Equations 9 and 10 have been studied based on 

equivalent experimental data, the evaluations of these 

equations have been carried out in detail by N.M. Ngoc 

et al.5). In this study, it is used to compare with the 

predicted values by the SVM algorithm in Machine 

Learning. Statistical indicators analyzed according to the 

equations of N.M. Ngoc et al. as follows. 

 

Table 8. Statistical indicators according to the equations of 

N.M. Ngoc et al. 

Indicators Unit Values 

MSE - 0.002 

RMSE - 0.043 

MAE - 0.033 

R2 - 0.955 

Maximum error % 11.34  

Minimum error % 0.01 
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Fig. 12: Comparison between the measure test data and 

calculated values by N.M. Ngoc et al. (2023). 

 

As shown in Table 8 and Fig. 12, it can be seen that the 

error calculated according to the equation of N.M. Ngoc 

et al. has a larger error (the largest error is 11.34% and 

the value with error greater than 5% accounts for 23.6% 

of the test data-set) than the prediction according to the 

Medium Gaussian SVM model (the largest error is 8.7%). 

The statistical indicators of the SVM model are better 

than those calculated by the empirical formula 

(Comparing Tables 6 and 8). This is due to the 

inflexibility of the equations. According to the machine 

learning model (using many different hyperplane models, 

can be seen in Table 5), the predicting process is flexible 

and determined according to the trends of data groups. So 

the error is smaller and it is possible to adjust the model 

to suit the input data system. 

In general, the Medium Gaussian SVM model has 

shown very good results in predicting the Cd coefficient, 

ensuring small errors between actual measurements and 

predictions. This shows that the Medium Gaussian 

algorithm of the SVM model is very suitable for 

predicting structural, hydraulic characteristics. 

 

5. Conclusion 

Study on predicting with regression analysis in 

Machine Learning is not only a solution with many 

advantages and high prediction performance, but also 

eliminates research limitations. This has confirmed the 

superiority of Machine Learning algorithms compared to 

empirical equations. In the study on determining the 

dischagre coefficient of the flow over type-A PKWs, the 

study applied Buckingham's Pi theory to establish the 

objective function, thereby determining the data system 

of dimensionless quantities, these quantities have a direct 

impact on the research objectives. From there, the target 

variable and influencing variables in the SVM regression 

algorithm have been established. The study applied 

different kernels in the SVM algorithm to predict the 

discharge coefficient (Cd) in studying on the PKWs. To 

evaluate the effectiveness of SVM models, the study is 

based on statistical indicators of the training model and 

the test data field.  

The result of applying the SVM algorithm to predict 

flow characteristics over type-A PKW, some assertions 

are made as follows, 

+ The SVM regression algorithm in machine learning 

is suitable for predicting the hydraulic characteristics of 

flow over type-A PKW. 

+ The prediction process of the machine learning 

algorithm for hydraulic characteristics includes the 

following: (1) applying Buckingham’s Pi theory to build 

a predicting equation (equation 8); (2) collecting data to 

build training and testing datasets; (3) using machine 

learning algorithms to establish predicting models; (4) 

using prediction models to predict the results of the test 

data, evaluating the predicted data with the measured data. 

+ The study demonstrates that according to the Fine 

Gaussian SVM algorithm, the training model gives the 

best prediction efficiency for the discharge coefficient 

(Cd). However, in some cases, the prediction efficiency 

for test data is not the best. Besides, the training model by 

the Medium Gaussian SVM algorithm does not have 

good training efficiency, but analysis with the test data 

gives better efficiency in terms of statistical indicators (R2, 

MSE, and RMSE). The error is stable and also smaller 

than other models and the empiric equation. 

Applying Machine Learning algorithms to predict the 

coefficient of the dischagre over the type-A PKW has 

many practical meanings. This makes the process of 

controlling the flow over the spillway more convenient 

and ensuring stability in the flow regulation process. At 

the same time, it helps integrate real-time data in short-

term predicting. This is a new study and explores the 

application of the SVM algorithms for predicting the 

dischagre over the type-A PKW. 

The study reveals that the Medium Gaussian SVM 

model is the best predicting model for flow over PKW. 

However, depending on each different case, there will be 

a more suitable predicting model. If applying machine 

learning models in regression predicting, it is necessary 

to consider many different models to get the best-

predicted values. 

 

Nomenclature 

H0  Total upstream head (m) 

Q  Discharge (m3/s) 

q  Specific discharge (m3/s.m) 

L  Total crest length (m) 

P  Height of the weir (m) 

W Width of PKW (m) 

Wu  PKW-unit width (m) 

Wi  Inlet keys’ widths (m) 

Wo  Outlet keys’ widths (m) 

Cd Discharge coefficient 

B Key length (m) 

Bo Upstream overhangs length (m) 
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Bi Downstream overhangs length (m) 

Ts Wall thickness (m) 

Lu Developed crest length (m) 

R2 
R-squared 

( )

( )

2

i i
2

2

i i

y x

R 1

y x

−

= −

−




 

MAE Mean absolute error 

( )
n

2

i i

i 1

1
MAE y x

n =

= −  

RMSE Root Mean Square Error 

( )
n

2

i i

i 1

1
RMSE y x

n =

= −  

MAPE Mean Absolute Percentage Error (%) 

i i

i

x y100
MAPE

n x

−
=   

y and x  Calculated values and the observed 

values, respectively. 

x  Average observed value 

n Number of observations 

 Percentage error (%) 

predicted value measured value

predicted value

X X
.100 (% )

X

−
 =
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