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A Lyapunov-based Method of
Reducing Activation Functions of

Recurrent Neural Networks for Stability Analysis
Tsuyoshi Yuno, Member, IEEE , Kazuma Fukuchi, and Yoshio Ebihara, Senior Member, IEEE

Abstract— This paper proposes a Lyapunov-based
method of reducing the number of activation functions of
a recurrent neural network (RNN) for its stability analysis.
To the best of the authors’ knowledge, no method has been
presented for pruning RNNs with respecting their stability
properties. We are the first to present an effective solution
method for this important problem in the control commu-
nity and machine learning community. The proposed reduc-
tion method follows the intuitive policy: compose a reduced
RNN by removing some activation functions whose “mag-
nitudes” with respect to their weighted actions are “small”
in some sense, and analyze its stability to guarantee the
stability of the original RNN. Moreover, we theoretically
justify this policy by proving several theorems that are
applicable to general reduction methods. In addition, we
propose a method of rendering the proposed reduction
method less conservative, on the basis of semidefinite
programming. The effectiveness of the proposed methods
is demonstrated on a numerical example.

Index Terms— Model/controller reduction, neural net-
works, stability of nonlinear systems.

I. INTRODUCTION
A. Background and Motivation

1) Recurrent Neural Networks and its Stability Analysis: A
recurrent neural network (RNN) is one of the basic architec-
tures of deep neural networks (DNNs). Due to its feedback
mechanism, RNNs are able to imitate the behaviors of dynam-
ical systems and hence effective, for instance, for time series
analysis. However, the feedback mechanism may render the
RNN unstable unless the nonlinear activation functions and
the weights of edges are appropriately chosen. Therefore, the
stability analysis of RNNs has been regarded as an important
issue in the machine learning field [1]–[3].

2) Integral Quadratic Constraint Approach to Stability Analy-
sis: Control theoretic approaches to the analysis and synthesis
of DNNs have recently attracted great attention, especially
in the stability analysis of RNNs [4], [5] and performance
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analysis of feedback control systems driven by neural networks
(NNs) [6], [7]. In particular, the integral quadratic constraint
(IQC) approach [7], [8] is frequently employed for these
analyses. This approach enables us to capture the behavior
of nonlinear activation functions by multipliers and reduce
the analysis problems into semidefinite programming prob-
lems (SDPs). However, since its computational burden rapidly
grows as the number of activation functions increases, the
approach is not applicable to large-scale NNs in practice.

3) Model Reduction of Neural Networks: The Model re-
duction is an approach to approximating a large-scale NN
by a smaller-scale NN. This forks into two directions: the
dimension reduction removes a part of the neurons from the
original NN [9], and the pruning removes a part of the weight
parameters [10]. Our concern in this paper is to remove a part
of the activation functions, which corresponds to pruning all
the weights multiplied to the part. However, to the best of the
authors’ knowledge, no method has been presented for pruning
RNNs with respecting their stability properties.

B. Contribution

This paper proposes a Lyapunov-based method of RNN
model reduction, in the sense of reducing the number of activa-
tion functions, for the stability analysis of the original RNN.
We are the first to present an effective solution method for
this important problem. We theoretically justify the intuitive
policy: compose a reduced RNN by removing some activation
functions whose “magnitudes” with respect to their weighted
actions are “small” in some sense, and analyze its stability to
guarantee the stability of the original RNN. First, for a reduced
RNN obtained by removing arbitrary activation functions, we
derive a sufficient condition to guarantee the stability of the
original RNN from that of the reduced one. Moreover, we
show that if the original RNN is stable (but we do not know
it beforehand), then the reduced RNN obtained by removing
sufficiently “small” activation functions always meets the
above sufficient condition. These results justifies the above
policy. After that, for ReLU-RNNs, we propose an intuitive
procedure of model reduction based on the derived theorems.
In the above sufficient condition, we need to compute an
upper-bound estimate of the “magnitude” of the removed
activation functions. Hence, for ReLU-RNNs, we propose a
method of computing a less conservative upper-bound estimate
on the basis of SDP. The proposed theorems and methods are



demonstrated on a numerical example. We finally note that,
since the proposed stability analysis method is based on the
feedback system representation of an RNN which is composed
of a linear system and a nonlinearity gathering the activation
functions, the method can also be applied to general NN-driven
feedback control systems.

II. PRELIMINARIES
A. Notation

Throughout this paper, R denotes the field of real numbers.
In this subsection, suppose we are given positive integers m
and n. The n-dimensional real space is denoted by Rn. The set
of n×m real matrices is denoted by Rn×m. For a matrix M ∈
Rn×m, let M⊤ denote its transpose. For matrices M ∈ Rn×n

and N ∈ Rn×m, the expression (∗)⊤MN is a shorthand for
N⊤MN . The set of positive integers is denoted by Z++. The
set Nm denotes {1, 2, . . . ,m} ⊂ Z++. For a finite set Λ ⊂
Z++, the mapping κΛ : N|Λ| → Λ is defined by letting κΛ(i)
denote the i-th smallest number in Λ for each i ∈ N|Λ|.

For a vector v ∈ Rm, its Euclidean norm is denoted
by ‖v‖. The (Euclidean) induced norm of a (possibly non-
linear) mapping Ψ : Rm → Rn is defined by ‖Ψ‖ :=

supv∈Rm\{0}
∥Ψ(v)∥
∥v∥ . For a matrix M ∈ Rn×m, the norm

‖M‖ means the (Euclidean) induced norm of the linear
mapping Rm 3 v 7→ Mv ∈ Rn, and ‖M‖F denotes the
Frobenius matrix norm, i.e., ‖M‖F :=

√∑
1≤i≤n
1≤j≤m

M2
ij , where

Mij is the (i, j) entry of M .
The set of n × n real symmetric matrices is denoted by

Sn. For P ∈ Sn, we write P � 0 (resp. P ≺ 0) to denote
that P is positive (resp. negative) definite. The set of n × n
diagonal matrices (resp. the set of n × n diagonal matrices
whose every diagonal entry is strictly positive) is denoted by
Dn (resp. Dn

++).

B. Target System and Reduced model
The target system of this paper is the general model of

continuous-time RNN [2], [3] described as

Σ :


ẋ(t) = Ax(t) +Bp(t) +Binw(t),

q(t) = Cx(t),

z(t) = Coutx(t),

p(t) = Φ(q(t)),

(1)

with the weight matrices A ∈ Rn×n, B ∈ Rn×m, Bin ∈
Rn×nw , C ∈ Rm×n, and Cout ∈ Rnz×n, where t is
the continuous time parameter, x is the n-dimensional state
vector representing the hidden states, w is the nw-dimensional
exogenous input vector, z is the nz-dimensional output vec-
tor, and q := [q1, . . . , qm]⊤ and p := [p1, . . . , pm]⊤ are
the m-dimensional signals respectively input to and output
from the (static) nonlinear activation operator Φ : Rm →
Rm. This operator is defined by Φ : [q1, . . . , qm]⊤ 7→
[ϕ1(q1), . . . , ϕm(qm)]⊤, where each ϕi (i ∈ Nm) is the locally
Lipschitz function on R that represents the corresponding non-
linear activation function of the RNN. Suppose that ϕi(0) = 0
for all i ∈ Nm. Since this system is time-invariant, the initial

time is assumed to be 0. We call m the activation degree of the
RNN, which represents the number of the RNN’s activation
functions.

Let us given the desired activation degree mr ∈ Nm−1 of
the reduced RNN model to be designed. In this paper, we aim
at selecting the index set Λc ⊂ Nm (|Λc| = m−mr =: l) of
the activation functions to be removed, to compose the reduced
RNN model

Σr :


ẋ(t) = Ax(t) +Brpr(t) +Binw(t),

qr(t) = Crx(t),

z(t) = Coutx(t),

pr(t) = Φr(qr(t)),

(2)

where qr and pr are the mr-dimensional signals respectively
input to and output from the reduced activation operator de-
fined by Φr := [ϕκΛr (1)

, . . . , ϕκΛr (mr)]
⊤ with Λr := Nm \Λc.

The reduced weight matrices are defined by

Br :=
[
bκΛr (1)

· · · bκΛr (mr)

]
and Cr :=

 cκΛr (1)

...
cκΛr (mr)

 ,

where bi and ci (i ∈ Nm) are the i-th column and row vectors
of B and C, respectively.

Since we are concerned with the internal stability, in the
subsequent sections, we set w = 0 in (1) and (2), and consider
the following autonomous systems respectively corresponding
to Σ and Σr:

Σaut : ẋ(t) = Ax(t) +BΦ(Cx(t)) , (3)
Σaut

r : ẋ(t) = Ax(t) +BrΦr (Crx(t)) . (4)

Clearly, systems (3) and (4) have their equilibrium points at
the origins (x = 0) of their respective state spaces.

Our requirement on the reduced RNN (4) is that the
stability of the original RNN (3) can be concluded through the
stability analysis of the reduced model (4). In the following
sections, we will derive a constructive sufficient condition for
composing the reduced RNN that meets this requirement.

In what follows, the phrase “model reduction” means se-
lecting Λc, i.e., the index set of the activation functions to be
removed.

III. REVIEW OF LYAPUNOV STABILITY THEORY
A. Lyapunov Functions for Exponential Stability

Let us consider a general autonomous system of the form

ẋ(t) = f(x(t)) (5)

where x is the n-dimensional state vector, and f : D → Rn

is a locally Lipschitz mapping defined on a domain D ⊂ Rn

that contains the origin. Suppose that f(0) = 0.
Lemma 1 ([11, Th. 4.10][12, Th. 3.1 & 3.2]):

Consider (5) and suppose there exists a continuously
differentiable function V : D → R satisfying

c1 ‖x‖2 ≤ V (x) ≤ c2 ‖x‖2 , (6a)
∂V (x)

∂x
f(x) ≤ −c3 ‖x‖2 (6b)



for all x ∈ D and some positive constants c1, c2, and c3.
Then, the origin of (5) is exponentially stable (for short, ES).
If the assumptions hold globally on Rn, the origin is globally
exponentially stable (for short, GES).

Under mild assumptions [11, Th. 4.14] [12, Cor. 3.2, Th.
3.11], the local (resp. global) exponential stability of the
origin guarantees the existence of a continuously differentiable
function V that satisfies (6a)–(6b) and additionally∥∥∥∥∂V (x)

∂x

∥∥∥∥ ≤ c4 ‖x‖ (6c)

for all x ∈ D (resp. x ∈ Rn) and some positive constant c4
[11, Th. 4.14]. Hence, in many cases, the local/global expo-
nential stability is equivalent to the existence of a Lyapunov
function V satisfying (6a)–(6c).

B. Stability of Perturbed Systems
Consider the perturbed system obtained by adding a pertur-

bation term g to (5) as

ẋ(t) = f(x(t)) := f(x(t)) + g(x(t)), (7)

where g : D → Rn is locally Lipschitz on D and satisfies
g(0) = 0. Moreover, assume that g satisfies the linear growth
bound

‖g(x)‖ ≤ γ ‖x‖ (∀x ∈ D), (8)

where γ is a nonnegative constant. Note that (8) always hold
by taking D to be a sufficiently small ball centered at the
origin because of the Lipschitz continuity of g and g(0) = 0.

Lemma 2 ([11, Lem. 9.1]): Suppose that the origin of the
nominal system (5) is ES and there exists a continuously
differentiable function V : D → R satisfying (6a)–(6c).
Moreover, assume that g satisfies (8) and

γ <
c3
c4

. (9)

Then, the origin of the perturbed system (7) is ES. Moreover,
if all assumptions hold globally in Rn, then the origin of (7)
is GES.

IV. MODEL REDUCTION
A. Sufficient Condition and Existence Theorem

First, for an arbitrarily chosen Λc, we give a sufficient
condition to guarantee the stability of the original RNN (3)
from that of the resulting reduced RNN (4).

Theorem 1 (Sufficient Condition): Given Λc ⊂ Nm, as-
sume that the origin of the reduced RNN (4) is ES (resp.
GES) and there exists a continuously differentiable function
V satisfying (6a)–(6c) on D (resp. Rn) for (4). Moreover,
assume that the mapping composed of the removed activation
functions described as

g(x) :=
∑
i∈Λc

biϕi(cix) (10)

satisfies (8) on D (resp. Rn) and (9). Then, the origin of the
original RNN (3) is ES (resp. GES).

Proof: We can see that (10) is the difference between
the right-hand sides of the original and reduced RNNs (3)

and (4). From this viewpoint, we regard the original RNN (3)
and the reduced one (4) as the perturbed and nominal systems,
respectively, as follows:

Σaut : ẋ(t) = f(x(t)) := f(x(t)) + g(x(t)), (11)
Σaut

r : ẋ(t) = f(x(t)). (12)

Applying Lemma 2 to (11), (12), and (10), we can prove the
claim of theorem.

One question on this theorem is how probably there exists
Λc that meets the sufficient condition. The following theorem
gives an answer to this question. Let us define γ⋆

D (Λc) :=
min{γ satisfying (8) with (10)}.

Theorem 2 (Existence Theorem): Suppose that the origin of
the original RNN (3) is ES (resp. GES) and there exists a
continuously differentiable function V satisfying the counter-
part of (6a)–(6c) for (3), i.e., c1 ‖x‖2 ≤ V (x) ≤ c2 ‖x‖2,
∂V (x)
∂x (Ax+BΦ(Cx)) ≤ −c3 ‖x‖2, and

∥∥∥∂V (x)
∂x

∥∥∥ ≤ c4 ‖x‖
on D (resp. Rn) for some positive constants c1, . . . , c4. Then,
there exists a positive constant γ0 such that for any Λc ⊂
Nm satisfying γ⋆

D (Λc) < γ0 (resp. γ⋆
Rn (Λc) < γ0), if

such Λc exists, the resulting reduced RNN (4) meets all the
assumptions of Theorem 1.

Proof: Let us prove the theorem for the local case
because the global case can be proved in the same way.
Conversely to Theorem 1, we regard the original RNN (3)
and the reduced one (4) as the nominal and perturbed systems,
respectively, as follows:

Σaut : ẋ(t) = f(x(t)), (13)

Σaut
r : ẋ(t) = f(x(t)) + g(x(t)), (14)

where g(x) := −g(x) defined with (10). Define γ0 := c3
2c4

> 0
and choose Λc satisfying γ⋆

D (Λc) < γ0. Now, we want to show
that the resulting reduced RNN (14) meets all the assumptions
of Theorem 1. First, by applying Lemma 2 to systems (13)
and (14), we find that the origin of the reduced RNN (14) is
ES. Next, we must find a continuously differentiable function
V satisfying (6a)–(6c) for the reduced RNN (14). This is
achieved by setting V := V , ci := ci (i = 1, 2, 4) and c3 := c3

2

because ∂V (x)
∂x

(
f(x) + g(x)

)
≤ −c3 ‖x‖2 + c4γ

⋆
D (Λc) ‖x‖2.

The remaining condition we must prove is γ⋆
D (Λc) < c3

c4
.

Since γ⋆
D (Λc) < γ0, this inequality holds. Therefore, all the

assumptions of Theorem 1 are satisfied with this Λc.
Remark 1: The key condition to be proved in the last part

of the proof of Theorem 2 is the inequality γ⋆
D (Λc) <

1
c4

(c3 − c4γ
⋆
D (Λc)). Therefore, counterintuitively, just taking

γ0 := c3
c4

does not work in Theorem 2.
The value of γ0 in Theorem 2 cannot be known before the

model reduction and stability analysis because we do not know
the Lyapunov function V for the original RNN beforehand.
However, Theorem 2 validates the qualitative claim: if the
origin of the original RNN is ES/GES (but we do not know it
beforehand), then with any Λc whose “magnitude” γ⋆

D (Λc)
is sufficiently small, the resulting reduced RNN is always
capable of guaranteeing the local/global exponential stability
of the original RNN by using Theorem 1. This ensures the
validity of using Theorem 1 for the stability analysis of large
scale RNNs.



B. Reduction Procedure
Theorems 1 and 2 do not give any executable procedure

of selecting Λc. Hence, in this subsection, we propose a
model reduction procedure based on the underlying concept of
Theorems 1 and 2: select Λc such that γ⋆

D (Λc) (or its upper-
bound estimate) is as small as possible. We assume that the
activation functions ϕi’s are a common ReLU function

ϕ : R 3 q 7→ max{0, q} ∈ R (15)

as is common practice. Since the procedure proposed below is
conservative, the obtained Λc will not necessarily satisfy the
sufficient condition of Theorem 1. However, the procedure is
executable and intuitively reasonable.

First, since ϕ(q) ≤ |q| holds for ReLU functions, the
following inequality holds: ‖g(x)‖ ≤

∑
i∈Λc

‖biϕi(cix)‖ ≤∑
i∈Λc

‖bi‖ |cix| ≤
∑

i∈Λc
‖bi‖ ‖ci‖ ‖x‖. Therefore, the

bound (8) holds on D = Rn by putting γ = γ :=∑
i∈Λc

‖bi‖ ‖ci‖. This fact motivates us to remove the l
smallest activation functions in terms of the magnitude of
‖bi‖ ‖ci‖. From this observation, we propose the following
model reduction procedure.

Procedure 1 (Model Reduction):
Input: RNN (1) and the desired activation degree mr.
Output: index set Λc to be removed.

1: Compute the value of γi := ‖bi‖ ‖ci‖ for all i ∈ Nm.
2: Select the l smallest values from the γi’s.
3: Set Λc to be the index set of the selected γi’s.

If the resulting reduced RNN satisfies the assumptions of
Theorem 1, the local/global exponential stability of the origin
of the original RNN will be guaranteed. Theorems 1 and 2
give a foundation of the validity of this intuitive and simple
model-reduction procedure.

Remark 2: Theorems 1 and 2 are applicable to general re-
duction procedures including, but not limited to, Procedure 1.

V. LESS-CONSERVATIVE UPPER BOUND
A. Motivation and Setup

To make the condition (9) to hold for the selected Λc, the
value of γ should be computed as small as possible. In other
words, a less conservative upper-bound estimate of γ⋆

D (Λc)
should be computed. Although one can put γ = γ as in
subsection IV-B, it might be an overestimate. Therefore, we
propose an SDP-based method of computing the upper-bound
estimate less than or equal to γ. The activation function ϕi’s
are assumed to be a common ReLU function (15) as done in
subsection IV-B.

Now, let us re-describe (10) as g(x) = B̌Φl(Čx), where
Φl : R

l 3 [q̌1, . . . , q̌l]
⊤ 7→ [ϕ(q̌1), . . . , ϕ(q̌l)] ∈ Rl, and

B̌ :=
[
b̌1 · · · b̌l

]
∈ Rn×l,

b̌i := bκΛc (i)
(i = 1, . . . , l), (16a)

Č :=

č1...
čl

 ∈ Rl×n, či := cκΛc (i)
(i = 1, . . . , l). (16b)

By definition, we see
∥∥B̌ ◦ Φl ◦ Č

∥∥ = γ⋆
Rn (Λc) , where ◦ is

the composition operator of mappings. Hence, in what follows,
we compute a less conservative upper bound of

∥∥B̌ ◦ Φl ◦ Č
∥∥.

B. Upper Bound Characterization

First, let us define the following property.
Definition 1: For given matrices B̌ ∈ Rn×l and Č ∈ Rl×n,

the pair (B̌, Č) is said to be balanced if
∥∥b̌i∥∥ = ‖či‖ (i =

1, . . . , l).
In the following, we make the next assumption without loss

of generality.
Assumption 1: We assume that the matrices B̌ ∈ Rn×l and

Č ∈ Rl×n satisfy
(i)

∥∥b̌i∥∥ ‖či‖ > 0 (i = 1, . . . , l);
(ii) The pair (B̌, Č) is balanced.

To see the rationality of the first assumption, let us suppose∥∥b̌i∗∥∥ = 0 just for instance. Then, by defining

B̂ :=
[
b̌1 · · · b̌i∗−1 b̌i∗+1 · · · b̌l

]
∈ Rn×(l−1),

Ĉ :=



č1
...

či∗−1

či∗+1

...
čl


∈ R(l−1)×n,

we can readily see that B̌ ◦Φl ◦ Č = B̂ ◦Φl−1 ◦ Ĉ. Therefore,
if
∥∥b̌i∗∥∥ = 0, then we can discard the i∗-th column of B̌ and

the i∗-th row of Č from the outset. To see the rationality of
the second assumption, we note that B̌ ◦Φl ◦ Č = (B̌D)◦Φl ◦
(D−1Č)

(
∀D ∈ Dl

++

)
holds for ReLU nonlinearities [13].

With this fact in mind, let us define

D0 := diag(d1, · · · , dl) ∈ Dl
++, di :=

√
∥či∥
‖b̌i‖ (i = 1, · · · , l),

B̂ := B̌D0 ∈ Rn×l, Ĉ := D−1
0 Č ∈ Rl×n.

Then, we see that B̌ ◦ Φl ◦ Č = B̂ ◦ Φl ◦ Ĉ and the pair
(B̂, Ĉ) is balanced with ‖b̂i‖ = ‖ĉi‖ =

√∥∥b̌i∥∥ ‖či‖ (i =

1, · · · , l). Therefore, we can assume (B̌, Č) is balanced from
the outset without loss of generality. Note that γ⋆

Rn (Λc) and
γ are invariant under these transformations.

Since exact computation of
∥∥B̌ ◦ Φl ◦ Č

∥∥ is hard, we focus
on its upper bound computation. In view of ‖ϕ‖ = 1 and
hence ‖Φl‖ = 1 for ReLU nonlinearities, we can obtain the
next upper bounds:∥∥B̌ ◦ Φl ◦ Č

∥∥ ≤
∥∥B̌∥∥ ∥∥Č∥∥ ,∥∥B̌ ◦ Φl ◦ Č

∥∥ =

∥∥∥∥∥
l∑

i=1

b̌i ◦ ϕ ◦ či

∥∥∥∥∥ ≤
l∑

i=1

∥∥b̌i∥∥ ‖či‖ .
Regarding these bounds, we can obtain the next result.

Proposition 1: For given B̌ ∈ Rn×l and Č ∈ Rl×n sat-
isfying Assumption 1, we have

∥∥B̌∥∥ ∥∥Č∥∥ ≤
∑l

i=1

∥∥b̌i∥∥ ‖či‖.

Proof: Note that
∥∥B̌∥∥ ≤

∥∥B̌∥∥
F

=

√∑l
i=1

∥∥b̌i∥∥2
and

∥∥Č∥∥ ≤
∥∥Č∥∥

F
=

√∑l
i=1 ‖či‖

2. It follows that∥∥B̌∥∥ ∥∥Č∥∥ ≤
√∑l

i=1

∥∥b̌i∥∥2√∑l
i=1 ‖či‖

2
=

∑l
i=1

∥∥b̌i∥∥2 =∑l
i=1

∥∥b̌i∥∥ ‖či‖. This completes the proof.



Remark 3: For Proposition 1 to hold, it suffices that the pair
(B̌, Č) is balanced. Again, we note that γ =

∑l
i=1

∥∥b̌i∥∥ ‖či‖
naturally arises as an upper bound of γ⋆

Rn (Λc) in Procedure 1
to choose the index set Λc. However, once Λc is chosen,
Proposition 1 shows that

∥∥B̌∥∥ ∥∥Č∥∥ is a better (no worse) upper
bound. In the next subsection, we further derive an SDP that
enables us to obtain a better (no worse) upper bound than∥∥B̌∥∥ ∥∥Č∥∥.

C. Upper Bound Computation by SDP
The next result, inspired by [14], forms an important basis

for the SDP-based upper bound computation of γ⋆
Rn (Λc).

Proposition 2: Let us define Π⋆ ⊂ S2l by

Π⋆ :=

{
Π ∈ S2l :

[
q̌
p̌

]⊤
Π

[
q̌
p̌

]
≥ 0,

∀
[
q̌
p̌

]
∈ R2l s.t. p̌ = Φl(q̌)

}
.

Then, we have
∥∥B̌ ◦ Φl ◦ Č

∥∥ ≤ γ if there exists Π ∈ Π⋆ such
that [

−γ2In 0
0 B̌⊤B̌

]
+

[
Č 0
0 Il

]⊤
Π

[
Č 0
0 Il

]
� 0. (17)

Proof: For an input-output pair (x, y) of the operator
B̌ ◦ Φl ◦ Č, let us define q̌ = Čx and p̌ = Φl(q̌). Then we
have y = B̌p̌. Multiplying [x⊤ p̌⊤]⊤ from the right and its
transpose from the left to (17), we obtain

−γ2 ‖x‖2 + ‖y‖2 +
[
q̌
p̌

]⊤
Π

[
q̌
p̌

]
≤ 0.

Since Π ∈ Π⋆, we readily obtain −γ2 ‖x‖2 + ‖y‖2 ≤ 0. This
inequality implies that ‖y‖2 ≤ γ2 ‖x‖2 for any x ∈ Rn. This
clearly shows that

∥∥B̌ ◦ Φl ◦ Č
∥∥ ≤ γ holds.

In Proposition 2, it is of prime importance to employ a
set of multipliers Π ⊂ Π⋆ that is numerically tractable and
captures the input-output properties of ReLU Φl as accurately
as possible. On this issue, the next results have been obtained.

Proposition 3 ([15, Th. 2]): Suppose Φl is ReLU and let
us define the sets of multipliers ΠCOP,ΠNN ⊂ S2l by

ΠCOP :=
{
Π ∈ S2l : Π = (∗)⊤ (Q+ J (J))E,

J ∈ Dl, Q ∈ COP2l
}
,

ΠNN :=
{
Π ∈ S2l : Π = (∗)⊤ (Q+ J (J))E,

J ∈ Dl, Q ∈ NN2l
}
,

E :=

[
−Il Il
0l Il

]
, J (J) :=

[
0l,l J
∗ 0l,l

]
,

where COP2l ⊂ S2l and NN2l ⊂ S2l are the copositive cone
and the nonnegative cone [16], respectively. Then, we have
ΠNN ⊂ ΠCOP ⊂ Π⋆.

Remark 4: The problem to determine whether a given
matrix is copositive or not is a co-NP complete problem
in general [17], and hence ΠCOP is numerically intractable.
We therefore employ ΠNN in this paper. Since the ReLU
Φl is a (repeated) slope-restricted nonlinearity, we can also
employ known multipliers such as (static) O’Shea-Zames-Falb

multipliers [18], [19] and the multipliers proposed by Fazlyab
et al. [14]. It has been shown that ΠNN encompasses these
known multipliers; see [15] for details.

We are now ready to state the main result of this section.
Theorem 3: Suppose Φl is ReLU. For given B̌ ∈ Rn×l and

Č ∈ Rl×n that are not necessarily balanced, let us consider
the SDP:

γSDP := inf
γ,Π∈ΠNN

γ subject to (17).

Then, we have
∥∥B̌ ◦ Φl ◦ Č

∥∥ ≤ γSDP ≤
∥∥B̌∥∥ ∥∥Č∥∥.

Proof: We prove γSDP ≤
∥∥B̌∥∥ ∥∥Č∥∥. To this end, it

suffices to show that there exists Π ∈ ΠNN such that[
−ν2Bν

2
CIn 0

0 B̌⊤B̌

]
+

[
Č 0
0 Il

]⊤
Π

[
Č 0
0 Il

]
� 0 (18)

where νB :=
∥∥B̌∥∥ and νC :=

∥∥Č∥∥. To prove (18), we first
note −ν2CIn+ Č⊤Č � 0 and hence −ν2Bν

2
CIn+ν2BČ

⊤Č � 0
holds. By Schur complement argument, we thus obtain[

−ν2Bν
2
CIn ν2BČ

⊤

∗ −ν2BIl

]
� 0

or equivalently [
−ν2Bν

2
CIn −Č⊤J

∗ J

]
� 0

where J := −ν2BIl. Since J+ B̌⊤B̌ � 0, the above inequality
implies [

−ν2Bν
2
CIn −Č⊤J

∗ B̌⊤B̌ + 2J

]
� 0.

This clearly shows that (18) holds with Π = (∗)⊤J (J)E ∈
ΠNN. From Proposition 3, this completes the proof.

Remark 5: Proof of Theorem 3 implies that the claim of the
theorem is still valid even when we set Q = 0 in the search
within ΠNN to solve the SDP.

From Proposition 1 and Theorem 3, we obtain the following
corollary.

Corollary 1: Suppose Φl is ReLU. If the pair (B̌, Č) is
balanced, we have γ⋆

Rn (Λc) ≤ γSDP ≤
∥∥B̌∥∥ ∥∥Č∥∥ ≤ γ.

VI. NUMERICAL EXAMPLE

In this letter paper, we give a small-scale numerical example
to demonstrate the process and effectiveness of main results.
Large-scale problems should be examined in future publica-
tions. Set n = 10 and m = 10 of the original RNN (3). The
activation functions are the common ReLU nonlinearity (15).
We generated the coefficient matrices of (3) in a random
manner, whose resulting values are:

A =



−11.40 −1.34 2.25 −1.46 1.92 3.92 1.80 −0.98 −0.84 0.79
−2.02 −6.69 −3.44 1.17 0.33 −4.72 −1.28 −0.88 −1.20 0.89
−0.31 2.45 −7.74 0.03 −1.18 0.11 1.59 1.18 −1.47 0.12
1.74 −1.60 2.24 −10.74 2.69 1.29 2.51 2.03 −0.09 1.26
0.04 0.60 0.92 1.87 −9.71 −0.33 0.36 −0.25 0.86 −1.76
0.08 1.56 3.69 3.55 −2.05 −7.60 1.75 0.39 0.80 2.29

−0.94 −1.58 −4.52 0.19 3.81 −0.73 −7.09 −3.05 0.60 −4.47
0.14 3.59 −4.09 −2.20 −1.85 −1.04 −0.42 −8.85 0.91 4.53

−0.49 0.07 −4.32 0.42 2.71 1.96 2.33 1.26 −5.25 −0.63
1.71 −2.62 1.40 −0.41 1.90 0.95 −0.29 −0.27 −3.59 −11.47


,



B =



−0.34 −0.42 0.01 0.19 0.40 −0.50 −0.21 0.08 −0.16 0.26
−0.45 0.54 0.01 −0.03 −0.44 −0.04 −0.23 −0.65 −0.10 0.21
−0.52 −0.62 −0.47 −0.19 −0.12 −0.03 −0.19 −0.37 −0.23 −0.04
−0.33 −0.01 −0.21 −0.56 −0.17 −0.41 −0.63 0.19 −0.16 −0.33
−0.53 0.50 −0.53 −0.15 0.14 0.50 0.18 0.44 −0.28 0.57
−0.16 −0.54 −0.34 −0.50 −0.08 −0.50 −0.39 0.12 0.66 −0.35
−0.01 0.09 −0.42 −0.70 −0.64 −0.13 −0.53 −0.43 −0.14 0.33
−0.30 −0.47 0.01 0.04 −0.47 −0.48 −0.37 −0.49 −0.89 0.02
0.33 −0.55 −0.02 0.12 0.36 −0.06 −0.44 0.11 −0.09 −0.46
0.21 0.16 −0.15 0.18 0.28 0.29 −0.22 −0.84 −0.17 −0.18


,

C =



−0.26 −0.31 −0.02 0.03 0.20 −0.29 0.15 0.17 −0.45 −0.08
−0.47 −0.26 −0.36 0.22 0.38 −0.50 0.22 −0.21 0.11 −0.33
0.38 0.47 0.17 0.50 −0.08 0.11 −0.12 −0.05 −0.47 −0.19
0.06 0.26 −0.30 0 0.77 −0.22 −0.42 −0.71 0.25 0.16
0.08 −0.18 0.11 −0.22 0.20 0.29 −0.41 −0.02 0.32 0.22

−0.16 −0.19 0.02 −0.54 0.34 −0.28 0.24 0.08 −0.09 0.02
−0.23 0.25 0.77 −0.18 −0.16 −0.21 0.50 0.37 0.03 0.09
0.47 −0.06 −0.38 0.06 0.53 0.31 −0.09 0.13 −0.47 0.50

−0.14 0.03 −0.12 0 0.01 −0.09 −0.14 0.11 0.02 0.60
−0.31 0.27 −0.37 0.19 −0.51 −0.21 0.41 −0.08 0.45 −0.09


.

We aim at composing a reduced RNN of activation degree
mr = 6 and guarantee the stability of the original RNN
through Theorem 1.

Following Procedure 1, we selected the removed activation
functions as Λc = {1, 5, 6, 9} and composed the reduced
RNN (4). For this index set, we composed the matrices (16)
and solved the SDP of Theorem 3 with transforming B̌
and Č into the balanced ones. The obtained solution was
γSDP = 1.2561. Then, to apply Theorem 1, we must find
a Lyapunov function V satisfying (6a)–(6c) for the reduced
RNN. To this end, we employed the IQC approach [8] with
the set of static multipliers ΠNN given in Proposition 3 and
obtained the quadratic Lyapunov function V (x) = x⊤Px with
the positive definite matrix

P =



0.65 −0.15 0.15 0.08 0.08 0.36 0.01 −0.03 −0.07 0.09
−0.15 1.05 0.07 −0.13 −0.21 −0.50 −0.42 −0.01 −0.26 0.06
0.15 0.07 1.76 −0.05 −0.42 0.24 −0.07 0.09 −0.96 0.46
0.08 −0.13 −0.05 0.81 0.34 0.40 0.31 −0.11 0.29 −0.14
0.08 −0.21 −0.42 0.34 1.46 0.21 0.49 −0.28 0.76 −0.18
0.36 −0.50 0.24 0.40 0.21 1.65 0.63 0.04 0.40 0.15
0.01 −0.42 −0.07 0.31 0.49 0.63 1.59 0.07 0.56 −0.29

−0.03 −0.01 0.09 −0.11 −0.28 0.04 0.07 0.87 −0.09 0.24
−0.07 −0.26 −0.96 0.29 0.76 0.40 0.56 −0.09 1.87 −0.47
0.09 0.06 0.46 −0.14 −0.18 0.15 −0.29 0.24 −0.47 0.95


× 10

−1
.

The constants were obtained as c3 = 1 and c4 = 0.7917,
yielding c3/c4 = 1.2630. Therefore, all the assumptions
of Theorem 1 were satisfied globally on Rn, which leads
to the global exponential stability of the origin of original
RNN (3), as desired. It should be noted that we also obtained∥∥B̌∥∥ ∥∥Č∥∥ = 1.5326 and γ = 3.3392, by which (9) is not
satisfied in contrast to γSDP. This shows the effectiveness of
the SDP computation of Theorem 3.

Besides these results, introducing the matrix variable Q in
Proposition 3 causes another issue that the number of scalar
variables of the SDP rapidly increases as l = |Λc| increases,
which may conflict to our motivation. To avoid this issue, we
may use only the matrix variable J , whose scalar variables
increases only linearly in l, to compose the multipliers in
Proposition 3 (see Remark 5). We computed the solution of the
SDP with this treatment and obtained γSDP,J = 1.2562, which
satisfies γSDP,J < c3/c4 as well as γSDP. Even with this loose
(and conservative) SDP computation, we could conclude the
global exponential stability of the origin of (3).

VII. CONCLUSION

We proposed a Lyapunov-based method of reducing the
number of activation functions of an RNN for stability anal-
ysis. The proposed theorems and methods were demonstrated
on a numerical example.

Some future works can be suggested: for effective stability
analysis, instability criterion should be derived; since this pa-
per presented only the theoretical results and the demonstration
on a simple example as an early stage of study, the proposed
methods should be examined on large-scale real-life RNNs;
the proposed methodology should be extended to discrete-time
RNN models; and model reduction methods for preserving
input-to-output properties should be proposed.
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